CN112041432A - Foxp3靶向剂组合物以及用于过继细胞疗法的使用方法 - Google Patents

Foxp3靶向剂组合物以及用于过继细胞疗法的使用方法 Download PDF

Info

Publication number
CN112041432A
CN112041432A CN201980025471.9A CN201980025471A CN112041432A CN 112041432 A CN112041432 A CN 112041432A CN 201980025471 A CN201980025471 A CN 201980025471A CN 112041432 A CN112041432 A CN 112041432A
Authority
CN
China
Prior art keywords
seq
amino acid
acid sequence
set forth
sequence set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980025471.9A
Other languages
English (en)
Inventor
D·A·谢因伯格
刘诚
杨智源
L·刘
S·徐
P·王
许奕阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uric Biotech
Memorial Sloan Kettering Cancer Center
Eureka Therapeutics Inc
Original Assignee
Uric Biotech
Memorial Sloan Kettering Cancer Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uric Biotech, Memorial Sloan Kettering Cancer Center filed Critical Uric Biotech
Publication of CN112041432A publication Critical patent/CN112041432A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • A61K39/4611
    • A61K39/4631
    • A61K39/4632
    • A61K39/464402
    • A61K39/464412
    • A61K39/464452
    • A61K39/464453
    • A61K39/464481
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70521CD28, CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2833Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/32Immunoglobulins specific features characterized by aspects of specificity or valency specific for a neo-epitope on a complex, e.g. antibody-antigen or ligand-receptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本文提供了用于制造用于过继细胞疗法的细胞的组合物、试剂盒和方法,其包括(a)工程化受体、编码工程化受体的载体、或表达此类工程化受体或包含此类载体的工程化免疫细胞;和(b)Fox P3靶向剂。

Description

FOXP3靶向剂组合物以及用于过继细胞疗法的使用方法
相关申请的交叉引用
本申请要求2018年2月15日提交的美国临时申请号62/631,465的优先权,将所述临时申请的全部内容通过引用并入本文。
政府支持声明
本发明是在由美国国立卫生研究院授予的AI073736、AI095692、AR068118、R01CA55349、P01 CA23766、GM100477、和AI118224下在美国政府支持下完成的。政府拥有本发明中的某些权利。
背景技术
最近,已经出现了过继和工程化T细胞疗法(包括嵌合抗原受体(CAR)T细胞、T细胞受体(TCR)工程化T细胞、和采用抗原的T细胞),成为用于各种疾病(诸如传染性疾病(例如,HIV)和癌症)的重要疗法。第一代CAR是通过将scFv与CD3-ζ链的细胞内信号传导结构域融合而设计的,而后代CAR被修饰为包括共刺激分子(例如,CD28、CD80、和4-1BB)和激活分子(例如,CD3ζ)以改善T细胞激活和功效。然而,由T调节细胞(Treg)和Treg样细胞产生的免疫抑制是成功免疫治疗的主要障碍。
转录因子叉头框p3(Foxp3)在Treg细胞和Treg样细胞中过表达,并且在这些细胞的抑制功能中发挥核心作用。用于过继细胞疗法的细胞样品(包括用于制备工程化免疫细胞的免疫细胞样品)含有FoxP3阳性免疫抑制细胞(例如,Treg)和FoxP3阴性免疫激活细胞(例如,效应细胞)的混合物。免疫抑制细胞的存在可能负面地影响用于过继细胞疗法的细胞群体的产生,并且当给予患者时可能影响其功效。因此,本文公开了用于改善工程化免疫细胞的制造以及用于增加过继细胞疗法的功效的组合物、试剂盒和方法。
发明内容
在某些实施方案中,本文提供了用于制造工程化免疫细胞的方法,其包括:使包含多个免疫细胞的样品与(a)编码工程化受体的载体;和(b)叉头框P3(FoxP3)靶向剂接触,从而产生包含所述载体的工程化免疫细胞。在一些实施方案中,所述多个免疫细胞包括一个或多个外周血单核细胞(PBMC)。在一些实施方案中,所述一个或多个PBMC是白细胞。在一些实施方案中,所述白细胞是淋巴细胞。在一些实施方案中,所述淋巴细胞是T细胞。在一些实施方案中,所述T细胞是效应T细胞。在一些实施方案中,所述效应T细胞是细胞毒性T细胞。在一些实施方案中,所述细胞毒性T细胞是分化簇8阳性(CD8+)T细胞。在一些实施方案中,所述效应细胞是辅助T细胞。在一些实施方案中,所述辅助T细胞是分化簇4阳性(CD4+)T细胞。在一些实施方案中,所述T细胞是调节性T细胞。在一些实施方案中,所述多个免疫细胞包括一个或多个FoxP3表达细胞。在一些实施方案中,所述多个免疫细胞包括一个或多个不表达FoxP3的细胞。在一些实施方案中,所述多个免疫细胞包括一个或多个FoxP3表达细胞和一个或多个不表达FoxP3的细胞。在一些实施方案中,裂解或杀伤所述一个或多个FoxP3表达细胞中的至少一个。在一些实施方案中,将所述一个或多个FoxP3表达细胞中的至少一个与不表达FoxP3的细胞分离。在一些实施方案中,使所述样品与所述FoxP3靶向剂接触包括使所述样品与两种或更多种不同的FoxP3靶向剂接触。在一些实施方案中,裂解或杀伤所述一个或多个FoxP3表达细胞中的至少一个,并且将所述一个或多个FoxP3表达细胞中的至少一个与不表达FoxP3的细胞分离。在一些实施方案中,在与所述载体接触之前,使所述样品与所述FoxP3靶向剂接触。在一些实施方案中,使所述样品同时与FoxP3靶向剂和载体接触。在一些实施方案中,在与载体接触之后,使样品与FoxP3靶向剂接触。
在一些实施方案中,工程化免疫细胞的工程化受体选自嵌合抗原受体(CAR)、嵌合抗体-T细胞受体(caTCR)、和工程化T细胞受体(eTCR)。在一些实施方案中,所述工程化受体是CAR。在一些实施方案中,所述CAR包含至少一个细胞外抗原结合结构域。在一些实施方案中,所述至少一个细胞外抗原结合结构域包含单链可变区片段(scFv)。在一些实施方案中,所述CAR包含至少一个细胞内信号传导结构域。在一些实施方案中,所述至少一个细胞内信号传导结构域包含CD3ζ多肽或其片段。在一些实施方案中,所述工程化受体是caTCR。在一些实施方案中,所述caTCR包含至少一个跨膜结构域。在一些实施方案中,所述至少一个跨膜结构域衍生自TCR的跨膜结构域。在一些实施方案中,所述TCR的跨膜结构域是γ-δTCR的跨膜结构域。在一些实施方案中,所述caTCR包含至少一个恒定区。在一些实施方案中,所述至少一个恒定区包括重链恒定区或其片段。在一些实施方案中,所述重链恒定区包含一个或多个结构域。在一些实施方案中,所述重链恒定区包含三个结构域。在一些实施方案中,所述至少一个恒定区包含轻链恒定区或其片段。在一些实施方案中,所述轻链恒定区包含至少一个结构域。在一些实施方案中,所述至少一个恒定区衍生自TCR的恒定区。在一些实施方案中,所述TCR的恒定区是γ-δTCR的恒定区。
在一些实施方案中,所述caTCR包含:(a)第一多肽链,所述第一多肽链包含:包含VH抗体结构域的第一抗原结合结构域和包含第一TCR跨膜结构域(TCR-TM)的第一TCR结构域(TCRD);和(b)第二多肽链,所述第二多肽链包含:包含VL抗体结构域的第二抗原结合结构域和包含第二TCR-TM的第二TCRD,其中第一抗原结合结构域的VH结构域和第二抗原结合结构域的VL结构域形成特异性结合靶抗原的抗原结合模块,并且其中第一TCRD和第二TCRD形成能够募集至少一个TCR相关的信号传导模块的TCR模块(TCRM)。在一些实施方案中,第一TCR-TM衍生自第一天然存在的TCR的一个跨膜结构域,并且第二TCR-TM衍生自第一天然存在的TCR的其他跨膜结构域。在一些实施方案中,第一天然存在的TCR是γ-δTCR。在一些实施方案中,第一多肽链进一步包含在第一抗原结合结构域与第一TCRD之间的第一肽接头,并且第二多肽链进一步包含在第二抗原结合结构域与第二TCRD之间的第二肽接头。在一些实施方案中,第一肽接头和/或第二肽接头单独地包含来自免疫球蛋白或TCR亚基的恒定结构域或其片段。在一些实施方案中,第一肽接头和/或第二肽接头单独地包含CH1、CH2、CH3、CH4、或CL抗体结构域或其片段。在一些实施方案中,第一肽接头和/或第二肽接头单独地包含Cα、Cβ、Cγ、或CδTCR结构域或其片段
在一些实施方案中,所述工程化受体是eTCR。在一些实施方案中,所述eTCR包含抗原/MHC结合区。在一些实施方案中,所述抗原/MHC结合区衍生自天然存在的TCR的抗原/MHC结合区。在一些实施方案中,所述工程化受体与细胞表面抗原结合。在一些实施方案中,所述细胞表面抗原选自蛋白质、碳水化合物、和脂质。在一些实施方案中,所述细胞表面抗原选自分化簇19(CD19)、CD20、CD47、磷脂酰肌醇蛋白聚糖3(GPC-3)、受体酪氨酸激酶样孤儿受体1(ROR1)、ROR2、B细胞成熟抗原(BCMA)、G蛋白偶联受体C类5组成员D(GPRC5D)、和Fc受体样5(FCRL5)。在一些实施方案中,所述细胞表面抗原是CD19。在一些实施方案中,所述工程化受体与包含肽和主要组织相容性复合物(MHC)蛋白的复合物结合。在一些实施方案中,所述肽衍生自选自以下的蛋白质:威尔姆氏肿瘤基因1(WT-1)、α-胎蛋白(AFP)、人乳头状瘤病毒16E7蛋白(HPV16-E7)、纽约食管鳞状细胞癌1(NY-ESO-1)、黑色素瘤优先表达抗原(PRAME)、爱泼斯坦-巴尔病毒-潜伏膜蛋白2α(EBV-LMP2A)、人免疫缺陷病毒1(HIV-1)、KRAS、组蛋白H3.3、和前列腺特异性抗原(PSA)。在一些实施方案中,所述肽衍生自AFP。在一些实施方案中,衍生自AFP的肽包含序列FMNKFIYEI。在一些实施方案中,MHC蛋白是MHC I类蛋白。在一些实施方案中,所述MHC I类蛋白是HLA-A02等位基因的HLA-A*02:01亚型。在一些实施方案中,工程化受体是多特异性的。在一些实施方案中,工程化受体是单特异性的。在一些实施方案中,编码工程化受体的载体是哺乳动物表达载体。在一些实施方案中,所述哺乳动物表达载体是慢病毒载体或转座子载体。
在一些实施方案中,FoxP3靶向剂是抗体、CAR、caTCR、或eTCR,或包含其抗原结合片段。在一些实施方案中,FoxP3靶向剂是TCR分子或包含TCR分子的抗原结合部分。在一些实施方案中,所述FoxP3靶向剂包含抗原结合蛋白,所述抗原结合蛋白与包含FoxP3衍生的肽和MHC蛋白的复合物结合。在一些实施方案中,MHC蛋白是MHC I类蛋白。在一些实施方案中,MHC I类蛋白是人白细胞抗原(HLA)I类分子。在一些实施方案中,HLA I类分子是HLA-A。在一些实施方案中,HLA-A是HLA-A2。在一些实施方案中,HLA-A2是HLA-A*02:01。在一些实施方案中,抗原结合蛋白是抗体、CAR、或caTCR。在一些实施方案中,抗原结合蛋白是单特异性的。在一些实施方案中,抗原结合蛋白是全长抗体。在一些实施方案中,抗原结合蛋白是IgG。在一些实施方案中,将抗原结合蛋白与固体支持物偶联。在一些实施方案中,所述固体支持物选自珠粒、微孔、和平面玻璃表面。在一些实施方案中,所述珠粒选自磁性珠粒、交联聚合物珠粒、和珠粒状琼脂糖。在一些实施方案中,抗原结合蛋白是多特异性的。在一些实施方案中,抗原结合蛋白是双特异性抗体。在一些实施方案中,所述双特异性抗体包含:(a)对包含FoxP3肽和MHC蛋白的复合物具有特异性的抗原结合结构域,和(b)对分化簇3(CD3)具有特异性的抗原结合结构域。在一些实施方案中,抗原结合蛋白是嵌合抗原受体(CAR)。在一些实施方案中,所述FoxP3靶向剂是抗FoxP3 CAR-T细胞。在一些实施方案中,FoxP3衍生的肽片段具有8-12个氨基酸的长度。在一些实施方案中,所述FoxP3衍生的肽片段选自具有EQ ID NO:2中列出的氨基酸序列或其一部分的FoxP3-1、具有SEQ ID NO:3中列出的氨基酸序列或其一部分的FoxP3-2、具有SEQ ID NO:4中列出的氨基酸序列或其一部分的FoxP3-3、具有SEQ ID NO:5中列出的氨基酸序列或其一部分的FoxP3-4、具有SEQ ID NO:6中列出的氨基酸序列或其一部分的FoxP3-5、具有SEQ ID NO:7中列出的氨基酸序列或其一部分的FoxP3-6;和具有SEQ ID NO:8中列出的氨基酸序列或其一部分的FoxP3-7。在一些实施方案中,FoxP3衍生的肽片段是具有SEQ ID NO:8中列出的氨基酸序列或其一部分的FoxP3-7。在一些实施方案中,抗原结合蛋白包含:(a)包含SEQ ID NO:16中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:17中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:18中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:19中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:20中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:21中列出的氨基酸序列的轻链可变区CDR3;(b)包含SEQ ID NO:22中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:23中列出的氨基酸序列的重链可变区CDR2;包含SEQ IDNO:24中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:25中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:26中列出的氨基酸序列的轻链可变区CDR2;和包含SEQID NO:27中列出的氨基酸序列的轻链可变区CDR3;(c)包含SEQ ID NO:28中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:29中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:30中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:31中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:32中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:33中列出的氨基酸序列的轻链可变区CDR3;(d)包含SEQ ID NO:34中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:35中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:36中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:37中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:38中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:39中列出的氨基酸序列的轻链可变区CDR3;(e)包含SEQ ID NO:40中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:41中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:42中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:43中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:44中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:45中列出的氨基酸序列的轻链可变区CDR3;(f)包含SEQ IDNO:46中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:47中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:48中列出的氨基酸序列的重链可变区CDR3;包含SEQ IDNO:49中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:50中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:51中列出的氨基酸序列的轻链可变区CDR3;(g)包含SEQ ID NO:52中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:53中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:54中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:55中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:56中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:57中列出的氨基酸序列的轻链可变区CDR3;或(h)包含SEQ ID NO:58中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:59中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:60中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:61中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:62中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:63中列出的氨基酸序列的轻链可变区CDR3。
在一些实施方案中,抗原结合蛋白包含:包含SEQ ID NO:46中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:47中列出的氨基酸序列的重链可变区CDR2;包含SEQID NO:48中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:49中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:50中列出的氨基酸序列的轻链可变区CDR2;和包含SEQID NO:51中列出的氨基酸序列的轻链可变区CDR3。
在一些实施方案中,在所述样品与所述FoxP3靶向剂接触之前至少12、24、36、48、60、72、84、96、108、120、132、或144小时进行所述样品与所述载体的接触。在一些实施方案中,在所述样品与所述载体接触之前至少4、6、8、10、12、16、20、24、36、或48小时进行所述样品与所述FoxP3靶向剂的接触。
在一些实施方案中,样品与FoxP3靶向剂的接触使样品中FoxP3阳性(FoxP3+)细胞的数目减少。在一些实施方案中,与在与FoxP3靶向剂接触之前样品中FoxP3+细胞的数目相比,样品与FoxP3靶向剂的接触使样品中FoxP3+细胞的数目减少至少约30%、40%、50%、60%、70%、80%、90%或更多。在一些实施方案中,与未与FoxP3靶向剂接触的对照样品中FoxP3+细胞的数目相比,样品与FoxP3靶向剂的接触使样品中FoxP3+细胞的数目减少至少约30%、40%、50%、60%、70%、80%、90%或更多。
在一些实施方案中,所述至少一个细胞外抗原结合结构域或所述抗原结合模块与CD19结合并且包含:(a)(i)分别包含与SEQ ID NO:105、106和107至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的重链CDR1、CDR2和CDR3;和/或(ii)分别包含与SEQ IDNO:109、110或111至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的轻链CDR1、CDR2和CDR3;(b)(i)分别包含与SEQ ID NO:105、106和108至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的重链CDR1、CDR2和CDR3;和/或(ii)分别包含与SEQ IDNO:109、110或111至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的轻链CDR1、CDR2和CDR3;(c)(i)分别包含与SEQ ID NO:105、106和107至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的重链CDR1、CDR2和CDR3;和/或(ii)分别包含与SEQ IDNO:109、110或112至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的轻链CDR1、CDR2和CDR3;或(d)(i)分别包含与SEQ ID NO:105、106和108至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的重链CDR1、CDR2和CDR3;和/或(ii)分别包含与SEQID NO:109、110或112至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的轻链CDR1、CDR2和CDR3。
在一些实施方案中,FoxP3靶向剂是嵌合抗原受体(CAR),并且其中CAR与包含FoxP3肽和主要组织相容性复合物(MHC)蛋白的复合物结合。在一些实施方案中,FoxP3靶向CAR包含scFv,所述scFv与包含FoxP3肽和主要组织相容性复合物(MHC)蛋白的复合物结合。在一些实施方案中,FoxP3靶向CAR进一步包含与scFv融合的CD28-CD3ζ肽。在一些实施方案中,FoxP3靶向CAR包含具有与SEQ ID NO:12至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的scFv-CD28-CD3ζ融合体。在一些实施方案中,FoxP3靶向CAR进一步包含与scFv融合的41BB-CD3ζ肽。在一些实施方案中,FoxP3靶向CAR包含具有与SEQ ID NO:13至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的scFv-41BB-CD3ζ融合体。
在一些实施方案中,FoxP3靶向剂是嵌合抗体TCR(caTCR),并且其中caTCR与包含FoxP3肽和主要组织相容性复合物(MHC)蛋白的复合物结合。在一些实施方案中,caTCR包含TCR的γ链。在一些实施方案中,caTCR进一步包含TCR的δ链。在一些实施方案中,TCR的γ链与免疫球蛋白分子的轻链融合,所述轻链与FoxP3结合。在一些实施方案中,TCR的δ链与免疫球蛋白分子的重链融合,所述重链与FoxP3结合。在一些实施方案中,FoxP3靶向caTCR包含:(a)第一多肽链,所述第一多肽链包含:包含VH抗体结构域的第一抗原结合结构域和包含第一TCR跨膜结构域(TCR-TM)的第一TCR结构域(TCRD);和(b)第二多肽链,所述第二多肽链包含:包含VL抗体结构域的第二抗原结合结构域和包含第二TCR-TM的第二TCRD,其中第一抗原结合结构域的VH结构域和第二抗原结合结构域的VL结构域形成特异性结合靶抗原的抗原结合模块,并且其中第一TCRD和第二TCRD形成能够募集至少一个TCR相关的信号传导模块的TCR模块(TCRM)。在一些实施方案中,第一TCR-TM衍生自第一天然存在的TCR的一个跨膜结构域,并且第二TCR-TM衍生自第一天然存在的TCR的其他跨膜结构域。在一些实施方案中,第一天然存在的TCR是γ-δTCR。在一些实施方案中,caTCR包含具有与SEQ ID NO:15至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的抗FoxP3轻链/γ链融合体。在一些实施方案中,caTCR包含具有与SEQ ID NO:14至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的抗FoxP3重链/δ链融合体。
在某些实施方案中,本文还提供了用于消耗包含表达工程化受体的工程化免疫细胞的治疗组合物中的FoxP3阳性细胞的方法,所述方法包括使所述治疗组合物与FoxP3靶向剂接触。
在某些实施方案中,本文还提供了用于富集样品中表达工程化受体的细胞毒性T细胞的方法,其包括使所述样品与FoxP3靶向剂接触。
在某些实施方案中,本文还提供了组合物,其包含:(a)工程化免疫细胞,其中所述工程化免疫细胞表达工程化受体;和(b)FoxP3靶向剂。
在某些实施方案中,本文还提供了组合物,其包含:(a)编码工程化受体的载体;和(b)FoxP3靶向剂。
在某些实施方案中,本文提供了用于制造工程化免疫细胞的组合物、试剂盒、和方法。
在某些实施方案中,本文还提供了用于治疗有需要的受试者的疾病的组合物、试剂盒、和方法。
附图说明
图1展示了Foxp3-TLI诱导肽特异性T细胞应答。(A).将来自HLA-A0*201+Foxp3供体的CD3 T细胞用Foxp3-TLI肽刺激四轮,并且通过IFN-γ酶联免疫斑点(ELISPOT)测定来针对TLI肽或用无关肽EW测试T细胞应答。CD14+APC用作阴性对照。(B).TLI刺激的T细胞还识别MAC-1和MAC-2A细胞,但不识别HLA-A0*201-细胞系Jurkat(C)和(D)。将来自HLA-A*02:01+供体的T细胞刺激五轮,并且通过51Cr释放测定,针对脉冲到T2细胞上的刺激肽(C)或通过51Cr释放测定,针对未脉冲的靶细胞(D)来测量细胞毒性。使用HL A-A*02:01阴性AML细胞系HL-60作为阴性对照。每个数据点表示来自一式三份的培养的平均+/-SD。数据表示来自多个供体的多个类似实验的结果。
图2展示了双特异性抗体的结合特性。(A).所指示的双特异性mAb构建体与Foxp3+/HLA-A2+T淋巴瘤细胞系MAC-2A和对照细胞系Jurkat的结合。由于双特异性mAb构建体带myc标签,因此通过将细胞用双特异性mAb,然后用与FITC缀合的二级mAb(小鼠抗myc)染色来测试结合。对照包括未染色的细胞(线#1)、1(线#2)和0.1μg/ml(线#3)的对照双特异性mAb克隆NC-16、或二级mAb GA6xHis(线#4)。使用1μg(线#5)或0.1μg/ml(线#6)的Foxp3-#32双特异性mAb。(B).类似地,以1μg/ml使用小鼠mAb Foxp3-#32(线#2)或其同种型对照(线#1)的结合。(C).如所指示,通过将细胞用抗A2 mAb BB7(线#2)及其同种型对照小鼠IgG2b(线#1)染色来测量HLA-A*02表达。结合强度通过中值荧光强度示出。
图3展示了双特异性抗体的表位特异性。(A).将Foxp3-TLI肽序列在位置1、2、3、4、5、7、8、9处用丙氨酸取代或在位置10处用甘氨酸(G10)取代(表3中的序列),用所指示的肽以50μg/ml脉冲T2细胞,并且通过流式细胞术测量Foxp3-#32-双特异性mAb的结合。(B).将细胞同时用抗HLA-A2 mAb(克隆BB7.2)染色,以测量肽与HLA-A2分子的相对结合。
图4展示了Foxp3-#32mAb与健康供体中的PBMC中的天然Treg细胞的特异性结合。将PBMC用对CD4、CD25 CD127具有特异性的mAb和Foxp3-#32小鼠IgG1染色。数据显示,mAbFoxp3-#32仅与CD4+CD25高CD127低的Treg结合,不与CD4+25高CD127高的群体结合(A),也不与来自HLA-A0*201阴性供体的CD4+CD25高CD127低的Treg结合(B)。数据示出了来自3组不同个体的代表性结果。
图5展示了Foxp3-#32mAb与从HLA-A*02:01+供体体外产生的Treg细胞的结合。将CD4+T细胞进行FACS分选并且在IL-2(100单位)和TGF-β(10ng/ml)的存在下用作为刺激细胞和饲养细胞两者的MAC-2A细胞(A)或allo-PBMC(B)进行刺激,进行每周刺激。将细胞用针对表面CD4、CD25、细胞内Foxp3的mAb和mAb Foxp3-#32/APC进行染色。通过对DAPI-、CD4和CD25双阳性细胞设门来确定Mab Foxp3-#32结合。数据示出了Foxp3-#32加Foxp3蛋白双重染色,以及其同种型对照小鼠IgG1和大鼠同种型对照(mAb与Foxp3(双对照)和mAb与Foxp3蛋白)加Foxp3-#32mAb的同种型对照小鼠IgG1的叠加图。(C).将转导了HLA-A*02:01的细胞系MAC-2A和C5MJ用针对细胞内Foxp3的mAb与Foxp3-#32小鼠mAb染色。示出了Foxp3-#32mAb和Foxp3蛋白双阳性细胞、未被#32mAb同种型结合的Foxp3蛋白阳性细胞、和细胞内Foxp3蛋白和#32mAb两者的同种型对照(上部两图)直方图示出了在相应的细胞系中的HLA-A2表达(下图)。
图6展示了Foxp3-Foxp3-#32-双特异性mAb介导的针对Foxp3+/HLA-A02:01+细胞的T细胞杀伤。将PBMC与TLI脉冲的T2细胞一起孵育(A)。Foxp3-#32双特异性mAb针对单独的T2(线#1);对照双特异性mAb针对单独的T2(线#2);Foxp3-#32双特异性mAb针对用TLI肽脉冲的T2(线#3);对照双特异性mAb针对用TLI肽脉冲的T2(线#4);Foxp3-#32双特异性mAb针对用EW肽脉冲的T2(线#5);对照双特异性mAb针对用对照肽脉冲的T2(线#6);在有或没有浓度范围为1μg/ml至0.0003μg/ml的双特异性mAb的情况下以50:1的E:T比率的HL-60(B)、MAC-1(C)或MAC-2A(D)靶细胞。针对MAC-2A(E)、Jurkat(F)、C5MJ/A2(G)或C5MJ(H),以30:1的E:T比率将激活的T细胞用作效应细胞。通过5小时51Cr释放测定测量细胞毒性。数据表示一式三份的微孔培养物的平均值。数据表示多次实验的结果。
图7展示了针对健康供体和患者样品中的Treg的代表性流式细胞术斑点图。(A).左边三列示出了培养2天后来自HLA-A*02:01+供体的CD4+CD127高或低群体的频率。CD25+Foxp3表达在CD4+CD127低群体的中列和CD4+CD127高群体的右列示出。(B).基于从相同细胞中CD45RA与Foxp3的表达来进一步分析CD4+CD127高(下部3个图)或低群体(上部3个图)。指示每部分的频率。(C).培养3天后,将相似的设门策略用于细胞。数据示出了来自相同供体的CD4+CD127低群体(左2列)中的CD4+Foxp3+细胞(中间2列)或CD45RA与Foxp3+细胞(右2列)。数据表示三个类似实验之一。(D).将用Foxp3-#32双特异性mAb处理两天的来自患有卵巢癌的HLA-A*02:01+患者的腹水细胞用上面的Treg标记物染色。首先在侧向散射和前向散射上将细胞对淋巴细胞设门,排除大型肿瘤细胞和单核细胞群体。然后用以下两组Treg标记物分析CD4+群体:CD25高与细胞内Foxp3或CD127低与细胞内Foxp3。数据表示同一位患者和总共三位患者的两次相似实验之一。
图8展示了双特异性mAb介导的针对正常PBMC的细胞毒性。在存在或不存在0.2或1μg/ml Foxp3-#32双特异性mAb或其对照的情况下,将来自HLA-A*02:01阳性或阴性供体的对照细胞或PBMC孵育过夜。将细胞洗涤并且用针对人CD3、CD19和CD33的mAb进行染色以确定这些细胞谱系是否被双特异性mAb杀伤。示出了共培养后每个细胞谱系中剩余细胞的百分比。在表的顶部,作为对照,在存在或不存在1μg/ml的双特异性mAb的情况下将MAC-1细胞与作为效应子的HLA-A*02:01阴性PBMC以30:1的E:T比率一起孵育。收获细胞并且将其用针对HLA-A2的mAb(BB7.2克隆)染色。由于仅MAC1细胞是HLA-A2阳性,因此HLA-A2+群体的减少或消失指示MAC-1的杀伤。表的底部示出了HLA-A*02:01阳性PBMC(左)或HLA-A*02:01阴性PBMC(右)的杀伤。两种HLA类型均未见显著的杀伤。数据表示使用不同供体的三个类似实验之一。
图9展示了Foxp3-#32mAb不与来自HLA-A*02:01阳性供体的CD3+CD8+T细胞结合。(A)测试Foxp3-#32mAb的与来自HLA-A*02:01阳性健康供体的CD3/CD8双阳性细胞的结合。直方叠加图显示,与对照mAb相比,未观察到结合。数据表示来自多个供体的流式细胞术数据之一。(B).用1μg/ml的Foxp3-#32双特异性mAb处理一至三天的来自一名HLA-A0*2:01阳性供体的所有健康PBMC中的淋巴细胞的百分比。在前向和侧面散射图中对淋巴细胞群体设门来示出淋巴细胞百分比。经过两天和三天的处理后,在Foxp3-#32双特异性mAb处理组中观察到略微减少。每个数据点示出了一式三份的染色和SD。数据表示两个类似实验之一。
图10A展示了在HLA-A*02:01阴性健康供体中Foxp3+Treg未消耗。在图7所示的相同实验中,将来自健康HLA-A*02:01阴性供体的PBMC用Foxp3-#32双特异性mAb处理两天,并且通过使用Treg标记物CD4、CD25、CD127、CD45RA表面染色和Foxp3细胞内染色来测量Foxp3+Treg的消耗。顶部三个图:未处理的PBMC;中间三个图:用Foxp3-#32双特异性mAb处理的PBMC;下部三个图:用对照双特异性mAb处理的PBMC。数据示出了来自两个相似实验的代表性数据。图10B展示了Foxp3-#32Fc增强的人IgG1对患有卵巢癌的患者的腹水中的Foxp3+Treg的消耗。将腹水细胞用10μg/ml的浓度的Foxp3-#32-Fc增强的mAb处理两天(上图)和三天(下图)。代表性图示出了CD4+CD127低群体中的CD45RA与Foxp3染色。数据表示两个类似实验之一。
图11A展示了Foxp3-#32双特异性mAb介导的针对从HLA-A*02:01+供体体外产生的Treg的T细胞杀伤。在存在或不存在Foxp3-#32或对照双特异性mAb(1μg/ml)的情况下将来自HLA-A2阴性供体的纯化CD3+T细胞与从HLA-A*02:01+供体产生的Treg系以5:1的E:T比率一起孵育过夜。通过流式细胞术确定HLA-A*02:01+T细胞中Foxp3+细胞的百分比。HLA-A2+Foxp3+细胞的减少指示Foxp3-#32双特异性mAb介导的T细胞杀伤。左上象限示出了单独的效应细胞与Treg系的培养并且用HLA-A2与细胞内Foxp3蛋白的mAb进行染色;右上象限示出了在对照双特异性mA的存在下效应子与Treg系的培养,但X轴是用细胞内Foxp3蛋白的同种型对照的染色,以显示在其他三个图中mAb与Foxp3蛋白的特异性结合。下部两图示出了在Foxp3-#32-(左)或对照双特异性mAb(右)的存在下效应子与Treg系的培养。数据示出了来自重复培养的代表性流动数据。图11B提供了在两种Treg系上测试的类似结果的总结,如11A中所描述。图11C展示了在存在或不存在1μg/ml的双特异性mAb的情况下将已转导了GFP/荧光素酶的MAC-2A细胞与来自HLA-A*02:01阴性供体的PBMC以30:1的E:T比率一起孵育总共3天。将30μg荧光素添加到每种培养孔中,然后成像。在指示的时间点测量总生物发光。数据表示三个微孔培养的平均值
图12展示了用5μg/ml的衍生自人蛋白质的各种HLA-A2-结合肽脉冲的T2细胞,并且通过流式细胞术测量Foxp3-#32-小鼠mAb的结合,如材料和方法中所描述。除了与Foxp3-TLI肽结合之外,Foxp-3#32mAb还与衍生自次要组织相容性抗原HA-1和HA-8的两种肽:肽11和14(在微孔板上的位置O11和O14)结合。
图13提供了可用于本文所描述的实施方案的核酸和氨基酸序列的表。
具体实施方式
本公开文本不受限于本申请中描述的具体实施方案,所述具体实施方案旨在作为对本公开文本的单独方面的单一说明。本文将不描述本公开文本的所有各种实施方案。如本领域技术人员将显而易见的是,可以在不背离本公开文本的精神和范围的情况下,对本公开文本进行多种修改和改变。除在本文列举的那些方法和设备之外,通过前述描述,在本公开文本的范围内的功能上等效的方法和设备对于本领域技术人员将是显而易见的。此类修改和改变旨在落入所附权利要求的范围内。本公开文本仅受所附权利要求以及这些权利要求有权要求的等效物的全部范围限制。
应当理解,本公开文本不限于具体用途、方法、试剂、化合物、组合物或生物系统,当然它们可以改变。还应理解,本文所用的术语仅用于描述特定实施方案的目的,而并不旨在是限制性的。
此外,当以马库什(Markush)组的方式描述本公开文本的特征或方面时,本领域技术人员应当认识到,从而还以马库什组中的任何单独的成员或成员子组的方式描述本公开文本。
如本领域技术人员应理解,出于任何和所有目的,特别是就提供书面描述而言,本文公开的所有范围还涵盖任何和所有可能的子范围及其子范围的组合。任何列出的范围均可以容易地被认识为充分描述相同范围并且使其能够分解为至少相等的二分之一、三分之一、四分之一、五分之一、十分之一等。作为非限制性例子,本文讨论的每个范围可以容易地分解为下三分之一、中三分之一和上三分之一等。同样如本领域技术人员应理解,诸如“高达”、“至少”、“大于”、“小于”等所有言辞包括所列举的数字并且涉及随后可以分解为如上文所讨论的子范围的范围。最后,如本领域技术人员应理解,范围包括每个单独的成员。因此,例如,具有1-3个细胞的组是指具有1、2或3个细胞的组。类似地,具有1-5个细胞的组是指具有1、2、3、4或5个细胞的组,如此等等。
定义
除非另外定义,否则本文使用的所有技术和科学术语均具有与本公开文本所属领域的技术人员通常所理解的含义。以下参考文献为技术人员提供了本发明中使用的许多术语的通用定义:Singleton等人,Dictionary of Microbiology and Molecular Biology(第2版1994);The Cambridge Dictionary of Science and Technology(Walker编,1988);The Glossary of Genetics,第5版,R.Rieger等人(编),Springer Verlag(1991);和Hale&Marham,The Harper Collins Dictionary of Biology(1991)。如本文所用,除非另有说明,否则以下术语具有以下赋予它们的含义。本文所用的术语仅用于描述特定实施方案的目的,而不旨在限制本公开文本。
如本文所用,单数形式“一种/一个”(“a”)、“一种/一个”(“an”)和“所述”(“the”)也旨在包括复数形式,除非上下文另有明确说明。
如本文所用,术语“约”或“大约”意指由本领域普通技术人员确定的特定值在可接受的误差范围内,这将部分地取决于所述值是如何测定或确定的,即,测量系统的限制。例如,根据本领域的实践,“约”可以意指在3个或超过3个标准偏差内。可替代地,“约”可以意指给定值的高达20%、优选高达10%、更优选高达5%并且还更优选高达1%的范围。可替代地,特别是对于生物学系统和方法,所述术语可以意指在某值的一个数量级内,优选在5倍内并且更优选在2倍内。
如本文所用,术语向受试者“给予”药剂包括将药剂引入或递送至受试者以执行其预期功能的任何途径。可以通过任何合适的途径进行给予,所述途径包括但不限于静脉内、肌内、腹膜内、皮下和如本文描述的其他合适途径。给予包括自我给予和通过另一个人来给予。
如本文所用,术语“细胞群体”是指表达相似或不同表型的至少两个细胞的组。在非限制性例子中,细胞群体可以包含表达相似或不同表型的至少约10个、至少约100个、至少约200个、至少约300个、至少约400个、至少约500个、至少约600个、至少约700个、至少约800个、至少约900个、至少约1000个细胞、至少约10,000个细胞、至少约100,000个细胞、至少约1×106个细胞、至少约1×107个细胞、至少约1×108个细胞、至少约1×109个细胞、至少约1×1010个细胞、至少约1×1011个细胞、至少约1×1012个细胞、或更多个细胞。
术语“氨基酸”是指天然存在的氨基酸和非天然存在的氨基酸以及以与天然存在的氨基酸相似的方式起作用的氨基酸类似物和氨基酸模拟物。天然编码的氨基酸为20种常见氨基酸(丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酰胺、谷氨酸、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸、和缬氨酸)以及焦赖氨酸(pyrolysine)和硒代半胱氨酸。氨基酸类似物是指具有与天然存在的氨基酸相同的基本化学结构(即,α碳与氢、羧基、氨基和R基团结合)的试剂,诸如高丝氨酸、正亮氨酸、甲硫氨酸亚砜、甲硫氨酸甲基锍。此类类似物具有经修饰的R基团(诸如正亮氨酸)或经修饰的肽主链,但保留与天然存在的氨基酸相同的基本化学结构。在一些实施方案中,形成多肽的氨基酸呈D形式。在一些实施方案中,形成多肽的氨基酸呈L形式。在一些实施方案中,第一多个形成多肽的氨基酸呈D形式,并且第二多个形成多肽的氨基酸呈L形式。
氨基酸在本文中由其通常已知的三字母符号或由IUPAC-IUB生化命名委员会推荐的单字母符号表示。同样,核苷酸由其通常接受的单字母代码表示。
术语“多肽”、“肽”和“蛋白质”在本文可互换地使用,以指代氨基酸残基的聚合物。所述术语适用于天然存在的氨基酸聚合物以及其中一个或多个氨基酸残基是非天然存在的氨基酸(例如,氨基酸类似物)的氨基酸聚合物。所述术语涵盖任何长度的氨基酸链,包括全长蛋白质,其中氨基酸残基通过共价肽键连接。
如本文所用,“对照”是实验中出于比较目的使用的替代样品。对照可以是“阳性”或“阴性”的。例如,在实验的目的是确定治疗剂对治疗特定类型的疾病的功效的相关性的情况下,典型地使用阳性对照(已知展现出所希望的治疗作用的组合物)和阴性对照(不接受疗法或接受安慰剂的受试者或样品)。
如本文所用,术语“有效量”或“治疗有效量”是指足以实现所希望的治疗作用的药剂的量。在治疗应用的背景下,向受试者给予的治疗肽的量可以取决于感染的类型和严重性以及个体的特征,诸如总体健康状况、年龄、性别、体重以及药物耐受性。它还取决于疾病的程度、严重性和类型。本领域技术人员将能够根据这些和其他因素确定适当的剂量。
如本文所用,术语“表达”是指多核苷酸转录成mRNA的过程和/或转录的mRNA随后被翻译成肽、多肽或蛋白质的过程。如果所述多核苷酸来源于基因组DNA,则在真核细胞中表达可以包括mRNA的剪接。可以通过测量细胞或组织样品中mRNA或蛋白质的量来确定基因的表达水平。在一个方面,可以将来自一个样品的基因的表达水平直接与来自对照或参考样品的所述基因的表达水平进行比较。在另一个方面,可以将来自一个样品的基因的表达水平直接与给予本文公开的组合物后来自相同样品的所述基因的表达水平进行比较。术语“表达”还指以下事件中的一个或多个:(1)从细胞内的DNA序列(例如,通过转录)产生RNA模板;(2)在细胞内加工RNA转录物(例如,通过剪接、编辑、5’帽形成、和/或3’末端形成);(3)在细胞内将RNA序列翻译成多肽或蛋白质;(4)在细胞内进行多肽或蛋白质的翻译后修饰;(5)将多肽或蛋白质呈递在细胞表面上;和(6)从细胞分泌或呈递或释放多肽或蛋白质。
术语“接头”是指接连或连接两个序列(例如,连接两个多肽结构域)的合成序列(例如,氨基酸序列)。在一些实施方案中,接头含有1、2、3、4、5、6、7、8、9、或10个氨基酸序列。
如本文所用,术语“免疫细胞”是指在免疫应答中起作用的任何细胞。免疫细胞是造血起源的,并且包括淋巴细胞,诸如B细胞和T细胞;自然杀伤细胞;髓样细胞,诸如单核细胞、巨噬细胞、树突状细胞、嗜酸性粒细胞、中性粒细胞、肥大细胞、嗜碱性粒细胞、和粒细胞。
如本文所用,术语“天然免疫细胞”是指天然存在于免疫系统中的免疫细胞。
如本文所用,术语“工程化免疫细胞”经遗传修饰的免疫细胞。
术语“淋巴细胞”是指所有未成熟的、成熟的、未分化的和分化的白淋巴细胞群体,包括组织特异性和专门化的品种。作为非限制性实例,它涵盖B细胞、T细胞、NKT细胞、和NK细胞。在一些实施方案中,淋巴细胞包括所有B细胞谱系,包括前B细胞、祖B细胞、早期祖B细胞、晚期祖B细胞、大前B细胞、小前B细胞、未成熟B细胞、成熟B细胞、血浆B细胞、记忆B细胞、B-1细胞、B-2细胞和无变应性AN1/T3细胞群体。
如本文所用,术语“T细胞”包括初始
Figure BDA0002720450840000171
T细胞、CD4+T细胞、CD8+T细胞、记忆T细胞、激活的T细胞、无变应性T细胞、耐受T细胞、嵌合B细胞、和抗原特异性T细胞。
如本文所用,“过继细胞治疗组合物”是指包含适用于过继细胞转移的细胞的任何组合物。在示例性实施方案中,过继细胞治疗组合物包含选自以下的细胞类型:肿瘤浸润淋巴细胞(TIL)、TCR(即,异源T细胞受体)修饰的淋巴细胞(例如,eTCR T细胞和caTCR T细胞)和CAR(即,嵌合抗原受体)修饰的淋巴细胞(例如,CAR T细胞)。在另一个实施方案中,过继细胞治疗组合物包含选自以下的细胞类型:T细胞、CD8+细胞、CD4+细胞、NK-细胞、δ-γT细胞、调节性T细胞和外周血单核细胞。在另一个实施方案中,TIL、T细胞、CD8+细胞、CD4+细胞、NK-细胞、δ-γT细胞、调节性T细胞或外周血单核细胞形成过继细胞治疗组合物。在一个实施方案中,过继细胞治疗组合物包含T细胞。
如本文所用,“肿瘤浸润淋巴细胞”或TIL是指已离开血流并且迁移到肿瘤中的白血细胞。
如本文所用,术语“抗体”不仅意指完整抗体分子,而且还意指保留免疫原结合能力的抗体分子片段。此类片段在本领域中也是众所周知的,并且通常既体外使用,也体内使用。因此,如本文所用,术语“抗体”不仅意指完整的免疫球蛋白分子,而且还意指众所周知的活性片段F(ab')2和Fab。缺少完整抗体的Fc片段的F(ab')2和Fab片段从循环中清除得更快,并且可以小于完整抗体的非特异性组织结合(Wahl等人(1983)J.Nucl.Med.24:316-325)。本发明的抗体包括整个天然抗体、单克隆抗体、人抗体、人源化抗体、骆驼源化(camelised)抗体、多特异性抗体、双特异性抗体、嵌合抗体、Fab、Fab'、单链V区片段(scFv)、单结构域抗体(例如,纳米抗体和单结构域骆驼科抗体)、VNAR片段、双特异性T细胞衔接器抗体、微抗体、二硫键连接的Fv(sdFv)、和抗独特型(抗Id)抗体、胞内抗体、融合多肽、非常规抗体和以上任何抗体的抗原结合片段。特别地,抗体包括免疫球蛋白分子和免疫球蛋白分子的免疫活性片段,即含有抗原结合位点的分子。免疫球蛋白分子可以是任何类型(例如,IgG、IgE、IgM、IgD、IgA和IgY)、类(例如,IgGl、IgG2、IgG3、IgG4、IgAl和IgA2)或子类的。
在某些实施方案中,抗体是包含通过二硫键相互连接的至少两条重(H)链和两条轻(L)链的糖蛋白。每条重链由重链可变区(在本文缩写为VH)和重链恒定区(CH)构成。重链恒定区由三个结构域CH1、CH2和CH3构成。每条轻链由轻链可变区(在本文缩写为VL)和轻链恒定区CL构成。轻链恒定区由一个结构域CL构成。VH和VL区可以进一步细分为具有高变性的区,称为互补决定区(CDR),其散布有更保守的区,称为框架区(FR)。VH及VL各自由三个CDR及四个FR构成,它们自氨基末端至羧基末端按下列顺序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。重链和轻链的可变区含有与抗原相互作用的结合结构域。抗体的恒定区可以介导免疫球蛋白与宿主组织或因子的结合,所述宿主组织或因子包括免疫系统的各种细胞(例如,效应细胞)和经典补体系统的第一组分(Cl q)。如本文可互换使用的,抗体的术语“抗原结合部分”、“抗原结合片段”、或“抗原结合区”是指抗体的与抗原结合并且为抗体赋予抗原特异性的区或部分;抗原结合蛋白(例如,抗体)的片段包括抗体的保留特异性结合抗原(例如,肽/HLA复合物)的能力的一个或多个片段。已经显示抗体的抗原结合功能可以由全长抗体的片段执行。抗体的术语“抗体片段”中涵盖的抗原结合部分的例子包括Fab片段(由VL、VH、CL和CH1结构域组成的单价片段;F(ab)2片段,包含由二硫桥在铰链区连接的两个Fab片段的二价片段;由VH和CH1结构域组成的Fd片段;由抗体单臂的VL和VH结构域组成的Fv片段;dAb片段(Ward等人(1989)Nature 341:544-546),其由VH结构域组成;和分隔的互补决定区(CDR)。
抗体和抗体片段可以全部或部分地衍生自哺乳动物(例如,人、非人灵长类、山羊、豚鼠、仓鼠、马、小鼠、大鼠、兔子和绵羊)或非哺乳动物类产生抗体的动物(例如,鸡、鸭、鹅、蛇、有尾目两栖动物)。抗体和抗体片段可以在动物中产生或在动物外产生,诸如从酵母或噬菌体产生(例如,作为单抗体或抗体片段或作为抗体文库的一部分)。如本文所用,短语“衍生自”包括从抗体的野生型(即,天然)序列或其变体/突变体和同源物产生的抗体及其片段。
此外,尽管Fv片段的两个结构域VL和VH由单独的基因编码,但是可以使用重组方法通过合成接头将它们连接,所述合成接头能够使它们被制成单个蛋白质链,在所述单个蛋白质链中VL和VH区配对形成单价分子。它们被称为单链Fv(scFv);参见例如Bird等人(1988)Science 242:423-426;和Huston等人(1988)Proc.Natl.Acad.Sci.85:5879-5883。这些抗体片段是使用本领域普通技术人员已知的常规技术获得的,并且以与完整抗体相同的方式针对效用筛选片段。
“分隔的抗体”或“分隔的抗原结合蛋白”是已经被鉴定并且从其天然环境的组分分离和/或回收的抗体或抗原结合蛋白。“合成抗体”或“重组抗体”通常使用重组技术或使用本领域技术人员已知的肽合成技术来产生。
如本文所用,术语“单链可变片段”或“scFv”是免疫球蛋白(例如,小鼠或人)的重链可变区(VH)和轻链可变区(VL)(共价连接以形成VH:VL异二聚体)的融合蛋白。重链(VH)和轻链(VL)直接连接或通过肽编码接头(例如,约10、15、20、25个氨基酸)连接,所述肽编码接头将VH的N末端与VL的C末端接连或者将VH的C末端与VL的N末端接连。接头通常富含用于灵活性的甘氨酸以及富含用于溶解度的丝氨酸或苏氨酸。接头可以连接细胞外抗原结合结构域的重链可变区和轻链可变区。
尽管除去了恒定区并且引入了接头,但是scFv蛋白仍保留了原始免疫球蛋白的特异性。单链Fv多肽抗体可以从包含编码VH和VL的序列的核酸表达,如Huston等人(1988)Proc.Nat.Acad.Sci.USA,85:5879-5883所描述。还参见美国专利号5,091,513、5,132,405和4,956,778;以及美国专利公开号20050196754和20050196754。已经描述了具有抑制活性的拮抗性scFv(参加例如Zhao等人(2008)Hybridoma(Larchmt)27(6):455-51;Peter等人JCachexia Sarcopenia Muscle(2012);Shieh等人(2009)J Imunol 183(4):2277-85;Giomarelli等人(2007)Thromb Haemost 97(6):955-63;Fife等人(2006)J Clin Invst 116(8):2252-61;Brocks等人(1997)Immunotechnology 3(3):173-84;Moosmayer等人(1995)Ther Immunol 2(10):31-40)。已经描述了具有刺激活性的激动性scFv(参加例如Peter等人(2003)J Biol Chem 25278(38):36740-7;Xie等人(1997)Nat Biotech 15(8):768-71;Ledbetter等人(1997)Crit Re v Immunol 17(5-6):427-55;Ho等人(2003)Bio ChimBiophys Acta 1638(3):257-66)。
如本文所用,“F(ab)”是指与抗原结合但是单价的并且没有Fc部分的抗体结构片段,例如,被木瓜蛋白酶消化的抗体产生两个F(ab)片段和一个Fc片段(例如,重(H)链恒定区;不与抗原结合的Fc区)。
如本文所用,“F(ab')2”是指通过对整个IgG抗体进行胃蛋白酶消化而产生的抗体片段,其中此片段具有两个抗原结合(ab')(二价)区,其中每个(ab1)区包含两个单独的氨基酸链(用于结合抗原的通过S-S键连接的H链的一部分和轻(L)链)并且其中其余的H链部分连接在一起。可以将“F(ab')2”片段分为两个单独的Fab'片段。
如本文所用,“CDR”被定义为抗体的互补决定区氨基酸序列,其作为免疫球蛋白重链和轻链的高变区。参加例如Kabat等人,Sequences of Proteins of ImmunologicalInterest,4th U.S.Department of Health and Human Services,National Institutesof Health(1987)。通常,抗体在可变区中包含三个重链和三个轻链CDR或CDR区。CDR提供大多数接触残基,以使抗体与抗原或表位结合。在某些实施方案中,使用Kabat系统描绘CDR区(Kabat,E.A.,等人Sequences of Proteins of Immunological Interest,第五版,U.S.Department of Health and Human Services,NIH Publication No.91-3242(1991))。
如本文所用,术语“亲和力(affinity)”意指对结合强度的度量。不受理论的束缚,亲和力取决于在抗体的结合位点与抗原决定簇之间的立体化学配合的紧密度、它们之间的接触区域的尺寸、和带电荷和疏水基团的分布。亲和力也包括术语“亲合力(avidity)”,亲合力是指在形成可逆复合物(例如,单价或多价的)后抗原-抗体键的强度。用于计算抗体对抗原的亲和力的方法是本领域已知的,包括使用结合实验来计算亲和力。功能测定(例如,流式细胞术测定)中的抗体活性也反映了抗体亲和力。可以使用功能测定(例如,流式细胞术测定)在表型上表征和比较抗体和亲和力。当前公开的主题中有用的核酸分子包括编码多肽或其片段的任何核酸分子。在某些实施方案中,当前公开的主题中有用的核酸分子包括编码抗体或其抗原结合部分的核酸分子。此类核酸分子不必与内源核酸序列100%相同,但是将典型地展现出显著的同一性。相对于内源性序列具有“显著的同源性”或“显著的同一性”的多核苷酸典型地能够与双链核酸分子的至少一条链杂交。“杂交”意指在各种严格条件下在互补多核苷酸序列(例如,本文描述的基因)或其部分之间配对以形成双链分子。(参加例如Wahl,G.M.和S.L.Berger,Methods Enzymol.152:399(1987);Kimmel,A.R.Methods Enzymol.152:507(1987))。
术语“基本上同源的”或“基本上相同的”意指展现出相对于参考氨基酸序列(例如,本文描述的任何一种氨基酸序列)或核酸序列(例如,本文描述的任何一种核酸序列)至少50%或更大同源性或同一性的多肽或核酸分子。例如,相对于用于比较的序列(例如,野生型或天然序列),此类序列在氨基酸水平或核酸上是至少约60%、约65%、约70%、约75%、约80%、约85%、约90%、约95%或约99%同源或相同的。在一些实施方案中,相对于用于比较的序列,基本上同源或基本上相同的多肽含有一个或多个氨基酸的氨基酸取代、插入、或缺失。在一些实施方案中,基本上同源或基本上相同的多肽含有一个或多个非天然氨基酸或氨基酸类似物(包括D-氨基酸和逆反氨基)以替代同源序列。
典型地使用序列分析软件(例如,威斯康星大学生物技术中心(大学大道1710,麦迪逊,威斯康星州53705)遗传计算组的序列分析软件包(Sequence Analysis SoftwarePackage of the Genetics Computer Group,University of Wisconsin BiotechnologyCenter),BLAST、BESTFIT、GAP、或PILEUP/PRETTYBOX程序)测量序列同源性或序列同一性。此类软件通过对不同的取代、缺失和/或其他修饰分配同源性程度而将相似的序列进行匹配。在确定同一性程度的示例性方法中,可以使用BLAST程序,其中在e-3e-100之间的概率得分指示密切相关的序列。
如本文所用,术语“类似物”是指具有参考多肽或核酸分子的功能的结构相关的多肽或核酸分子。
如本文所用,术语“保守序列修饰”是指不显著影响或改变当前公开的包含氨基酸序列的工程化受体(例如,工程化受体的细胞外抗原结合结构域)的氨基酸修饰。保守修饰可以包括氨基酸取代、添加和缺失。可以通过本领域已知的标准技术(诸如定点诱变和PCR介导的诱变)将修饰引入当前公开的工程化受体的人scFv中。氨基酸可以根据其理化特性(诸如电荷和极性)分为若干组。保守氨基酸取代是其中氨基酸残基被具有相同基团的氨基酸残基替代的取代。例如,氨基酸可以按电荷分类:带正电荷的氨基酸包括赖氨酸、精氨酸、组氨酸,带负电荷的氨基酸包括天冬氨酸、谷氨酸,中性电荷氨基酸包括丙氨酸、天冬酰胺、半胱氨酸、谷氨酰胺、甘氨酸、异亮氨酸、亮氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸、和缬氨酸。另外,氨基酸可以按极性分类:极性氨基酸包括精氨酸(碱性极性)、天冬酰胺、天冬氨酸(酸性极性)、谷氨酸(酸性极性)、谷氨酰胺、组氨酸(碱性极性)、赖氨酸(碱性极性)、丝氨酸、苏氨酸、和酪氨酸;非极性氨基酸包括丙氨酸、半胱氨酸、甘氨酸、异亮氨酸、亮氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、色氨酸、和缬氨酸。因此,CDR区中的一个或多个氨基酸残基可以被同一组中的其他氨基酸残基替代,并且可以使用本文描述的功能测定来测试改变的抗体的保留功能(即,在上面(c)至(1)中列出的功能)。在某些实施方案中,改变指定序列或CDR区中不超过一个、不超过两个、不超过三个、不超过四个、不超过五个残基。
如本文所用,术语“配体”是指与受体结合的分子。特别地,配体结合另一细胞上的受体,从而允许细胞与细胞间的识别和/或相互作用。
如本文所用,术语“共刺激信号传导结构域”或“共刺激结构域”是指工程化受体的包含共刺激分子的细胞内结构域的部分。共刺激分子是除抗原受体或Fc受体以外的细胞表面分子,其在与抗原结合后提供T淋巴细胞的有效激活和功能所需的第二信号。此类共刺激分子的例子包括CD27、CD28、4-1BB(CD137)、OX40(CD134)、CD30、CD40、PD-1、ICOS(CD278)、LFA-1、CD2、CD7、LIGHT、NKD2C、B7-H2和特异性结合CD83的配体。因此,尽管本公开文本提供了衍生自CD28和4-1BB的示例性共刺激结构域,但是考虑了用于与本文描述的工程化受体一起使用的其他共刺激结构域。包含一个或多个共刺激信号传导结构域可以增强表达工程化受体的T细胞的功效和扩增。细胞内信号传导和共刺激信号传导结构域可以以任何顺序串联连接至跨膜结构域的羧基末端。
如本文所用,术语“嵌合共刺激受体”或“CCR”是指与抗原结合并且提供共刺激信号但不提供T细胞激活信号的嵌合受体。
如本文所用,核酸分子的调节区意指正或负影响可操作连接的基因的表达的顺式作用核苷酸序列。调节区包括赋予基因的诱导(即,需要用于增加转录的物质或刺激物)表达的核苷酸序列。当诱导剂存在或浓度增加时,基因表达可以增加。调节区还包括赋予基因表达的阻遏的序列(即,物质或刺激物降低转录)。当阻遏物存在或浓度增加时,基因表达可以降低。已知调节区影响、调节或控制许多体内生物学活性,包括细胞增殖、细胞生长和死亡、细胞分化和免疫调节。调节区典型地与一种或多种反式作用蛋白结合,这导致基因转录增加或减少。
基因调节区的具体例子是启动子和增强子。启动子是位于转录或翻译起始位点周围的序列,典型地定位在翻译起始位点的5'端。启动子通常位于翻译起始站点的1Kb内,但也可以位于更远的地方,例如2Kb、3Kb、4Kb、5Kb或更高、最高达并且包括10Kb。已知当定位在基因的5'或3’处时或当定位在外显子或内含子中或一部分时,增强子影响基因表达。增强子还可以在距基因显著距离处(例如在距约3Kb、5Kb、7Kb、10Kb、15Kb或更大距离处)起作用。
除了启动子区之外,调节区还包括但不限于促进翻译、内含子剪接信号、维持基因的正确阅读框以允许mRNA的框内翻译的序列,以及终止密码子、前导序列和融合伴侣序列,用于产生多基因或多顺反子信息、聚腺苷酸化信号以提供感兴趣的基因和终止密码子的转录物的适当聚腺苷酸化的内部核糖体结合位点(IRES)元件,并且可以任选地包含在表达载体中。
如本文所用,关于核酸序列、区、元件或结构域的“可操作地连接”意指核酸区在功能上彼此相关。例如,可以将编码前导肽的核酸与编码多肽的核酸可操作地连接,由此可以转录和翻译核酸以表达功能性融合蛋白,其中前导肽影响融合多肽的分泌。在一些情况下,编码第一多肽(例如,前导肽)的核酸与编码第二多肽的核酸可操作地连接,并且核酸被转录为单个mRNA转录物,但是mRNA转录物的翻译可以导致表达两种多肽之一。例如,琥珀终止密码子可以位于编码第一多肽的核酸与编码第二多肽的核酸之间,使得当引入部分琥珀抑制细胞时,所得单个mRNA转录物可以被翻译以产生含有第一多肽和第二多肽的融合蛋白或者可以被翻译以仅产生第一多肽。在另一个例子中,启动子可以与编码多肽的核酸可操作地连接,由此启动子调节或介导核酸的转录。
如本文所用,关于例如合成核酸分子或合成基因或合成肽的“合成”是指通过重组方法和/或通过化学合成方法产生的核酸分子或多肽分子。如本文所用,通过使用重组DNA方法的重组手段产生意指使用众所周知的分子生物学方法来表达由克隆DNA编码的蛋白质。
如本文所用,“表达”是指通过多核苷酸的转录和翻译产生多肽的过程。可以使用本领域已知的任何方法(包括例如确定从宿主细胞产生的多肽的量的方法)来评估多肽的表达水平。此类方法可以包括但不限于通过ELISA、凝胶电泳后的考马斯(Coomassie)蓝染色、劳瑞(Lowry)蛋白测定和布拉德福德(Bradford)蛋白测定定量细胞裂解物中的多肽。
如本文所用,“宿主细胞”是用于接收、维持、繁殖和扩增载体的细胞。宿主细胞也可以用于表达由载体编码的多肽。当宿主细胞分裂时,载体中含有的核酸被复制,从而扩增核酸。
如本文所用,“载体”是可复制的核酸,当将载体转化到适当的宿主细胞中时,可以从所述可复制的核酸表达一种或多种异源蛋白质。对载体的提及包括通常可以典型地通过限制性消化和连接将编码多肽或其片段的核酸引入其中的那些载体。对载体的提及还包括含有编码多肽的核酸的那些载体。载体用于将编码多肽的核酸引入宿主细胞中,以扩增核酸或表达/展示由核酸编码的多肽。载体典型地保持游离状态,但是可以被设计成实现将基因或其一部分整合到基因组染色体中。还考虑了作为人工染色体的载体,诸如酵母人工染色体和哺乳动物人工染色体。此类载体的选择和使用是本领域技术人员众所周知的。
如本文所用,载体还包括“病毒载体(virus vector或viral vector)”。病毒载体是与外源基因可操作地连接以将外源基因转移(作为媒介物或穿梭物)到细胞中的工程化病毒。
如本文所用,“表达载体”包括能够表达与调节序列(诸如启动子区)可操作地连接的DNA的载体,所述调节序列能够实现此类DNA片段的表达。此类另外的片段可以包括启动子和终止子序列,并且可以任选地包含一个或多个复制起点、一个或多个选择标记物、增强子、聚腺苷酸化信号等。表达载体通常衍生自质粒或病毒DNA,或可以含有这两种元件。因此,表达载体是指在引入适当的宿主细胞后导致克隆DNA的表达的重组DNA或RNA构建体,诸如质粒、噬菌体、重组病毒或其他载体。适当的表达载体是本领域技术人员众所周知的,并且包括在真核细胞和/或原核细胞中可复制的那些以及保持游离状态的那些或整合到宿主细胞基因组中的那些。
如本文所用,术语“疾病”是指损害或干扰细胞、组织或器官的正常功能的任何病症或障碍。疾病的例子包括瘤形成或细胞的病原体感染。
“有效量”(或“治疗有效量”)是在治疗时足以影响有益或希望的临床结果的量。有效量可以以一个或多个剂量给予受试者。就治疗而言,有效量是足以缓解、改善、稳定、逆转或减慢疾病(例如,瘤形成)的进展或在其他方面减轻疾病(例如,瘤形成)的病理后果的量。有效量通常由医生根据具体情况来确定,并且在本领域技术人员的能力范围内。在确定实现有效量的适当剂量时,典型地考虑若干个因素。这些因素包括受试者的年龄、性别和体重,所治疗的病症,病症的严重性以及所给予的工程化免疫细胞的形式和有效浓度。
如本文所用,术语“瘤形成”是指以细胞或组织的病理增生及其随后向其他组织或器官的迁移或侵袭为特征的疾病。瘤形成的生长典型地是不受控制和进行性的,并且在不会引起或不会导致正常细胞增殖停止的条件下发生。瘤形成可以影响多种细胞类型、组织或器官,包括但不限于选自以下的器官:膀胱、结肠、骨、脑、乳房、软骨、神经胶质、食道、输卵管、胆囊、心脏、肠、肾、肝、肺、淋巴结、神经组织、卵巢、胸膜、胰腺、前列腺、骨骼肌、皮肤、脊髓、脾、胃、睾丸、胸腺、甲状腺、气管、泌尿生殖道、输尿管、尿道、子宫和阴道、或其组织或细胞类型。瘤形成包括癌症,诸如肉瘤、癌或浆细胞瘤(浆细胞的恶性肿瘤)。
如本文所用,术语“异源核酸分子或多肽”是指通常不存在于细胞或从细胞获得的样品中的核酸分子(例如,cDNA、DNA或RNA分子)或多肽。这种核酸可以来自另一种生物体,或者它可以是例如在细胞或样品中通常不表达的mRNA分子。
如本文所用,术语“免疫应答细胞”是指在免疫应答或祖细胞或其后代中起作用的细胞。
如本文所用,术语“调节”是指正或负改变。示例性的调节包括约1%、约2%、约5%、约10%、约25%、约50%、约75%、或约100%的变化。
如本文所用,术语“增加”是指正改变至少约5%,包括但不限于正改变约5%、约10%、约25%、约30%、约50%、约75%、或约100%。
如本文所用,术语“减少”是指负改变至少约5%,包括但不限于负改变约5%、约10%、约25%、约30%、约50%、约75%、或约100%。
如本文所用,术语“分隔的细胞”是指与天然伴随细胞的分子和/或细胞组分分离的细胞。
如本文所用,术语“分隔的”、“纯化的”或“生物学上纯的”是指这样的材料,所述材料在不同程度上不含以其天然状态发现的通常伴随它的组分。“分隔”表示与原始来源或环境的分离程度。“纯化”表示高于分隔的分离程度。“纯化的”或“生物学上纯的”蛋白质充分不含其他材料,使得任何杂质均不实质性影响蛋白质的生物学特性或引起其他不利后果。即,如果当前公开的主题的核酸或多肽当通过重组DNA技术生产时基本上不含细胞材料、病毒材料、或培养基或者当化学合成时基本上不含化学前体或其他化学品,则它是纯化的。纯度和均质性典型地使用分析化学技术(例如聚丙烯酰胺凝胶电泳或高效液相色谱法)来确定。术语“纯化的”可以表示核酸或蛋白质在电泳凝胶中基本上产生一个条带。对于可以经受修饰(例如,磷酸化或糖基化)的蛋白质,不同的修饰可以产生不同的分隔的蛋白质,可以将所述分隔的蛋白质单独地纯化。
如本文所用,术语“分泌的”意指经由分泌途径通过内质网、高尔基体并且作为在细胞质膜上瞬时融合的囊泡(将蛋白质释放到细胞外部)而从细胞释放的多肽。小分子(诸如药物)也可以通过细胞膜扩散到细胞外部而被分泌。
如本文所用,术语“特异性结合”或“与......特异性结合”或“特异性靶向”意指识别并且结合感兴趣的生物分子(例如,多肽)但基本上不识别和结合在包含或表达肿瘤抗原的样品(例如,生物样品)中的其他分子的多肽或其片段。
如在此使用的,“治疗(treating或treatment)”是指试图改变所治疗的个体或细胞的疾病历程的临床干预,并且可以进行用于预防或在临床病理学历程期间进行。治疗的治疗作用包括但不限于预防疾病的发生或复发、缓和症状、减少疾病的任何直接或间接病理后果、预防转移、降低疾病进展的速度、改善或减缓疾病状态、以及缓解或改善预后。通过预防疾病或障碍的进展,治疗可以防止在受影响或诊断的受试者或怀疑患有障碍的受试者中由于所述障碍引起的恶化,而且治疗还可以预防处于所述障碍风险中或怀疑患有所述障碍的受试者的障碍的发作或障碍的症状。
如本文所用,术语“受试者”是指任何动物(例如,哺乳动物),包括但不限于人、非人灵长类、啮齿动物等(例如,作为有待成为特定治疗的接受者或从其中收集细胞)。
综述
已经显示,工程化T细胞的过继转移是用于各种疾病(诸如癌症和传染性疾病)的有效疗法。然而,通过Treg和Treg样细胞进行的免疫抑制是成功免疫治疗的主要障碍。尽管需要较大的功效和机制来战胜免疫抑制性疾病微环境,但是还需要改善的方案来降低在过继转移给患者之前离体制造工程化免疫细胞过程中存在的Treg的免疫抑制作用。鉴于Foxp3在Treg的免疫抑制功能中的作用,它是消除Treg和Treg样细胞的选择性和理想靶标。因此,在工程化免疫细胞的制造过程中添加FoxP3靶向剂可以消耗样品中FoxP3阳性免疫抑制细胞的数目,从而富集FoxP3阴性免疫激活细胞。本文提供了解决这些问题的包含工程化免疫细胞和FoxP3靶向剂的组合物及其使用方法。
另外,本文提供了包含工程化受体(例如,包含编码工程化受体的多核苷酸的载体、编码工程化受体的多核苷酸、表达工程化受体的工程化免疫细胞)和FoxP3靶向剂的组合物以及使用此类组合物制造工程化免疫细胞的方法。不旨在受理论的束缚,在生产工程化免疫细胞的过程中使用P3靶向剂有望增加作为免疫激活细胞的工程化免疫细胞的产率和/或降低作为FoxP3+免疫抑制细胞的工程化免疫细胞的产率。因为用于产生工程化免疫细胞的样品通常含有免疫激活细胞和免疫抑制细胞的混合物,所以所得工程化免疫细胞也是免疫激活细胞和免疫抑制细胞的混合物。通过用FoxP3靶向剂处理样品,FoxP3+免疫抑制细胞从样品中被消耗,这导致作为免疫激活细胞的工程化免疫细胞产率更高和/或作为免疫抑制细胞的工程化免疫细胞产率降低。
在一些实施方案中,本文提供的工程化免疫细胞表达与靶抗原(诸如肿瘤抗原或病毒蛋白)结合的T细胞受体(TCR)或其他细胞表面配体。在一些实施方案中,T细胞受体是野生型或天然的T细胞受体。在一些实施方案中,TCR是工程化受体。在一些实施方案中,工程化受体是工程化TCR(eTCR)。在一些实施方案中,工程化受体是嵌合抗体TCR(caTCR)。在一些实施方案中,工程化受体是嵌合抗原受体(CAR)。
在示例性实施方案中,本文提供的工程化免疫细胞表达与威尔姆氏肿瘤蛋白1(WT1)肿瘤抗原结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,本文提供的工程化免疫细胞表达与在MHC分子背景下呈现的WT1肿瘤抗原结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,本文提供的工程化免疫细胞表达与在HLA-A2分子背景下呈现的WT1肿瘤抗原结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。WT1是重要的、经过验证的且NCI排名最高的癌症靶抗原。WT1是对泌尿生殖系统的胚胎发育至关重要的锌指转录因子。WT1在包括AML、CML、ALL和MDS的大多数白血病中以及在骨髓瘤和若干种实体瘤(特别是卵巢癌和间皮瘤)中高度表达。WT1疫苗已经进入针对患有各种癌症的患者的临床试验。WT1的特点是其对克隆形成性白血病细胞的生存的重要性以及在异种移植的NOD/SCID小鼠中用对WT1肽具有特异性的T细胞治疗肿瘤而不负面影响正常造血作用的能力。WT1肽疫苗接种已与疾病的完全或部分缓解和延长的生存相关。
在示例性实施方案中,本文提供的工程化免疫细胞表达与受体酪氨酸激酶样孤儿受体2(ROR2)结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,本文提供的工程化免疫细胞表达与在MHC分子背景下呈现的ROR2结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,本文提供的工程化免疫细胞表达与在HLA-A2分子背景下呈现的ROR2结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。ROR2是在发育生物学中重要的I型跨膜受体酪氨酸激酶。ROR2的细胞外区含有免疫球蛋白(Ig)结构域、富含半胱氨酸的结构域(CRD)(也称为卷曲的结构域)、和Kringle(Kr)结构域。所有这三个结构域都参与蛋白质-蛋白质相互作用。在细胞内,ROR2具有酪氨酸激酶(TK)结构域和跨坐两个富含丝氨酸/苏氨酸的结构域的富含脯氨酸的结构域(PRD)。ROR2通常在发育过程中以高水平表达,在骨骼和神经器官发生中起关键作用,但然后在成人组织中表达被抑制。已显示ROR2在建立细胞极性和肿瘤样行为(诸如细胞迁移和细胞侵袭性)中发挥作用。ROR2在若干种类型的人癌症组织(诸如OS、肾细胞癌、胃癌、恶性黑色素瘤、口腔鳞状细胞癌、前列腺癌、平滑肌肉瘤、胃肠道间质瘤(GIST)、和NB)中高度表达。ROR2在大多数OS中被反式激活,并且在OS细胞系中敲低ROR2导致细胞增殖、迁移和侵袭被显著抑制。证据关系到在OS中的Wnt5a和ROR2,其中ROR2在细胞外基质的降解和侵袭性伪足形成中具有另外的作用。研究还显示,在口腔鳞状细胞癌中和在黑色素瘤转移性结节中,ROR2的表达倾向于随着恶性程度的升高而增加。在异种移植物转移模型中,沉默ROR2显著地降低黑色素瘤细胞的肺转移。像其小鼠对应物一样,除了在胃和甲状腺中的低水平外,在正常的成人组织中无法检测到人ROR2表达。ROR2的过表达似乎与患有NB的患者的不良生存密切相关。在人癌症与正常组织之间的这种ROR2差异表达使其成为优异的治疗靶标。
在示例性实施方案中,本文提供的工程化免疫细胞表达与分化簇19(CD19)结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。与CD19结合的示例性工程化受体描述在国际公开号WO2017070608中,将所述国际公开通过引用以其整体并入。
在示例性实施方案中,本文提供的工程化免疫细胞表达与α-胎蛋白(AFP)结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,本文提供的工程化免疫细胞表达与在MHC分子背景下呈现的AFP结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,本文提供的工程化免疫细胞表达与在HLA-A2分子背景下呈现的AFP结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。与AFP结合的示例性工程化受体描述在国际公开号WO 2016161390中,将所述国际公开通过引用以其整体并入。
在示例性实施方案中,本文提供的FoxP3靶向剂是抗原结合蛋白,包括对FoxP3多肽具有特异性的抗体、嵌合抗原受体(CAR)、嵌合抗体TCR(caTCR)、和工程化TCR(eTCR)。在一些实施方案中,FoxP3靶向剂对FoxP3多肽的表位具有特异性。在一些实施方案中,FoxP3靶向剂与在MHC分子(例如,FoxP3/MHC复合物)背景下呈递的FoxP3结合。在一些实施方案中,FoxP3靶向剂与在HLA-A分子(例如,FoxP3/HLA-A复合物)背景下呈递的FoxP3结合。在一些实施方案中,FoxP3靶向剂与在HLA-A2分子(例如,FoxP3/HLA-A2复合物)背景下呈递的FoxP3结合。在一些实施方案中,FoxP3靶向剂与在HLA-A*02:01分子(例如,FoxP3/HLA-A*02:01复合物)背景下呈递的FoxP3结合。
在示例性实施方案中,本文提供的FoxP3靶向剂是双特异性抗体。在一些实施方案中,双特异性抗体与FoxP3多肽或其片段和细胞表面蛋白结合。在一些实施方案中,细胞表面蛋白是CD3或CD16。
在示例性实施方案中,FoxP3靶向剂是工程化免疫细胞,所述工程化免疫细胞表达与FoxP3结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,FoxP3靶向剂是工程化免疫细胞,所述工程化免疫细胞表达与在MHC分子背景下呈递的FoxP3结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,FoxP3靶向剂是工程化免疫细胞,所述工程化免疫细胞表达与在HLA-A2分子背景下呈递的FoxP3结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。
工程化免疫细胞的靶向配体和靶抗原
在一些实施方案中,本文提供的工程化免疫细胞表达与靶抗原(即,细胞表面抗原)(诸如肿瘤抗原或病毒蛋白)结合的T细胞受体(TCR)或其他细胞表面配体。细胞表面配体可以是将免疫细胞引导至靶位点(例如,肿瘤位点)的任何分子。示例性细胞表面配体包括例如内源性受体、工程化受体、或实现将免疫细胞靶向靶位点的其他特异性配体。在一些实施方案中,受体是T细胞受体。在一些实施方案中,T细胞受体是与靶抗原结合的野生型或天然的T细胞受体。在一些实施方案中,受体(例如,T细胞受体)是非天然受体(例如,对免疫细胞不是内源性的)。在一些实施方案中,TCR是工程化受体。在一些实施方案中,工程化受体是工程化TCR(eTCR)。在一些实施方案中,工程化受体是嵌合抗体TCR(caTCR)。在一些实施方案中,工程化受体是嵌合抗原受体(CAR)。
在一些实施方案中,靶抗原(即,细胞表面抗原)细胞表面抗原选自蛋白质、碳水化合物、和脂质。在一些实施方案中,靶抗原(即,细胞表面抗原)由肿瘤细胞表达。在一些实施方案中,靶抗原在肿瘤细胞的表面上表达。在一些实施方案中,靶抗原是细胞表面受体。在一些实施方案中,靶抗原是细胞表面糖蛋白。在一些实施方案中,靶抗原由肿瘤细胞分泌。在一些实施方案中,靶抗原定位到肿瘤微环境。在一些实施方案中,靶抗原定位到细胞外基质或肿瘤微环境的间质。在一些实施方案中,靶抗原由位于细胞外基质或肿瘤微环境的间质内的一个或多个细胞表达。
在一些实施方案中,靶抗原(即,细胞表面抗原)选自5T4、α5β1-整合蛋白、707-AP、A33、AFP、ART-4、B7H4、BAGE、Bcl-2、β-连环蛋白、Bcr-Abl、MN/C IX抗体、CA125、CA19-9、CAMEL、CAP-1、CASP-8、CD4、CD5、CD19、CD20、CD21、CD22、CD25、CDC27/m、CD33、CD37、CD45、CD52、CD56、CD80、CD123、CDK4/m、CEA、c-Met、CS-1、CT、Cyp-B、细胞周期蛋白B1、DAGE、DAM、EBNA、EGFR、ErbB3、ELF2M、EMMPRIN、EpCam、ephrinB2、雌性激素受体、ETV6-AML1、FAP、铁蛋白、叶酸结合蛋白、GAGE、G250、GD-2、GM2、GnT-V、gp75、gp100(Pmel 17)、HAGE、HER-2/neu、HLA-A*0201-R170I、HPV E6、HPV E7、Ki-67、HSP70-2M、HST-2、hTERT(或hTRT)、iCE、IGF-1R、IL-2R、IL-5、KIAA0205、KRAS、LAGE、LDLR/FUT、LRP、LMP2、MAGE、MART、MART-1/黑色素A(melan-A)、MART-2/Ski、MC1R、间皮蛋白、MUC、MUM-1-B、myc、MUM-2、MUM-3、NA88-A、NYESO-1、NY-Eso-B、p53、PD1、蛋白酶-3、p190次要bcr-abl、Pml/RARα、PRAME、黄体酮受体、PSA、PSM、PSMA、ras、RAGE、RU1或RU2、RORI、ROR2、SART-1或SART-3、生存蛋白、TEL/AML1、TGFβ、TPI/m、TRP-1、TRP-2、TRP-2/INT2、腱生蛋白、TSTA酪氨酸酶、VEGF、和WT1。在某些实施方案中,靶抗原选自ROR2、WT1、黑色素瘤的优先表达抗原(PRAME)、Kirsten大鼠肉瘤病毒致癌基因(KRAS)、程序性细胞死亡1(PD1)、潜伏膜蛋白2(LMP2)、和α-胎蛋白(AFP)。在一些实施方案中,靶抗原(即,细胞表面抗原)选自CD19、CD20、CD47、GPC-3、ROR1、ROR2、BCMA、GPRC5D、和FCRL5)。在一些实施方案中,靶抗原在CD19中。在一些实施方案中,靶抗原(即,细胞表面抗原)包含肽和主要组织相容性复合物(MHC)蛋白。在一些实施方案中,肽衍生自蛋白质,所述蛋白质选自WT-1、AFP、HPV16-E7、NY-ESO-1、PRAME、EBV-LMP2A、HIV-1、KRAS、组蛋白H3.3、和PSA。在一些实施方案中,肽衍生自。
可以被在工程化免疫细胞上表达的TCR或其他细胞表面配体结合的示例性靶抗原和在靶抗原内的表位描述在以下:例如WO2015/070061、WO2016/142768、WO2015/011450、WO2017/070608、WO2017/066136、WO2016/191246、WO2016/165047、WO2016/210129、WO2016/201124、WO2016/161390(将其通过引用以其整体并入),包括其中提供的序列表。
在一些实施方案中,靶抗原是ROR2。编码人ROR2的一个实施方案的DNA序列在本文中以SEQ ID NO:328提供,如下:ATGGCCCGGGGCTCGGCGCTCCCGCGGCGGCCGCTGCTGTGCATCCCGGCCGTCTGGGCGGCCGCCGCGCTTCTGCTCTCAGTGTCCCGGACTTCAGGTGAAGTGGAGGTTCTGGATCCGAACGACCCTTTAGGACCCCTTGATGGGCAGGACGGCCCGATTCCAACTCTGAAAGGTTACTTTCTGAATTTTCTGGAGCCAGTAAACAATATCACCATTGTCCAAGGCCAGACGGCAATTCTGCACTGCAAGGTGGCAGGAAACCCACCCCCTAACGTGCGGTGGCTAAAGAATGATGCCCCGGTGGTGCAGGAGCCGCGGCGGATCATCATCCGGAAGACAGAATATGGTTCACGACTGCGAATCCAGGACCTGGACACGACAGACACTGGCTACTACCAGTGCGTGGCCACCAACGGGATGAAGACCATTACCGCCACTGGCGTCCTGTTTGTGCGGCTGGGTCCAACGCACAGCCCAAATCATAACTTTCAGGATGATTACCACGAGGATGGGTTCTGCCAGCCTTACCGGGGAATTGCCTGTGCACGCTTCATTGGCAACCGGACCATTTATGTGGACTCGCTTCAGATGCAGGGGGAGATTGAAAACCGAATCACAGCGGCCTTCACCATGATCGGCACGTCTACGCACCTGTCGGACCAGTGCTCACAGTTCGCCATCCCATCCTTCTGCCACTTCGTGTTTCCTCTGTGCGACGCGCGCTCCCGGACACCCAAGCCGCGTGAGCTGTGCCGCGACGAGTGCGAGGTGCTGGAGAGCGACCTGTGCCGCCAGGAGTACACCATCGCCCGCTCCAACCCGCTCATCCTCATGCGGCTTCAGCTGCCCAAGTGTGAGGCGCTGCCCATGCCTGAGAGCCCCGACGCTGCCAACTGCATGCGCATTGGCATCCCAGCCGAGAGGCTGGGCCGCTACCATCAGTGCTATAACGGCTCAGGCATGGATTACAGAGGAACGGCAAGCACCACCAAGTCAGGCCACCAGTGCCAGCCGTGGGCCCTGCAGCACCCCCACAGCCACCACCTGTCCAGCACAGACTTCCCTGAGCTTGGAGGGGGGCACGCCTACTGCCGGAACCCCGGAGGCCAGATGGAGGGCCCCTGGTGCTTTACGCAGAATAAAAACGTACGCATGGAACTGTGTGACGTACCCTCGTGTAGTCCCCGAGACAGCAGCAAGATGGGGATTCTGTACATCTTGGTCCCCAGCATCGCAATTCCACTGGTCATCGCTTGCCTTTTCTTCTTGGTTTGCATGTGCCGGAATAAGCAGAAGGCATCTGCGTCCACACCGCAGCGGCGACAGCTGATGGCCTCGCCCAGCCAAGACATGGAAATGCCCCTCATTAACCAGCACAAACAGGCCAAACTCAAAGAGATCAGCCTGTCTGCGGTGAGGTTCATGGAGGAGCTGGGAGAGGACCGGTTTGGGAAAGTCTACAAAGGTCACCTGTTCGGCCCTGCCCCGGGGGAGCAGACCCAGGCTGTGGCCATCAAAACGCTGAAGGACAAAGCGGAGGGGCCCCTGCGGGAGGAGTTCCGGCATGAGGCTATGCTGCGAGCACGGCTGCAACACCCCAACGTCGTCTGCCTGCTGGGCGTGGTGACCAAGGACCAGCCCCTGAGCATGATCTTCAGCTACTGTTCGCACGGCGACCTCCACGAATTCCTGGTCATGCGCTCGCCGCACTCGGACGTGGGCAGCACCGATGATGACCGCACGGTGAAGTCCGCCCTGGAGCCCCCCGACTTCGTGCACCTTGTGGCACAGATCGCGGCGGGGATGGAGTACCTATCCAGCCACCACGTGGTTCACAAGGACCTGGCCACCCGCAATGTGCTAGTGTACGACAAGCTGAACGTGAAGATCTCAGACTTGGGCCTCTTCCGAGAGGTGTATGCCGCCGATTACTACAAGCTGCTGGGGAACTCGCTGCTGCCTATCCGCTGGATGGCCCCAGAGGCCATCATGTACGGCAAGTTCTCCATCGACTCAGACATCTGGTCCTACGGTGTGGTCCTGTGGGAGGTCTTCAGCTACGGCCTGCAGCCCTACTGCGGGTACTCCAACCAGGATGTGGTGGAGATGATCCGGAACCGGCAGGTGCTGCCTTGCCCCGATGACTGTCCCGCCTGGGTGTATGCCCTCATGATCGAGTGCTGGAACGAGTTCCCCAGCCGGCGGCCCCGCTTCAAGGACATCCACAGCCGGCTCCGAGCCTGGGGCAACCTTTCCAACTACAACAGCTCGGCGCAGACCTCGGGGGCCAGCAACACCACGCAGACCAGCTCCCTGAGCACCAGCCCAGTGAGCAATGTGAGCAACGCCCGCTACGTGGGGCCCAAGCAGAAGGCCCCGCCCTTCCCACAGCCCCAGTTCATCCCCATGAAGGGCCAGATCAGACCCATGGTGCCCCCGCCGCAGCTCTACGTCCCCGTCAACGGCTACCAGCCGGTGCCGGCCTATGGGGCCTACCTGCCCAACTTCTACCCGGTGCAGATCCCAATGCAGATGGCCCCGCAGCAGGTGCCTCCTCAGATGGTCCCCAAGCCCAGCTCACACCACAGTGGCAGTGGCTCCACCAGCACAGGCTACGTCACCACGGCCCCCTCCAACACATCCATGGCAGACAGGGCAGCCCTGCTCTCAGAGGGCGCTGATGACACACAGAACGCCCCAGAAGATGGGGCCCAGAGCACCGTGCAGGAAGCAGAGGAGGAGGAGGAAGGCTCTGTCCCAGAGACTGAGCTGCTGGGGGACTGTGACACTCTGCAGGTGGACGAGGCCCAAGTCCAGCTGGAAGCTTGA[SEQ ID NO:328]。
人ROR2的一个实施方案的多肽序列在本文中以SEQ ID NO:329提供,如下:
MARGSALPRRPLLCIPAVWAAAALLLSVSRTSGEVEVLDPNDPLGPLDGQDGPIPTLKGYFLNFLEPVNNITIVQGQTAILHCKVAGNPPPNVRWLKNDAPVVQEPRRIIIRKTEYGSRLRIQDLDTTDTGYYQCVATNGMKTITATGVLFVRLGPTHSPNHNFQDDYHEDGFCQPYRGIACARFIGNRTIYVDSLQMQGEIENRITAAFTMIGTSTHLSDQCSQFAIPSFCHFVFPLCDARSRTPKPRELCRDECEVLESDLCRQEYTIARSNPLILMRLQLPKCEALPMPESPDAANCMRIGIPAERLGRYHQCYNGSGMDYRGTASTTKSGHQCQPWALQHPHSHHLSSTDFPELGGGHAYCRNPGGQMEGPWCFTQNKNVRMELCDVPSCSPRDSSKMGILYILVPSIAIPLVIACLFFLVCMCRNKQKASASTPQRRQLMASPSQDMEMPLINQHKQAKLKEISLSAVRFMEELGEDRFGKVYKGHLFGPAPGEQTQAVAIKTLKDKAEGPLREEFRHEAMLRARLQHPNVVCLLGVVTKDQPLSMIFSYCSHGDLHEFLVMRSPHSDVGSTDDDRTVKSALEPPDFVHLVAQIAAGMEYLSSHHVVHKDLATRNVLVYDKLNVKISDLGLFREVYAADYYKLLGNSLLPIRWMAPEAIMYGKFSIDSDIWSYGVVLWEVFSYGLQPYCGYSNQDVVEMIRNRQVLPCPDDCPAWVYALMIECWNEFPSRRPRFKDIHSRLRAWGNLSNYNSSAQTSGASNTTQTSSLSTSPVSNVSNARYVGPKQKAPPFPQPQFIPMKGQIRPMVPPPQLYVPVNGYQPVPAYGAYLPNFYPVQIPMQMAPQQVPPQMVPKPSSHHSGSGSTSTGYVTTAPSNTSMADRAALLSEGADDTQNAPEDGAQSTVQEAEEEEEGSVPETELLGDCDTLQVDEAQVQLEA[SEQ ID NO:329]。
在一些实施方案中,靶抗原是ROR2的表位。在一些实施方案中,ROR2的表位具有选自以下的氨基酸序列:KTITATGVLFVRLGP(SEQ ID NO:330)、TGYYQCVATNGMKTI(SEQ ID NO:331)、RGIACARFIGNRTIY(SEQ ID NO:332)、CQPYRGIACARFIGNRTIY(SEQ ID NO:333)、QCSQFAIPSFCHFVFPLCD(SEQ ID NO:334)、ELCRDECEVLESDLC(SEQ ID NO:335)、和ANCMRIGIPAERLGR(SEQ ID NO:336)。在一些实施方案中,表位是KTITATGVLFVRLGP(SEQ IDNO:330)。
在一些实施方案中,靶抗原是ROR2的细胞外结构域或其片段。在一个实施方案中,ROR2的细胞外结构域的氨基酸序列在本文中描述为SEQ ID NO:337,如下:
EVEVLDPNDPLGPLDGQDGPIPTLKGYFLNFLEPVNNITIVQGQTAILHCKVAGNPPPNVRWLKNDAPVVQEPRRIIIRKTEYGSRLRIQDLDTTDTGYYQCVATNGMKTITATGVLFVRLGPTHSPNHNFQDDYHEDGFCQPYRGIACARFIGNRTIYVDSLQMQGEIENRITAAFTMIGTSTHLSDQCSQFAIPSFCHFVFPLCDARSRTPKPRELCRDECEVLESDLCRQEYTIARSNPLILMRLQLPKCEALPMPESPDAANCMRIGIPAERLGRYHQCYNGSGMDYRGTASTTKSGHQCQPWALQHPHSHHLSSTDFPELGGGHAYCRNPGGQMEGPWCFTQNKNVRMELCDVPSCSPRDSSKMG(SEQ ID NO:337)。
在一些实施方案中,靶抗原是WT1。在一些实施方案中,靶抗原是WT1的表位。在一些实施方案中,WT1的表位具有氨基酸序列RMFPNAPYL(SEQ ID NO:190)。
在一些实施方案中,靶抗原相关疾病是癌症。在一些实施方案中,所述癌症选自急性成淋巴细胞性白血病(ALL)、急性髓样/骨髓性白血病(AML)、肾上腺皮质癌、膀胱癌、脑肿瘤、乳腺癌、子宫颈癌、胆管癌、慢性粒细胞性白血病(CML)、慢性骨肉瘤、结直肠癌、食管癌、胃肠道癌、胶质母细胞瘤、神经胶质瘤、肝细胞癌、头颈癌、肾癌(kidney cancer)、淋巴瘤、白血病、肺癌、黑色素瘤、间皮瘤、多发性骨髓瘤(MM)、骨髓增生异常综合症(MDS)、神经母细胞瘤、口腔鳞状细胞癌、骨肉瘤、卵巢癌、胰腺癌、嗜铬细胞瘤、浆细胞瘤、前列腺癌、肾癌(renal cancer)、肉瘤、胃癌、甲状腺癌、和子宫癌。
在一些实施方案中,靶抗原相关疾病是病毒感染。在一些实施方案中,病毒感染是由病毒引起的,所述病毒选自:巨细胞病毒(CMV)、爱泼斯坦-巴尔病毒(EBV)、乙型肝炎病毒(HBV)、卡波济氏肉瘤相关疱疹病毒(KSHV)、人乳头瘤病毒(HPV)、传染性软疣病毒(MCV)、人T细胞白血病病毒1(HTLV-1)、HIV(人免疫缺陷病毒)、和丙型肝炎病毒(HCV)。
CD19阳性癌症的例子包括但不限于B细胞淋巴瘤。B细胞淋巴瘤的例子包括霍奇金淋巴瘤和非霍奇金淋巴瘤。非霍奇金淋巴瘤的例子包括弥漫性大B细胞淋巴瘤(DLBCL)、滤泡性淋巴瘤、边缘区B细胞淋巴瘤(MZL)或粘膜相关淋巴组织淋巴瘤(MALT)、小淋巴细胞淋巴瘤(也称为慢性淋巴细胞性白血病(CLL))、和套细胞淋巴瘤(MCL)。
AFP阳性癌症的例子包括但不限于肝癌以及卵巢和睾丸的非精原细胞瘤性(nonseminomatous)生殖细胞肿瘤。肝癌的例子包括肝细胞癌和肝母细胞癌。卵巢和睾丸的非精原细胞瘤性生殖细胞肿瘤的例子包括卵黄囊和胚胎癌。
ROR2阳性癌症的例子包括但不限于慢性OS、肾细胞癌、胃癌、恶性黑色素瘤、口腔鳞状细胞癌、前列腺癌、骨肉瘤、和神经母细胞瘤。
WT1阳性癌症的例子包括但不限于慢性粒细胞性白血病、多发性骨髓瘤(MM)、急性成淋巴细胞性白血病(ALL)、急性髓样/骨髓性白血病(AML)、骨髓增生异常综合症(MDS)、间皮瘤、卵巢癌、胃肠道癌、乳腺癌、前列腺癌和胶质母细胞瘤。
典型的治疗性抗癌mAb(如与CD19结合的那些)识别细胞表面蛋白,所述细胞表面蛋白仅构成细胞蛋白含量的一小部分。大多数突变或致癌肿瘤相关蛋白典型地是核或细胞质的。在某些情况下,这些细胞内蛋白可以在蛋白酶体中降解,被MHC I类分子加工并且呈递到细胞表面上,作为被T细胞受体(TCR)识别的T细胞表位。模仿TCR功能的(“模仿TCR的(TCRm)”或“TCR样”)mAb(即,在细胞表面上MHC的背景下识别关键细胞内蛋白的肽抗原的mAb)的开发大大扩展了可被有效mAb寻址的肿瘤靶标的潜在库。已经开发了尤其对黑色素瘤Ag、NY-ESO-1、hTERT、MART 1、gp100和PR1具有特异性的TCRm Fab、或scFv、和小鼠IgG。可以将此类抗体的抗原结合部分掺入本文提供的工程化受体中。HLA-A2是在美国和欧盟(约40%的人口)中最常见的HLA单体型。因此,针对在HLA-A2的背景下呈递的肿瘤抗原的有效TCRm mAb和天然TCR可用于治疗大量群体。
因此,在一些实施方案中,靶抗原是在MHC分子的背景下呈递的肿瘤抗原。在一些实施方案中,MHC蛋白是MHC I类蛋白。在一些实施方案中,MHC I类蛋白是HLA-A、HLA-B、或HLA-C分子。在一些实施方案中,靶抗原是在HLA-A2分子的背景下呈递的肿瘤抗原。先前已经开发了针对在表面HLA-A2分子的背景下呈递的细胞内WT1和ROR2抗原的mAb。已经制造了IgG1、岩藻糖基化(afucosylated)Fc形式、双特异性抗体和工程化T细胞形式,它们在多种临床前动物模型中均展现出有效的治疗活性。可以采用此类抗体或其一部分,如本文所描述用于识别在MHC分子的背景下存在于靶细胞(例如,肿瘤细胞)表面上的靶抗原。
工程化受体
在一些实施方案中,本文提供的工程化免疫细胞表达至少一种工程化受体(例如,CAR、caTCR、eTCR)。在一些实施方案中,工程化受体将感兴趣的特异性移接或赋予到免疫效应细胞上。例如,工程化受体可以用于将单克隆抗体的特异性移接到免疫细胞(诸如T细胞)上。在一些实施方案中,通过核酸载体(诸如逆转录病毒载体)促进工程化的编码序列的转移。
在一些实施方案中,所述工程化受体是CAR。当前存在三代CAR。在一些实施方案中,本文提供的工程化免疫细胞表达“第一代”CAR。“第一代”CAR典型地由与跨膜结构域融合的细胞外抗原结合结构域(例如,单链可变片段(scFv))构成,所述跨膜结构域与T细胞受体(TCR)链的细胞质/细胞内结构域融合。“第一代”CAR典型地具有来自CD3ζ链的细胞内结构域,它是来自内源性TCR的信号的主要发送者。“第一代”CAR可以提供从头抗原识别并且通过单个融合分子中的其CD3ζ链信号传导结构域引起CD4+和CD8+T细胞两者的激活,与HLA介导的抗原呈递无关。
在一些实施方案中,本文提供的工程化免疫细胞表达“第二代”CAR。“第二代”CAR将来自各种共刺激分子(例如,CD28、4-1BB、ICOS、OX40)的细胞内结构域添加到CAR的细胞质尾部以向T细胞提供另外的信号。“第二代”CAR包括提供共刺激(例如,CD28或4-IBB)和激活(例如,CD3ζ)两者的那些。临床前研究指示,“第二代”CAR可以改善T细胞的抗肿瘤活性。例如,在患有慢性成淋巴细胞性白血病(CLL)和急性成淋巴细胞性白血病(ALL)的患者中针对CD19分子的临床试验证明了“第二代”CAR修饰的T细胞的稳健功效。
在一些实施方案中,本文提供的工程化免疫细胞表达“第三代”CAR。“第三代”CAR包括提供多共刺激(例如,CD28和4-1BB)和激活(例如,CD3ζ)的那些。
根据当前公开的主题,本文提供的工程化免疫细胞的CAR包含细胞外抗原结合结构域、跨膜结构域和细胞内结构域。
在一些实施方案中,所述工程化受体是caTCR。在一些实施方案中,caTCR本身不包含TCR相关的信号传导分子(诸如CD3δε、CD3γε、和/或CD3ζζ),至少不包含功能性信号传导分子或功能性信号传导分子的功能性片段。在一些实施方案中,caTCR包含提供抗原特异性的抗原结合模块(即,细胞外抗原结合结构域)和允许CD3募集和信号传导的T细胞受体模块(TCRM)。抗原结合模块(即,细胞外抗原结合结构域)不是天然存在的T细胞受体抗原结合部分。在一些实施方案中,抗原结合模块(即,细胞外抗原结合结构域)与TCRM中的多肽链的氨基末端连接。在一些实施方案中,抗原结合模块(即,细胞外抗原结合结构域)是抗体部分。在一些实施方案中,抗体部分是Fab、Fab’、(Fab’)2、Fv、或单链Fv(scFv)。TCRM包含衍生自一个或多个TCR(TCR-TM)(诸如αβ和/或γδTCR)的跨膜结构域的跨膜模块,并且任选地进一步包含TCR的连接肽或其片段之一或两者和/或一个或多个TCR细胞内结构域或其片段。在一些实施方案中,TCRM包含两条多肽链,每条多肽链从氨基末端到羧基末端包含连接肽、跨膜结构域、和任选地TCR细胞内结构域。在一些实施方案中,TCRM包含一个或多个非天然存在的TCR结构域。例如,在一些实施方案中,TCRM包含一个或多个非天然存在的TCR跨膜结构域。非天然存在的TCR结构域可以是通过一个或多个氨基酸的取代修饰的天然存在的TCR的对应结构域和/或通过将对应结构域的一部分用来自另一种TCR的类似结构域的一部分替代而得到的。caTCR可以包含第一多肽链和第二多肽链,其中第一多肽链和第二多肽链一起形成抗原结合模块和TCRM。在一些实施方案中,第一多肽链和第二多肽链是单独的多肽链,并且caTCR是多聚体,诸如二聚体。在一些实施方案中,第一多肽链和第二多肽链共价连接,诸如通过肽键、或通过另一种化学键,诸如二硫键。在一些实施方案中,第一多肽链和第二多肽链通过至少一个二硫键连接。在一些实施方案中,caTCR进一步包含一个或多个T细胞共刺激信号传导序列。caTCR的例子描述在例如国际公开号WO2017/070608和2017年4月26日提交的美国临时申请号62/490,576,将两者通过引用以其整体并入。
在一些实施方案中,所述工程化受体是eTCR。在一些实施方案中,eTCR与天然存在的TCR的不同之处在于天然存在的TCR的抗原/MHC结合区被修饰。在一些实施方案中,eTCR包含α链TRAC恒定结构域序列和/或β链TRBC1或TRBC2恒定结构域序列。在一些实施方案中,通过截短或取代来修饰α和β链恒定结构域序列以缺失在TRAC的外显子2的Cys4与TRBC1或TRBC2的外显子2的Cys2之间的天然二硫键。也可以通过用半胱氨酸残基取代TRAC的Thr 48和TRBC1或TRBC2的Ser 57来修饰一个或多个α和/或β链恒定结构域序列,所述半胱氨酸在TCR的α恒定结构域与β恒定结构域之间形成二硫键。eTCR可以呈单链形式,例如参见WO2004/033685。单链形式包括V-L-νβ、νβ-L-V、V-C-L-νβ、Va-L-Vb-Cb、V-C-L-Vb-Cb类型的βTCR多肽,其中Va和Vb分别是TCRα和β可变区,Ca和Cb分别是TCRα和β恒定区,并且L是接头序列。在某些实施方案中,单链eTCR可以在相应的恒定结构域的残基之间具有引入的二硫键,如WO 2004/033685中所描述。eTCR的例子描述于例如国际公开号WO2015/011450中,将所述国际公开通过引用以其整体并入。
工程化受体的细胞外抗原结合结构域
在一些实施方案中,工程化受体(例如,CAR、caTCR、eTCR)的细胞外抗原结合结构域与靶抗原(即,细胞表面抗原)结合。在某些实施方案中,工程化受体的细胞外抗原结合结构域特异性结合肿瘤抗原。在某些实施方案中,细胞外抗原结合结构域衍生自与靶抗原(即,细胞表面抗原,诸如肿瘤抗原或病毒蛋白)结合的单克隆抗体(mAb)。在一些实施方案中,细胞外抗原结合结构域包含scFv。在一些实施方案中,细胞外抗原结合结构域包含任选交联的Fab。在一些实施方案中,细胞外结合结构域包含F(ab)2。在一些实施方案中,任何前述分子包含在具有异源序列的融合蛋白中以形成细胞外抗原结合结构域。在某些实施方案中,细胞外抗原结合结构域包含与肿瘤抗原特异性结合的人scFv。在某些实施方案中,通过用肿瘤抗原-Fc融合蛋白筛选scFv噬菌体文库来鉴定scFv。
在某些实施方案中,当前公开的工程化受体的细胞外抗原结合结构域对肿瘤抗原(例如,哺乳动物肿瘤抗原,诸如人肿瘤抗原)具有高结合特异性和高结合亲和力。例如,在一些实施方案中,工程化受体的细胞外抗原结合结构域(例如体现在人scFv或其类似物中)以约1x 10-5M或更小解离常数(Kd)与特定的肿瘤抗原结合。在某些实施方案中,Kd是约5x10-6M或更小、约1x 10-6M或更小、约5x 10-7M或更小、约1x 10-7M或更小、约5x 10-8M或更小、约1x 10-8M或更小、约5x 10-9或更小、约4x 10-9或更小、约3x 10-9或更小、约2x 10-9或更小、约1x 10-9M或更小、约1x 10-10或更小、约1x 10-11或更小、约1x 10-12或更小、约1x 10-13或更小、约1x 10-14或更小、或约1x 10-15或更小。在某些非限制性实施方案中,Kd为从约5x10-7M或更小。在某些非限制性实施方案中,Kd为从约3x 10-9M或更小。在某些非限制性实施方案中,Kd为从约1x 10-13M或更小。在某些非限制性实施方案中,Kd为从约1x 10-13M至约5x10-7M。在某些非限制性实施方案中,Kd为从约3x 10-9至约2x 10-7
当前公开的靶向肿瘤抗原的工程化受体的细胞外抗原结合结构域(例如体现在人scFv或其类似物中)的结合可以通过例如酶联免疫吸附测定(ELISA)、放射免疫测定(RIA)、FACS分析、生物测定(例如,生长抑制)、或蛋白质印迹测定来确认。这些测定中的每一种通常通过采用对特别感兴趣的蛋白质-抗体复合物具有特异性的被标记的试剂(例如,抗体、或scFv)来检测所述感兴趣的复合物的存在。例如,可以将scFv放射性标记并且用于放射免疫测定(RIA)(参见例如,Weintraub,B.,Principles of Radioimmunoassays,SeventhTraining Course on Radioligand Assay Techniques,The Endocrine Society,1986年3月,将其通过引用并入本文)。放射性同位素可以通过如使用γ计数器或闪烁计数器的此类装置或通过放射自显影术来检测。在某些实施方案中,将靶向肿瘤抗原的工程化受体的细胞外抗原结合结构域用荧光标记物标记。荧光标记物的非限制性例子包括绿色荧光蛋白(GFP)、蓝色荧光蛋白(例如,EBFP、EBFP2、Azurite和mKalamal)、青色荧光蛋白(例如,ECFP、Cerulean和CyPet)和黄色荧光蛋白(例如,YFP、黄水晶、Citrine和YPet)。在某些实施方案中,将当前公开的靶向肿瘤抗原的工程化受体的人scFv用GFP标记。
在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与由肿瘤细胞表达的肿瘤抗原结合。在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与在肿瘤细胞表面上表达的肿瘤抗原结合。在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与在肿瘤细胞表面上表达的肿瘤抗原与MHC蛋白的组合结合。在一些实施方案中,MHC蛋白是MHC I类蛋白。在一些实施方案中,MHC I类蛋白是HLA-A、HLA-B、或HLA-C分子。在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与不与MHC蛋白组合的在肿瘤细胞表面上表达的靶抗原(即,细胞表面抗原,诸如肿瘤抗原或病毒蛋白)结合。
在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与选自以下的蛋白质结合:5T4、α5β1-整合蛋白、707-AP、A33、AFP、ART-4、B7H4、BAGE、Bcl-2、β-连环蛋白、Bcr-Abl、MN/C IX抗体、CA125、CA19-9、CAMEL、CAP-1、CASP-8、CD3、CD4、CD5、CD19、CD20、CD21、CD22、CD25、CDC27/m、CD33、CD37、CD45、CD52、CD56、CD80、CD123、CDK4/m、CEA、c-Met、CS-1、CT、Cyp-B、细胞周期蛋白B1、DAGE、DAM、EBNA、EGFR、ErbB3、ELF2M、EMMPRIN、EpCam、ephrinB2、雌性激素受体、ETV6-AML1、FAP、铁蛋白、叶酸结合蛋白、GAGE、G250、GD-2、GM2、GnT-V、gp75、gp100(Pmel 17)、HAGE、HER-2/neu、HLA-A*0201-R170I、HPV E6、HPV E7、Ki-67、HSP70-2M、HST-2、hTERT(或hTRT)、iCE、IGF-1R、IL-2R、IL-5、KIAA0205、KRAS、LAGE、LDLR/FUT、LRP、LMP2、MAGE、MART、MART-1/melan-A、MART-2/Ski、MC1R、间皮蛋白、MUC、MUM-1-B、myc、MUM-2、MUM-3、NA88-A、NYESO-1、NY-Eso-B、p53、PD1、蛋白酶-3、p190次要bcr-abl、Pml/RARα、PRAME、黄体酮受体、PSA、PSM、PSMA、ras、RAGE、RU1或RU2、RORI、ROR2、SART-1或SART-3、生存蛋白、TEL/AML1、TGFβ、TPI/m、TRP-1、TRP-2、TRP-2/INT2、腱生蛋白、TSTA酪氨酸酶、VEGF、和WT1。在某些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与选自以下的蛋白质结合:ROR2、WT1、PRAME、KRAS、PD1、LMP2、和AFP、或其片段。在某些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与ROR2或其片段结合。在某些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与WT1或其片段结合。
在某些实施方案中,TCR或细胞表面配体与两种或更多种靶抗原结合。在一些实施方案中,TCR或细胞表面配体包含两个或更多个细胞外抗原结合结构域。在一些实施方案中,TCR或细胞表面配体包含作为双特异性抗体的细胞外抗原结合结构域。在一些实施方案中,双特异性抗体是三功能抗体、化学连接的Fab、或双特异性T细胞衔接器。在一些实施方案中,TCR或细胞表面配体包含第一细胞外抗原结合结构域,所述第一细胞外抗原结合结构域与选自以下的蛋白质结合:ROR2、WT1、PRAME、KRAS、PD1、LMP2、AFP、HPV16-E7、NY-ESO-1、EBV-LMP2A、HIV-1、KRAS、组蛋白H3.3、PSA、CD19、CD20、CD47、GPC-3、ROR1、ROR2、BCMA、GPRC5D、和FCRL5、或其片段。在一些实施方案中,TCR或细胞表面配体包含第二细胞外抗原结合结构域,所述第二细胞外抗原结合结构域与第二靶抗原结合。在一些实施方案中,第二靶抗原是细胞表面蛋白(例如,CD3)。
示例性细胞外抗原结合结构域以及产生此类结构域和相关CAR的方法描述在以下中:例如WO2015/070061、WO2016/142768、WO2015/011450、WO2017/070608、WO2016/191246、WO2016/165047、WO2016/210129、、WO2016/201124、WO2016/161390、WO2016/191246、WO2017/023859、WO2015/188141、WO2015/070061、WO2012/135854、WO2014/055668(将其通过引用以其整体并入),包括其中提供的序列表。
工程化受体的与CD19结合的细胞外抗原结合结构域
在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与CD19结合。
在某些实施方案中,细胞外抗原结合结构域与CD19或其片段结合。在一些实施方案中,细胞外抗原结合结构域包含:包含具有序列SEQ ID NO:101的氨基酸的重链可变区或其功能片段或变体。在一些实施方案中,细胞外抗原结合结构域(例如,人scFv)包含:包含具有序列SEQ ID NO:102的氨基酸的轻链可变区或其功能片段或变体。在一些实施方案中,细胞外抗原结合结构域是人scFv,其包含:包含具有序列SEQ ID NO:101的氨基酸的重链可变区或其功能片段或变体,和包含具有序列SEQ ID NO:102的氨基酸的轻链可变区或其功能片段或变体,任选地具有(iii)在重链可变区与轻链可变区之间的接头序列,例如接头肽。在某些实施方案中,接头包含具有SEQ ID NO:118(SRGGGGSGGGGSGGGGSLEMA)中列出的序列的氨基酸。在某些实施方案中,细胞外抗原结合结构域是具有VH和VL区的人scFv-Fc融合蛋白或全长人IgG。
在某些实施方案中,细胞外抗原结合结构域包含VH,所述VH包含与SEQ ID NO:101至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。例如,细胞外抗原结合结构域包含VH,所述VH包含与SEQ ID NO:101约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的氨基酸序列。在某些实施方案中,细胞外抗原结合结构域包含VH,所述VH包含具有SEQ ID NO:101中列出的序列的氨基酸。在某些实施方案中,细胞外抗原结合结构域包含VL,所述VL包含与SEQID NO:101至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。例如,细胞外抗原结合结构域包含VL,所述VL包含与SEQ ID NO:102约80%、约81%、约82%、约83%、约84%、约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、或约99%相同的氨基酸序列。在某些实施方案中,细胞外抗原结合结构域包含VL,所述VL包含具有SEQ ID NO:102中列出的序列的氨基酸。
在一些实施方案中,相对于指定序列(例如,SEQ ID NO:101和102)具有至少约80%、至少约85%、至少约90%、或至少约95%(例如,约81%、约82%、约83%、约84%、约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、或约99%)同源性的VH和/或VL氨基酸序列相对于一种或多种指定序列含有取代(例如,保守性取代)、插入、或缺失,但保留了与相应靶抗原结合的能力。在某些实施方案中,SEQ ID NO:101和102中总共1至10个氨基酸被取代、插入和/或缺失。在某些实施方案中,取代、插入、或缺失在细胞外抗原结合结构域的CDR之外的区中(例如,在框架区(FR)中)发生。在某些实施方案中,细胞外抗原结合结构域包含VH和/或VL序列,所述序列选自SEQ ID NO:101和102,包括所述序列的翻译后修饰。
在一些实施方案中,工程化受体是与CD19结合的caTCR。在一些实施方案中,caTCR包含TCRδ链,所述TCRδ链包含与SEQ ID NO:103至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。在一些实施方案中,caTCR包含TCRγ链,所述TCRγ链包含与SEQ IDNO:104至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。
在一些实施方案中,工程化受体包含(a)包含与SEQ ID NO:105至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的重链CDR1,(b)包含与SEQ ID NO:106至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的重链CDR2,和(c)包含与SEQ IDNO:107或108至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的重链CDR3。在一些实施方案中,重链CDR3包含与SEQ ID NO:107至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。在一些实施方案中,工程化受体包含(a)包含与SEQ ID NO:109至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的轻链CDR1,(b)包含与SEQ IDNO:110至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的轻链CDR2,和(c)包含与SEQ ID NO:111或112至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的轻链CDR3。在一些实施方案中,轻链CDR3包含与SEQ ID NO:111至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。
与CD19结合的另外的细胞外抗原结合结构域(包括scFv和CDR氨基酸和核苷酸序列)描述在WO 2017070608(将其通过引用以其整体并入)(包括其中提供的序列表)中。
工程化受体的与AFP结合的细胞外抗原结合结构域
在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与AFP结合。在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与在MHC分子背景下呈递的AFP结合。在一些实施方案中,细胞外抗原结合结构域与在HLA-A2分子背景下呈递的AFP结合。
在某些实施方案中,细胞外抗原结合结构域与AFP或其片段结合。在一些实施方案中,细胞外抗原结合结构域包含scFv(包含具有序列SEQ ID NO:98的氨基酸)或其功能片段或变体。在一些实施方案中,细胞外抗原结合结构域是人scFv(包含具有序列SEQ ID NO:98的氨基酸)或其功能片段或变体,任选地具有(iii)在重链可变区与轻链可变区之间的接头序列,例如接头肽。在某些实施方案中,接头包含具有SEQ ID NO:118(SRGGGGSGGGGSGGGGSLEMA)中列出的序列的氨基酸。在某些实施方案中,细胞外抗原结合结构域是具有VH和VL区的人scFv-Fc融合蛋白或全长人IgG。在某些实施方案中,scFv与CD28-CD3ζ肽融合。在一些实施方案中,CD28-CD3ζ肽包含具有SEQ ID NO:99中列出的氨基酸。在一些实施方案中,scFv与41BB-CD3ζ肽融合。在一些实施方案中,41BB-CD3ζ肽具有以下序列:
TGTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR(SEQ ID NO:100)。
在某些实施方案中,细胞外抗原结合结构域包含(a)包含与SEQ ID NO:98至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的scFv;和(b)包含与SEQ ID NO:99至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的CD28-CD3ζ肽。例如,细胞外抗原结合结构域包含(a)包含与SEQ ID NO:98至少约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的氨基酸序列的scFv;和(b)包含与SEQ ID NO:99至少80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的氨基酸序列的CD28-CD3ζ肽。
在某些实施方案中,细胞外抗原结合结构域包含(a)包含与SEQ ID NO:98至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的scFv;和(b)包含与SEQ ID NO:100至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的CD28-CD3ζ肽。例如,细胞外抗原结合结构域包含(a)包含与SEQ ID NO:98至少约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的氨基酸序列的scFv;和(b)包含与SEQ ID NO:100至少80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的氨基酸序列的CD28-CD3ζ肽。
在一些实施方案中,工程化受体包含(a)包含与SEQ ID NO:92至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的重链CDR1,(b)包含与SEQ ID NO:93至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的重链CDR2,和(c)包含与SEQ IDNO:94至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的重链CDR3。在一些实施方案中,工程化受体包含(a)包含与SEQ ID NO:95至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的轻链CDR1,(b)包含与SEQ ID NO:96至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的轻链CDR2,和(c)包含与SEQ ID NO:97至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的轻链CDR3。
与AFP结合的另外的细胞外抗原结合结构域(包括scFv和CDR氨基酸和核苷酸序列)描述在WO 2016161390(将其通过引用以其整体并入)(包括其中提供的序列表)中。
工程化受体的与WT1结合的细胞外抗原结合结构域
在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与WT1肿瘤抗原结合。在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与在MHC分子背景下呈递的WT1肿瘤抗原结合。在一些实施方案中,细胞外抗原结合结构域与在HLA-A2分子背景下呈递的WT1肿瘤抗原结合。
在某些实施方案中,细胞外抗原结合结构域与WT1肿瘤抗原或其片段结合。在一些实施方案中,细胞外抗原结合结构域包含:包含具有选自SEQ ID NO:134-140的序列的氨基酸的重链可变区或其功能片段或变体。在一些实施方案中,细胞外抗原结合结构域(例如,人scFv)包含:包含具有选自SEQ ID NO:141-147的序列的氨基酸的轻链可变区或其功能片段或变体。在一些实施方案中,细胞外抗原结合结构域是人scFv,所述人scFv包含:包含具有选自SEQ ID NO:134-140的序列的氨基酸的重链可变区或其功能片段或变体,和包含具有选自SEQ ID NO:141-147的序列的氨基酸的轻链可变区或其功能片段或变体,任选地具有(iii)在重链可变区与轻链可变区之间的接头序列,例如接头肽。在某些实施方案中,接头包含具有SEQ ID NO:118(SRGGGGSGGGGSGGGGSLEMA)中列出的序列的氨基酸。在某些实施方案中,细胞外抗原结合结构域是具有VH和VL区的人scFv-Fc融合蛋白或全长人IgG。
在某些实施方案中,细胞外抗原结合结构域包含VH,所述VH包含与选自SEQ ID NO:134-140的序列至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。例如,细胞外抗原结合结构域包含VH,所述VH包含与选自SEQ ID NO:134-140的序列约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的氨基酸序列。在某些实施方案中,细胞外抗原结合结构域包含VH,所述VH包含具有选自SEQ ID NO:134-140的序列的氨基酸。在某些实施方案中,细胞外抗原结合结构域包含VL,所述VL包含与选自SEQ ID NO:141-147的序列至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。例如,细胞外抗原结合结构域包含VL,所述VL包含与选自SEQ ID NO:141-147的序列约80%、约81%、约82%、约83%、约84%、约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、或约99%相同的氨基酸序列。在某些实施方案中,细胞外抗原结合结构域包含VL,所述VL包含具有选自SEQ ID NO:141-147的序列的氨基酸。
在一些实施方案中,相对于指定序列(例如,SEQ ID NO:141-147)具有至少约80%、至少约85%、至少约90%、或至少约95%(例如,约81%、约82%、约83%、约84%、约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、或约99%)同源性的VH和/或VL氨基酸序列相对于一种或多种指定序列含有取代(例如,保守性取代)、插入、或缺失,但保留了与相应靶抗原结合的能力。在某些实施方案中,SEQ ID NO:141-147中总共1至10个氨基酸被取代、插入和/或缺失。在某些实施方案中,取代、插入、或缺失在细胞外抗原结合结构域的CDR之外的区中(例如,在框架区(FR)中)发生。在某些实施方案中,细胞外抗原结合结构域包含VH和/或VL序列,所述序列选自SEQ ID NO:141-147,包括所述序列的翻译后修饰。
在一些实施方案中,工程化受体包含(A)(i)重链(HC)可变区,其包含:分别包含与SEQ ID NO:148、149、和150至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ IDNO:151、152、和153至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(ii)重链(HC)可变区,其包含:分别包含与SEQ ID NO:154、155、和156至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:157、158、和159至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(iii)重链(HC)可变区,其包含:分别包含与SEQ ID NO:160、161、和162至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:163、164、和165至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(iv)重链(HC)可变区,其包含:分别包含与SEQ ID NO:166、167、和168至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:169、170、和171至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(v)重链(HC)可变区,其包含:分别包含与SEQ ID NO:172、173、和174至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:175、176、和177至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;或(vi)重链(HC)可变区,其包含:分别包含与SEQ ID NO:178、179、和180至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:181、182、和183至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;或(B)分别包含选自以下的第一氨基酸序列和第二氨基酸序列的VH和VL:SEQ ID NO:134和141;135和142;136和143;137和144;138和145;或139和146;或(C)选自SEQ ID NO:184-189的氨基酸序列。
与WT1结合的另外的细胞外抗原结合结构域(包括抗WT1抗体、scFv和CDR氨基酸和核苷酸序列)描述在WO2015/070061(将其通过引用以其整体并入)(包括其中提供的序列表)中可以用于本文提供的任何方法。
工程化受体的与ROR2结合的细胞外抗原结合结构域
在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与ROR2蛋白结合。在一些实施方案中,表达的工程化受体(例如,CAR、caTCR、或eTCR)的细胞外抗原结合结构域与在MHC分子背景下呈递的ROR2蛋白结合。在一些实施方案中,细胞外抗原结合结构域与在HLA-A2分子背景下呈递的ROR2蛋白结合。
在某些实施方案中,细胞外抗原结合结构域与ROR2蛋白或其片段结合。在一些实施方案中,细胞外抗原结合结构域包含:包含具有序列SEQ ID NO:191-203的氨基酸的重链可变区或其功能片段或变体。在一些实施方案中,细胞外抗原结合结构域(例如,人scFv)包含:包含具有序列SEQ ID NO:204-216的氨基酸的轻链可变区或其功能片段或变体。在一些实施方案中,细胞外抗原结合结构域是人scFv,其包含:包含具有序列SEQ ID NO:191-203的氨基酸的重链可变区或其功能片段或变体,和包含具有序列SEQ ID NO:204-216的氨基酸的轻链可变区或其功能片段或变体,任选地具有(iii)在重链可变区与轻链可变区之间的接头序列,例如接头肽。在某些实施方案中,接头包含具有SEQ ID NO:118(SRGGGGSGGGGSGGGGSLEMA)中列出的序列的氨基酸。在某些实施方案中,细胞外抗原结合结构域是具有VH和VL区的人scFv-Fc融合蛋白或全长人IgG。
在某些实施方案中,细胞外抗原结合结构域包含VH,所述VH包含与SEQ ID NO:191-203至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。例如,细胞外抗原结合结构域包含VH,所述VH包含与SEQ ID NO:191-203约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的氨基酸序列。在某些实施方案中,细胞外抗原结合结构域包含VH,所述VH包含具有SEQ IDNO:191-203中列出的序列的氨基酸。在某些实施方案中,细胞外抗原结合结构域包含VL,所述VL包含与SEQ ID NO:204-216至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。例如,细胞外抗原结合结构域包含VL,所述VL包含与SEQ ID NO:204-216约80%、约81%、约82%、约83%、约84%、约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、或约99%相同的氨基酸序列。在某些实施方案中,细胞外抗原结合结构域包含VL,所述VL包含具有SEQ ID NO:204-216中列出的序列的氨基酸。
在一些实施方案中,相对于指定序列(例如,SEQ ID NO:191-216)具有至少约80%、至少约85%、至少约90%、或至少约95%(例如,约81%、约82%、约83%、约84%、约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、或约99%)同源性的VH和/或VL氨基酸序列相对于一种或多种指定序列含有取代(例如,保守性取代)、插入、或缺失,但保留了与相应靶抗原结合的能力。在某些实施方案中,选自SEQ ID NO:191-216的序列中总共1至10个氨基酸被取代、插入和/或缺失。在某些实施方案中,取代、插入、或缺失在细胞外抗原结合结构域的CDR之外的区中(例如,在框架区(FR)中)发生。在某些实施方案中,细胞外抗原结合结构域包含VH和/或VL序列,所述序列选自SEQ ID NO:191-216,包括所述序列的翻译后修饰。
在一些实施方案中,细胞外抗原结合结构域包含具有氨基酸序列SEQ ID NO:203的VH。在一些实施方案中,细胞外抗原结合结构域包含由核苷酸序列SEQ ID NO:242编码的VH。在一些实施方案中,细胞外抗原结合结构域包含具有氨基酸序列SEQ ID NO:216的VL。在一些实施方案中,细胞外抗原结合结构域包含由核苷酸序列SEQ ID NO:241编码的VL。在一些实施方案中,VH和VL链通过具有氨基酸序列(GGGGS)n(SEQ ID NO:120)(其中n=3)的接头连接。
在一些实施方案中,工程化受体包含(i)重链(HC)可变区,其包含:分别包含与SEQID NO:243-245至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:246-248至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(ii)重链(HC)可变区,其包含:分别包含与SEQ ID NO:249-251至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:252-254至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(iii)重链(HC)可变区,其包含:分别包含与SEQ ID NO:255-257至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:258-260至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(iv)重链(HC)可变区,其包含:分别包含与SEQ ID NO:261-263至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:264-266至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(v)重链(HC)可变区,其包含:分别包含与SEQ IDNO:267-269至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:270-272至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(vi)重链(HC)可变区,其包含:分别包含与SEQ ID NO:273-275至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:276-278至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(vii)重链(HC)可变区,其包含:分别包含与SEQ ID NO:279-281至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:282-284至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(viii)重链(HC)可变区,其包含:分别包含与SEQ ID NO:285-287至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:288-290至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(ix)重链(HC)可变区,其包含:分别包含与SEQ ID NO:291-293至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:294-296至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(x)重链(HC)可变区,其包含:分别包含与SEQ ID NO:297-299至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:300-302至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(xi)重链(HC)可变区,其包含:分别包含与SEQ ID NO:303-305至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:306-308至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;(xii)重链(HC)可变区,其包含:分别包含与SEQ ID NO:309-311至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:312-314至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3;或(xiii)重链(HC)可变区,其包含:分别包含与SEQ ID NO:315-317至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的HC-CDR1、HC-CDR2和HC-CDR3;和轻链(LC)可变区,其包含:分别包含与SEQ ID NO:318-320至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的LC-CDR1、LC-CDR2和LC-CDR3。
与ROR2结合的另外的细胞外抗原结合结构域(包括scFv和CDR氨基酸和核苷酸序列)描述在WO2016/142768(将其通过引用以其整体并入)(包括其中提供的序列表)中。
与CD3结合的细胞外抗原结合结构域
在一些实施方案中,TCR表达与CD3结合的细胞外抗原结合结构域。在一些实施方案中,细胞外抗原结合包括与CD3结合的scFv(例如,抗CD3scFv)。在一些实施方案中,细胞外抗原结合结构域包含具有氨基酸序列SEQ ID NO:113的scFv或其功能片段或变体。
在某些实施方案中,细胞外抗原结合结构域包含:包含与SEQ ID NO:113至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的scFv。例如,细胞外抗原结合结构域包含:包含与SEQ ID NO:113约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%,、98%、或99%相同的氨基酸序列的scFv。在某些实施方案中,细胞外抗原结合结构域包含scFv,所述scFv包含具有SEQ ID NO:113中列出的序列的氨基酸。在某些实施方案中,细胞外抗原结合结构域包含由与SEQ IDNO:114至少80%、至少85%、至少90%、或至少95%相同的多核苷酸序列编码的scFv。例如,细胞外抗原结合结构域包含由与SEQ ID NO:114约80%、约81%、约82%、约83%、约84%、约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、或约99%相同的多核苷酸序列编码的scFv。在某些实施方案中,细胞外抗原结合结构域包含由具有SEQ ID NO:114中列出的序列的多核苷酸序列编码的scFv。
在一些实施方案中,相对于指定序列(例如,SEQ ID NO:113)具有至少约80%、至少约85%、至少约90%、或至少约95%(例如,约81%、约82%、约83%、约84%、约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、或约99%)同源性的scFv氨基酸序列相对于一种或多种指定序列含有取代(例如,保守性取代)、插入、或缺失,但保留了与相应靶抗原结合的能力。在某些实施方案中,SEQ ID NO:113中总共1至10个氨基酸被取代、插入和/或缺失。在某些实施方案中,取代、插入、或缺失在细胞外抗原结合结构域的CDR之外的区中(例如,在框架区(FR)中)发生。在某些实施方案中,细胞外抗原结合结构域包含SEQ ID NO:113的scFv序列,包括所述序列的翻译后修饰。
如本文所用,两个氨基酸序列之间的同源性百分比等同于两个序列之间的同一性百分比。两个序列之间的同一性百分比是序列共有的相同位置的数目的函数(即,同源性%=相同位置的数/总位置数x 100),考虑了空位的数目以及每个空位的长度,需要引入这些空位以进行两个序列的最佳比对。序列比较和两个序列之间同一性百分比的测定可以使用数学算法来完成。
可以已并入ALIGN程序(版本2.0)中的使用E.Meyers和W.Miller(Comput.Appl.Biosci.,4:1 1-17(1988))的算法,使用PAM120权重残基表、12的空位长度罚分和4的空位罚分来确定两个氨基酸序列之间的同一性百分比。此外,可以使用已并入GCG软件包(可以在www.gcg.com上获得)中的GAP程序中的Needleman和Wunsch(J.Mol.Biol.48:444-453(1970))的算法,使用Blossum 62矩阵或PAM250矩阵以及16、14、12、10、8、6或4的空位权重和1、2、3、4、5或6的长度权重来确定两个氨基酸序列之间的同源性百分比。
另外或可替代地,当前公开的主题的氨基酸序列可以进一步用作“查询序列”,以在公共数据库中进行检索从而例如鉴定相关序列。可以使用Altschul等人(1990)J.Mol.Biol.215:403-10的XBLAST程序(版本2.0)来进行此类检索。可以用XBLAST程序进行BLAST蛋白质检索,得分=50,字长=3,以获得与本文公开的指定序列同源的氨基酸序列。为了获得用于比较目的的空位比对,可以如Altschul等人,(1997)Nucleic Acids Res.25(17):3389-3402中所描述的使用空位BLAST(Gapped BLAST)。当使用BLAST和空位BLAST程序时,可以使用相应程序(例如,XBLAST和NBLAST)的默认参数。
在某些非限制性实施方案中,当前公开的工程化受体的细胞外抗原结合结构域包含将细胞外抗原结合结构域的重链可变区和轻链可变区接连的接头。如本文所用,术语“接头”是指共价附接两个或更多个多肽或核酸以使得它们彼此连接的官能团(例如,化学的或多肽)。如本文所用,“肽接头”是指用于将两种蛋白质偶联在一起(例如,偶联VH和VL结构域)的一个或多个氨基酸。在某些实施方案中,接头包含具有SEQ ID NO:118(SRGGGGSGGGGSGGGGSLEMA)中列出的序列的氨基酸。在某些实施方案中,编码氨基酸序列SEQ ID NO:118(SRGGGGSGGGGSGGGGSLEMA)的核苷酸序列在SEQ ID NO:119(ctagaggtggtggtggtagcggcggcggcggctctggtggtggtggatcc)中列出。
另外,细胞外抗原结合结构域可以包含引导新生蛋白进入内质网的前导物或信号肽。如果工程化受体要被糖基化并且锚定在细胞膜中,则信号肽或前导物可能至关重要。信号序列或前导物可以是存在于新合成的蛋白质的N末端的肽序列(约5、约10、约15、约20、约25、或约30个氨基酸长),所述肽序列引导它们进入分泌途径。在某些实施方案中,信号肽共价连接至细胞外抗原结合结构域的N末端。在某些实施方案中,信号肽包括包含具有如下提供的SEQ ID NO:122中列出的序列的氨基酸的CD8信号多肽。
MALPVTALLLPLALLLHAARP(SEQ ID NO:122)。
编码氨基酸序列SEQ ID NO:123的核苷酸序列在以下提供的SEQ ID NO:123中列出:
atggccctgccagtaacggctctgctgctgccacttgctctgctcctccatgcagccaggcct(SEQID NO:123)。
双特异性工程化受体
在一些实施方案中,工程化受体(例如,CAR、caTCR、eTCR)或其他细胞表面配体是双特异性的。在一些实施方案中,双特异性TCR或细胞表面配体包含(a)抗体部分,所述抗体部分与靶抗原(即,细胞表面抗原)特异性结合;和(b)TCR模块(TCRM),所述TCR模块能够募集TCR相关的信号传导模块。此类双特异性TCR或细胞表面配体的例子描述于WO2017/070608(将其通过引用以其整体并入)(包括其中提供的序列表)中。
在一些实施方案中,双特异性工程化受体或细胞表面配体包含(a)第一细胞外抗原结合结构域,所述第一细胞外抗原结合结构域与第一靶抗原或其片段结合;和(b)第二细胞外抗原结合结构域,所述第二细胞外抗原结合结构域与第二靶抗原或其片段结合。在一些实施方案中,第一靶抗原是CD19、AFP1、ROR2或WT1。在一些实施方案中,第二靶抗原是细胞表面蛋白。在一些实施方案中,细胞表面蛋白是CD3。
在一些实施方案中,双特异性TCR或细胞表面配体包含(a)第一细胞外抗原结合结构域,所述第一细胞外抗原结合结构域与ROR2结合;和(b)第二细胞外抗原结合结构域,所述第二细胞外抗原结合结构域与CD3结合。在一些实施方案中,双特异性TCR或细胞表面抗原具有氨基酸序列SEQ ID NO:321。在一些实施方案中,与ROR2结合的细胞外抗原结合结构域包含由多核苷酸序列SEQ ID NO:241编码的轻链可变区(VL)(例如,抗ROR2 VL)。在一些实施方案中,与ROR2结合的细胞外抗原结合结构域包含具有氨基酸序列SEQ ID NO:216的VL。在一些实施方案中,与ROR2结合的细胞外抗原结合结构域包含由多核苷酸序列SEQ ID NO:242编码的重链可变区(VH)(例如,抗ROR2 VH)。在一些实施方案中,与ROR2结合的细胞外抗原结合结构域包含具有氨基酸序列SEQ ID NO:203的VH。在一些实施方案中,与CD3结合的细胞外抗原结合结构域包含由多核苷酸序列SEQ ID NO:114编码的scFv(例如,抗CD3scFv)。在一些实施方案中,与CD3结合的细胞外抗原结合结构域包含具有氨基酸序列SEQID NO:113的scFv。在一些实施方案中,抗ROR2 VL经由接头与抗ROR2 VH附接。在一些实施方案中,将抗ROR2 VL和抗ROR2 VH接连的接头由多核苷酸序列SEQ ID NO:119编码。在一些实施方案中,将抗ROR2 VL和抗ROR2 VH接连的接头具有氨基酸序列SEQ ID NO:118。在一些实施方案中,抗ROR2 VH经由接头与抗CD3 scFv附接。在一些实施方案中,将抗ROR2 VH和抗CD3scFv接连的接头由多核苷酸序列SEQ ID NO:121编码。在一些实施方案中,将抗ROR2 VH和抗CD3 scFv接连的接头具有氨基酸序列SEQ ID NO:120。
工程化受体的跨膜结构域
在某些非限制性实施方案中,工程化受体(例如,CAR、caTCR、eTCR)的跨膜结构域包含跨越膜的至少一部分的疏水性α螺旋。不同的跨膜结构域导致不同的受体稳定性。抗原识别后,受体聚簇,并且信号被传递到细胞。根据当前公开的主题,工程化受体的跨膜结构域包含CD8多肽、CD28多肽、CD3ζ多肽、CD4多肽、4-IBB多肽、OX40多肽、SEQ ID NO:129、CTLA-4多肽、PD-1多肽、LAG-3多肽、2B4多肽、BTLA多肽、合成肽(例如,不基于与免疫应答相关的蛋白质的跨膜肽)、或其组合。
在某些实施方案中,当前公开的工程化受体的跨膜结构域包含CD28多肽。CD28多肽可以具有相对于具有NCBI参考号:PI0747或NP006130的序列(SEQ ID NO:125)或其片段至少约85%、约90%、约95%、约96%、约97%、约98%、约99%或100%同源的氨基酸序列,和/或可以任选地包含高达一个或高达两个或高达三个保守氨基酸取代。在某些实施方案中,CD28多肽可以具有作为SEQ ID NO:125的连续部分的氨基酸序列,其长度为至少20、或至少30、或至少40、或至少50、并且高达220个氨基酸。可替代地或另外地,在非限制性各种实施方案中,CD28多肽具有SEQ ID NO:125的第1至220、1至50、50至100、100至150、114至220、150至200、或200至220个氨基酸的氨基酸序列。在某些实施方案中,当前公开的工程化受体包含:包含CD28多肽的跨膜结构域和包含共刺激信号传导区的细胞内结构域,所述共刺激信号传导区包含CD28多肽。在某些实施方案中,跨膜结构域和细胞内结构域中包含的CD28多肽具有SEQ ID NO:125的第114至220个氨基酸的氨基酸序列。
以下提供了SEQ ID NO:125:
MLRLLLALNLFPSIQVTGNKILVKQSPMLVAYDNALSCKYSYNLFSREFRASLHKGLDSAVEVCWYGNYSQQLQVYSKTGFNCDGKLGNESVTFYLQNLYQTDIYFCKIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVWGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS(SEQ IDNO:125)
根据当前公开的主题,“CD28核酸分子”是指编码CD28多肽的多核苷酸。在某些实施方案中,编码包含在当前公开的工程化受体的跨膜结构域和细胞内结构域(例如,共刺激信号传导区)中的CD28多肽(SEQ ID NO:125的第114至220个氨基酸)的CD28核酸分子包含具有如下提供的SEQ ID NO:126中列出的序列的核酸。
attgaagttatgtatcctcctccttacctagacaatgagaagagcaatggaaccattatccatgtgaaagggaaacacctttgtccaagtcccctatttcccggaccttctaagcccttttgggtgctggtggtggttggtggagtcctggcttgctatagcttgctagtaacagtggcctttattattttctgggtgaggagtaagaggagcaggctcctgcacagtgactacatgaacatgactccccgccgccccgggcccacccgcaagcattaccagccctatgccccaccacgcgacttcgcagcctatcgctcc(SEQ ID NO:126)
在某些实施方案中,跨膜结构域包含CD8多肽。CD8多肽可以具有相对于如下提供的SEQ ID NO:124至少约85%、约90%、约95%、约96%、约97%、约98%、约99%或约100%)同源的氨基酸序列(本文中的同源性可以使用诸如BLAST或FASTA的标准软件来确定)或其片段,和/或可以任选地包含高达一个或高达两个或高达三个保守氨基酸取代。在某些实施方案中,CD8多肽可以具有作为SEQ ID NO:124的连续部分的氨基酸序列,其长度为至少20、或至少30、或至少40、或至少50、并且高达235个氨基酸。可替代地或另外地,在非限制性各种实施方案中,CD8多肽具有SEQ ID NO:124的第1至235、1至50、50至100、100至150、150至200、或200至235个氨基酸的氨基酸序列。
以下提供了SEQ ID NO:124:
MALPVTALLLPLALLLHAARPSQFRVSPLDRTWNLGETVELKCQVLLSNPTSGCSWLFQPRGAAASPTFLLYLSQNKPKAAEGLDTQRFSGKRLGDTFVLTLSDFRRENEGYYFCSALSNSIMYFSHFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRRRVCKCPRPWKSGDKPSLSARYV(SEQ ID NO:124)
根据当前公开的主题,“CD8核酸分子”是指编码CD8多肽的多核苷酸。
在某些非限制性实施方案中,工程化受体还包含将细胞外抗原结合结构域与跨膜结构域连接的间隔区。间隔区可以足够灵活,以允许抗原结合结构域在不同方向上定向以促进抗原识别,同时保留工程化受体(例如,CAR、caTCR、或eTCR)的激活活性。在某些非限制性实施方案中,间隔区可以是来自IgGl的铰链区、免疫球蛋白的CH2CH3区和CD3的部分、CD28多肽(例如,SEQ ID NO:125)的一部分、CD8多肽(例如,SEQ ID NO:124)的一部分、以上中任何的变型(所述变型与其至少约80%、至少约85%>、至少约90%、或至少约95%同源)、或合成间隔序列。在某些非限制性实施方案中,间隔区可以具有在约1-50个(例如,5-25,10-30、或30-50个)氨基酸之间的长度。
工程化受体的细胞内结构域
在某些非限制性实施方案中,CAR的细胞内结构域可以包含CD3ζ多肽,其可以激活或刺激细胞(例如,淋巴谱系的细胞,例如T细胞)。CD3ζ包含3个ITAM,并且在结合抗原后将激活信号传递至细胞(例如,淋巴谱系的细胞,例如T细胞)。CD3ζ多肽可以具有相对于具有NCBI参考号:NP_932170的序列(SEQ ID NO:115)至少约85%、约90%、约95%、约96%、约97%、约98%、约99%或约100%同源的氨基酸序列或其片段,和/或可以任选地包含高达一个或高达两个或高达三个保守氨基酸取代。在非限制性某些实施方案中,CD3ζ多肽可以具有作为SEQ ID NO:115的连续部分的氨基酸序列,其长度为至少20、或至少30、或至少40、或至少50、并且高达164个氨基酸。可替代地或另外地,在非限制性各种实施方案中,CD3ζ多肽具有SEQ ID NO:115的第1至164、1至50、50至100、100至150、或150至164个氨基酸的氨基酸序列。在某些实施方案中,CD3ζ多肽具有SEQ ID NO:115的第52至164个氨基酸的氨基酸序列。
以下提供了SEQ ID NO:115:
MKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILFIYGVILTALFLRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR(SEQ ID NO:115)
在某些实施方案中,CD3ζ多肽具有以下提供的SEQ ID NO:116中列出的氨基酸序列:
RVKFSRSAEPPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR(SEQ ID NO:116)
根据当前公开的主题,“CD3ζ核酸分子”是指编码CD3ζ多肽的多核苷酸。在某些实施方案中,当前公开的工程化受体(例如,CAR、caTCR、或eTCR)的细胞内结构域中包含的编码CD3ζ多肽的CD3ζ核酸分子(SEQ ID NO:117)包含如下提供的如SEQ ID NO:117中列出的核苷酸序列。
agagtgaagttcagcaggagcgcagagccccccgcgtaccagcagggccagaaccagctctataacgagctcaatctaggacgaagagaggagtacgatgttttggacaagagacgtggccgggaccctgagatggggggaaagccgagaaggaagaaccctcaggaaggcctgtacaatgaactgcagaaagataagatggcggaggcctacagtgagattgggatgaaaggcgagcgccggaggggcaaggggcacgatggcctttaccagggtctcagtacagccaccaaggacacctacgacgcccttcacatgcaggccctgccccctcgcg(SEQ ID NO:117)
在某些非限制性实施方案中,工程化受体(例如,CAR、caTCR、或eTCR)的细胞内结构域进一步包含至少一个信号传导区。所述至少一个信号传导区可以包含例如CD28多肽、4-IBB多肽、OX40多肽、SEQ ID NO:129、DAP-10多肽、PD-1多肽、CTLA-4多肽、LAG-3多肽、2B4多肽、BTLA多肽、合成肽(不基于与免疫应答相关的蛋白质)、或其组合。
在某些实施方案中,信号传导区是共刺激信号传导区。在某些实施方案中,共刺激信号传导区包含至少一个共刺激分子,所述至少一个共刺激分子可以提供最佳的淋巴细胞激活。如本文所用,“共刺激分子”是指淋巴细胞对抗原的有效应答所需的除抗原受体或其配体外的细胞表面分子。所述至少一个共刺激信号传导区可以包含CD28多肽、4-IBB多肽、OX40多肽、SEQ ID NO:129、DAP-10多肽、或其组合。共刺激分子可以与共刺激配体结合,所述共刺激配体是在细胞表面表达的蛋白质,所述蛋白质在与其受体结合后产生共刺激反应,即,产生当抗原与工程化受体的细胞外抗原结合结构域结合时提供的刺激的细胞内反应。共刺激配体包括但不限于CD80、CD86、CD70、OX40L、4-1BBL、CD48、和TNFRSF14。作为一个例子,4-1BB配体(即,4-1BBL)可以与4-1BB(也称为“CD137”)结合以提供细胞内信号,所述细胞内信号与细胞外信号组合诱导工程化T细胞的效应细胞功能。U.S.7,446,190中公开了包含细胞内结构域的工程化受体,所述细胞内结构域包含共刺激信号传导区,所述共刺激信号传导区包含4-1BB、ICOS或DAP-10,将所述专利通过引用以其整体并入本文。在某些实施方案中,工程化受体的细胞内结构域包含共刺激信号传导区,所述共刺激信号传导区包含CD28多肽。在某些实施方案中,工程化受体的细胞内结构域包含共刺激信号传导区,所述共刺激信号传导区包含两个共刺激分子:CD28和4-1BB或CD28和OX40。
4-IBB可以充当肿瘤坏死因子(TNF)配体并且具有刺激活性。4-IBB多肽可以具有相对于具有NCBI参考号:P41273或NP_001552的序列(SEQ ID NO:127)或其片段至少约85%、约90%、约95%、约96%、约97%、约98%、约99%或100%同源的氨基酸序列,和/或可以任选地包含高达一个或高达两个或高达三个保守氨基酸取代。
以下提供了SEQ ID NO:127:
MGNSCYNIVATLLLVLNFERTRSLQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGCKDCCFGTFNDQKRGICRPWTNCSLDGKSVLGTKERDWCGPSPADLSPGASSVTPPAPAREPGHSPQIISFFLALTSTALLFLLFFLTLRFSWKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL(SEQ ID NO:127)。
根据当前公开的主题,“4-IBB核酸分子”是指编码4-IBB多肽的多核苷酸。
OX40多肽可以具有相对于具有NCBI参考号:P43489或NP 003318的序列(SEQ IDNO:128)或其片段至少约85%、约90%、约95%、约96%、约97%、约98%、约99%或100%同源的氨基酸序列,和/或可以任选地包含高达一个或高达两个或高达三个保守氨基酸取代。
以下提供了SEQ ID NO:128:
MCVGARRLGRGPCAALLLLGLGLSTVTGLHCVGDTYPSNDRCCHECRPGNGMVSRCSRSQNTVCRPCGPGFYNDWSSKPCKPCTWCNLRSGSERKQLCTATQDTVCRCRAGTQPLDSYKPGVDCAPCPPGHFSPGDNQACKPWTNCTLAGKHTLQPASNSSDAICEDRDPPATQPQETQGPPARPITVQPTEAWPRTSQGPSTRPVEVPGGRAVAAILGLGLVLGLLGPLAILLALYLLRRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKI(SEQ ID NO:128)。
根据当前公开的主题,“OX40核酸分子”是指编码OX40多肽的多核苷酸。
ICOS多肽可以具有相对于具有NCBI参考号:NP_036224的序列(SEQ ID NO:129)或其片段至少约85%、约90%、约95%、约96%、约97%、约98%、约99%或100%同源的氨基酸序列,和/或可以任选地包含高达一个或高达两个或高达三个保守氨基酸取代。
以下提供了SEQ ID NO:129:
MKSGLWYFFLFCLRIKVLTGEINGSANYEMFIFHNGGVQILCKYPDIVQQFKMQLLKGGQILCDLTKTKGSGNTVSIKSLKFCHSQLSNNSVSFFLYNLDHSHANYYFCNLSIFDPPPFKVTLTGGYLHIYESQLCCQLKFWLPIGCAAFVWCILGCILICWLTKKKYSSSVHDPNGEYMFMRATAKKSRLTDVTL(SEQ ID NO:129)。
根据当前公开的主题,“ICOS核酸分子”是指编码SEQ ID NO:129的多核苷酸。
CTLA-4是由激活的T细胞表达的抑制性受体,所述抑制性受体当与其相应配体(分别为CD80和CD86;B7-1和B7-2)接合时介导激活的T细胞抑制或无能。在临床前和临床研究两者中,通过全身性抗体输注进行的CTLA-4阻断增强内源性抗肿瘤反应,尽管在临床环境中具有显著的未预见到的毒性。
CTLA-4含有细胞外V结构域、跨膜结构域、和细胞质尾部。已经表征了编码不同同种型的替代剪接变体。膜结合的同种型起通过二硫键互连的同型二聚体的作用,而可溶性同种型起单体的作用。细胞内结构域与CD28的类似,因为它没有固有的催化活性并且含有一个能够结合PI3K、PP2A和SHP-2的YVKM基序和一个能够结合含有SH3的蛋白质的富含脯氨酸的基序。CTLA-4在抑制T细胞应答方面的一个作用似乎是直接经由TCR-近端信号传导蛋白(诸如CD3和LAT)的SHP-2和PP2A脱磷酸化。CTLA-4还可以通过与CD28竞争CD80/86结合而间接影响信号传导。还显示CTLA-4与PI3K、CD80、AP2M1和PPP2R5A结合和/或相互作用。
根据当前公开的主题,CTLA-4多肽可以具有相对于UniProtKB/Swiss-Prot参考号:P16410.3(SEQ ID NO:130)至少约85%、约90%、约95%、约96%、约97%、约98%、约99%或约100%同源的氨基酸序列(本文中的同源性可以使用诸如BLAST或FASTA的标准软件来确定)或其片段,和/或可以任选地包含高达一个或高达两个或高达三个保守氨基酸取代。
以下提供了SEQ ID NO:130:
MACLGFQRHKAQLNLATRTWPCTLLFFLLFIPVFCKAMHVAQPAWLASSRGIASFVCEYASPGKATEVRVTVLRQADSQVTEVCAATYMMGNELTFLDDSICTGTSSGNQLTIQGLRAMDTGLYICKVELMYPPPYYLGIGNGTQIYVIDPEPCPDSDFLLWILAAVSSGLFFYSFLLTAVSLSKMLKKRSPLTTGVYVKMPPTEPECEKQFQPYFIPIN(SEQ ID NO:130)。
根据当前公开的主题,“CTLA-4核酸分子”是指编码CTLA-4多肽的多核苷酸。
淋巴细胞激活蛋白3(LAG-3)是免疫细胞的负免疫调节剂。LAG-3属于免疫球蛋白(Ig)超家族,并且含有4个细胞外Ig样结构域。LAG3基因含有8个外显子。序列数据、外显子/内含子组成、和染色体定位均指示LAG3与CD4的密切关系。LAG3也被指定为CD223(分化簇223)。
根据当前公开的主题,LAG-3多肽可以具有相对于UniProtKB/Swiss-Prot参考号:P18627.5(SEQ ID NO:131)至少约85%、约90%、约95%、约96%、约97%、约98%、约99%或约100%同源的氨基酸序列或其片段,和/或可以任选地包含高达一个或高达两个或高达三个保守氨基酸取代。
以下提供了SEQ ID NO:131:
MWEAQFLGLLFLQPLWVAPVKPLQPGAEVPWWAQEGAPAQLPCSPTIPLQDLSLLRRAGVTWQHQPDSGPPAAAPGHPLAPGPHPAAPSSWGPRPRRYTVLSVGPGGLRSGRLPLQPRVQLDERGRQRGDFSLWLRPARRADAGEYRAAVHLRDRALSCRLRLRLGQASMTASPPGSLRASDWVILNCSFSRPDRPASVHWFRNRGQGRVPVRESPHHHLAESFLFLPQVSPMDSGPWGCILTYRDGFNVSIMYNLTVLGLEPPTPLTVYAGAGSRVGLPCRLPAGVGTRSFLTAKWTPPGGGPDLLVTGDNGDFTLRLEDVSQAQAGTYTCHIHLQEQQLNATVTLAIITVTPKSFGSPGSLGKLLCEVTPVSGQERFVWSSLDTPSQRSFSGPWLEAQEAQLLSQPWQCQLYQGERLLGAAVYFTELSSPGAQRSGRAPGALPAGHLLLFLILGVLSLLLLVTGAFGFHLWRRQWRPRRFSALEQGIHPPQAQSKIEELEQEPEPEPEPEPEPEPEPEPEQL(SEQ ID NO:131)。
根据当前公开的主题,“LAG-3核酸分子”是指编码LAG-3多肽的多核苷酸。自然杀伤细胞受体2B4(2B4)介导对NK细胞和T细胞亚群的非MHC限制性细胞杀伤。迄今为止,2B4的功能仍处在研究中,并且2B4-S同种型被认为是激活受体,并且2B4-L同种型被认为是免疫细胞的负免疫调节剂。2B4在结合其高亲和力配体CD48后变成接合的。2B4含有基于酪氨酸的开关基序,其为允许蛋白质与各种磷酸酶缔和的分子开关。2B4也被指定为CD244(分化簇244)。
根据当前公开的主题,2B4多肽可以具有相对于UniProtKB/Swiss-Prot参考号:Q9BZW8.2(SEQ ID NO:132)至少约85%、约90%、约95%、约96%、约97%、约98%、约99%或约100%同源的氨基酸序列或其片段,和/或可以任选地包含高达一个或高达两个或高达三个保守氨基酸取代。
以下提供了SEQ ID NO:132:
MLGQWTLILLLLLKVYQGKGCQGSADHWSISGVPLQLQPNSIQTKVDSIAWKKLLPSQNGFHHILKWENGSLPSNTSNDRFSFIVKNLSLLIKAAQQQDSGLYCLEVTSISGKVQTATFQVFVFESLLPDKVEKPRLQGQGKILDRGRCQVALSCLVSRDGNVSYAWYRGSKLIQTAGNLTYLDEEVDINGTHTYTCNVSNPVSWESHTLNLTQDCQNAHQEFRFWPFLVIIVILSALFLGTLACFCVWRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTFPGGGSTIYSMIQSQSSAPTSQEPAYTLYSLIQPSRKSGSRKRNHSPSFNSTIYEVIGKSQPKAQNPARLSRKELENFDVYS(SEQID NO:132)。
根据当前公开的主题,“2B4核酸分子”是指编码2B4多肽的多核苷酸。
在T细胞激活过程中诱导B和T淋巴细胞衰减因子(BTLA)表达,并且BTLA仍在Thl细胞而非Th2细胞上表达。像PD1和CTLA4一样,BTLA与B7同源物B7H4相互作用。然而,与PD-1和CTLA-4不同,BTLA通过与肿瘤坏死家族受体(TNF-R)(不仅仅是B7家族的细胞表面受体)相互作用而显示出T细胞抑制。BTLA是肿瘤坏死因子(受体)超家族成员14(TNFRSF14)(也称为疱疹病毒进入介体(HVEM))的配体。BTLA-HVEM复合物负向调节T细胞免疫应答。已显示BTLA激活会抑制人CD8+癌症特异性T细胞的功能。BTLA也被指定为CD272(分化簇272)。
根据当前公开的主题,BTLA多肽可以具有相对于UniProtKB/Swiss-Prot参考号:Q7Z6A9.3(SEQ ID NO:133)至少约85%、约90%、约95%、约96%、约97%、约98%、约99%或约100%同源的氨基酸序列或其片段,和/或可以任选地包含高达一个或高达两个或高达三个保守氨基酸取代。
以下提供了SEQ ID NO:133:
MKTLPAMLGTGKLFWVFFLIPYLDIWNIHGKESCDVQLYIKRQSEHSILAGDPFELECPVKYCANRPHVTWCKLNGTTCVKLEDRQTSWKEEKNISFFILHFEPVLPNDNGSYRCSANFQSNLIESHSTTLYVTDVKSASERPSKDEMASRPWLLYRLLPLGGLPLLITTCFCLFCCLRRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDNDPDLCFRMQEGSEVYSNPCLEENKPGIVYASLNHSVIGPNSRLARNVKEAPTEYASICVRS(SEQ IDNO:133)。
根据当前公开的主题,“BTLA核酸分子”是指编码BTLA多肽的多核苷酸。
免疫细胞
当前公开的主题提供了工程化免疫细胞,所述工程化免疫细胞表达工程化受体(例如,CAR、caTCR、或eTCR)或其他配体,其包含细胞外抗原结合结构域、跨膜结构域和细胞内结构域,其中所述细胞外抗原结合结构域特异性地结合如上所描述的肿瘤抗原,包括肿瘤受体或配体。在某些实施方案中,可以向免疫细胞中转导编码工程化受体的当前公开的载体,使得所述细胞表达所述工程化受体。当前公开的主题还提供了使用此类细胞治疗肿瘤的方法。当前公开的主题的工程化免疫细胞可以是淋巴谱系或髓样谱系的细胞。包含B细胞、T细胞和自然杀伤(NK)细胞的淋巴谱系提供抗体的产生、细胞免疫系统的调节、血液中外源因子的检测、宿主外源的细胞的检测等。淋巴谱系的免疫细胞的非限制性例子包括T细胞、自然杀伤(NK)细胞、胚胎干细胞、和多能干细胞(例如,可以从其中分化出淋巴样细胞的那些)。T细胞可以是在胸腺中成熟的淋巴细胞,并且主要负责细胞介导的免疫力。T细胞参与适应性免疫系统。当前公开的主题的T细胞可以是任何类型的T细胞,包括但不限于T辅助细胞、细胞毒性T细胞、记忆T细胞(包括中央记忆T细胞、干细胞样记忆T细胞(或干样(stem-like)记忆T细胞)、和两种类型的效应记忆T细胞:例如,TEM细胞和TEMRA细胞)、调节性T细胞(也称为抑制T细胞)、自然杀伤T细胞、粘膜相关恒定T细胞、和γδT细胞。细胞毒性T细胞(CTL或杀伤T细胞)是能够诱导感染的体细胞或肿瘤细胞死亡的T淋巴细胞亚群。在某些实施方案中,工程化T细胞表达Foxp3以实现并且维持T调节表型。
自然杀伤(NK)细胞可以是作为细胞介导的免疫力的一部分的淋巴细胞,并且在先天免疫应答过程中起作用。NK细胞不需要事先激活来对靶细胞执行其细胞毒性作用。
当前公开的主题的工程化免疫细胞可以表达细胞外抗原结合结构域(例如,人scFv、任选交联的Fab、或F(ab)2),所述细胞外抗原结合结构域与肿瘤抗原特异性结合以治疗癌症,例如治疗实体瘤。可以将此类工程化免疫细胞给予有需要的受试者(例如,人受试者)以治疗癌症。在一些实施方案中,免疫细胞是淋巴细胞,诸如T细胞、B细胞或自然杀伤(NK)细胞。在某些实施方案中,工程化免疫细胞是T细胞。T细胞可以是CD4+T细胞或CD8+T细胞。在某些实施方案中,T细胞是CD4+T细胞。在某些实施方案中,T细胞是CD8+T细胞。
当前公开的工程化免疫细胞可以进一步包含至少一种重组或外源共刺激配体。例如,可以进一步向当前公开的工程化免疫细胞中转导至少一种共刺激配体,使得工程化免疫细胞共表达或被诱导以共表达靶向肿瘤抗原的工程化受体和至少一种共刺激配体。靶向肿瘤抗原的工程化受体与至少一种共刺激配体之间的相互作用提供了对于免疫细胞(例如,T细胞)的完全激活重要的非抗原特异性信号。共刺激配体包括但不限于肿瘤坏死因子(TNF)超家族成员和免疫球蛋白(Ig)超家族配体。TNF是参与全身性炎症的细胞因子,并且刺激急性期反应。其主要作用是调节免疫细胞。TNF超家族成员共有许多共同特征。TNF超家族的大多数成员都被合成为II型跨膜蛋白(细胞外C端),其含有短的细胞质节段和相对长的细胞外区。TNF超家族成员包括但不限于神经生长因子(NGF)、CD40L(CD40L)/CD 154、CD137L/4-1BBL、TNF-a、CD134L/OX40L/CD252、CD27L/CD70、Fas配体(FasL)、CD30L/CD153、肿瘤坏死因子β(TNFP)/淋巴毒素-α(LTa)、淋巴毒素-βΟ-Τβ)、CD257/B细胞激活因子(BAFF)/Bly s/THANK/Tall-1、糖皮质激素诱导的TNF受体配体(GITRL)、和T F相关凋亡诱导配体(TRAIL)、LIGHT(TNFSF14)。免疫球蛋白(Ig)超家族是参与细胞的识别、结合或粘附过程的细胞表面和可溶性蛋白的大组。这些蛋白质与免疫球蛋白-它们具有免疫球蛋白结构域(折叠)-共用结构特征。免疫球蛋白超家族配体包括但不限于CD80和CD86(这两个配体是针对CD28的)、PD-L1/(B7-H1)(所述配体是针对PD-1的)。在某些实施方案中,所述至少一种共刺激配体选自4-1BBL、CD80、CD86、CD70、OX40L、CD48、TNFRSF14、PD-L1、及其组合。在某些实施方案中,工程化免疫细胞包含一种重组共刺激配体,其为4-1BBL。在某些实施方案中,工程化免疫细胞包含两种重组共刺激配体,其为4-1BBL和CD80。包含至少一种共刺激配体的工程化受体描述在美国专利号8,389,282中,将所述专利通过引用以其整体并入。
此外,当前公开的工程化免疫细胞可以进一步包含至少一种外源细胞因子。例如,可以进一步向当前公开的工程化免疫细胞中转导至少一种细胞因子,使得所述工程化免疫细胞分泌所述至少一种细胞因子以及表达靶向肿瘤抗原的工程化受体。在某些实施方案中,所述至少一种细胞因子选自IL-2、IL-3、IL-6、IL-7、IL-11、IL-12、IL-15、IL-17、和IL-21。在某些实施方案中,细胞因子是IL-12。
工程化免疫细胞可以从外周供体淋巴细胞产生,所述外周供体淋巴细胞例如以下中公开的那些:Sadelain,M.,等人,Nat Rev Cancer 3:35-45(2003)(公开了经遗传修饰以表达CAR的外周供体淋巴细胞),Morgan,R.A.等人(2006)Science 314:126-129(公开了经遗传修饰以表达包含α和β异二聚体的全长肿瘤抗原识别T细胞受体复合物的外周供体淋巴细胞),Panelli等人(2000)J Immunol 164:495-504;Panelli等人(2000)J Immunol 164:4382-4392(2000)(公开了在肿瘤活组织检查中衍生自肿瘤浸润淋巴细胞(TIL)的淋巴细胞培养物),和Dupont等人(2005)Cancer Res 65:5417-5427;Papanicolaou等人(2003)Blood102:2498-2505(公开了选择性地在v/Yro扩增的抗原特异性外周血白细胞中采用人工抗原呈递细胞(AAPC)或脉冲树突状细胞)。工程化免疫细胞(例如,T细胞)可以是自体的、非自体的(例如,同种异体的)、或体外衍生自工程化祖细胞或干细胞。
在某些实施方案中,当前公开的工程化免疫细胞(例如,T细胞)表达从约1至约5、从约1至约4、从约2至约5、从约2至约4、从约3至约5、从约3至约4、从约4至约5、从约1至约2、从约2至约3、从约3至约4、或从约4至约5个载体拷贝数/当前公开的靶向肿瘤抗原的工程化受体细胞。
例如,工程化免疫细胞中工程化受体表达水平越高,工程化免疫细胞展现出的细胞毒性和细胞因子产生就越大。具有高的靶向肿瘤抗原的工程化受体的表达水平的工程化免疫细胞(例如,T细胞)可以诱导抗原特异性细胞因子的产生或分泌和/或对具有低的靶向肿瘤抗原的工程化受体表达水平(例如,约2,000个或更少、约1,000个或更少、约900个或更少、约800个或更少、约700个或更少、约600个或更少、约500个或更少、约400个或更少、约300个或更少、约200个或更少、约100个或更少肿瘤抗原结合位点/细胞)的组织或细胞展现出细胞毒性。另外地或可替代地,当前公开的工程化免疫细胞(例如,T细胞)的细胞毒性和细胞因子的产生与靶组织或靶细胞中肿瘤抗原的表达水平成比例。例如,靶标中人肿瘤抗原的表达水平越高,工程化免疫细胞展现出的细胞毒性和细胞因子产生就越大。
如本文所描述,FoxP3靶向剂的使用通过消耗FoxP3+免疫抑制细胞(例如,Treg和Treg样细胞)的疾病微环境来增加工程化免疫细胞中的细胞毒性作用。在某些实施方案中,本公开文本的工程化免疫细胞对肿瘤抗原表达细胞展现出细胞毒性作用,所述细胞毒性作用是比在不存在FoxP3靶向剂的情况下工程化免疫细胞的细胞毒性作用多至少约2倍、约3倍、约4倍、约5倍、约6倍、约7倍、约8倍、约9倍、约10倍、约20倍、约30倍、约40倍、约50倍、约60倍、约70倍、约80倍、约90倍、或约100倍。
未纯化的免疫细胞来源可以是本领域中任何已知的,诸如骨髓、胎儿、新生儿或成年或其他造血细胞来源,例如胎儿肝、外周血或脐带血。可以采用各种技术来分离细胞。例如,阴性选择方法可以最初除去非免疫细胞。单克隆抗体特别可用于鉴定与特定细胞谱系和/或分化阶段相关的标记物,以用于阳性和阴性选择两者。
最初可以通过相对粗略的分离除去大部分终末分化的细胞。例如,磁性珠粒分离最初可以用于除去大量无关细胞。在一些实施方案中,在细胞分隔之前,将除去全部造血细胞的至少约80%,通常至少70%。
用于分离的程序包括但不限于密度梯度离心;重沉(resetting);与改变细胞密度的颗粒偶联;用抗体包被的磁性珠粒进行磁性分离;亲和色谱法;与mAb结合或联合使用的细胞毒性剂,包括但不限于补体和细胞毒素;以及用在与固体基质附接的抗体进行淘选,例如板、碎片、淘析或任何其他方便的技术。
用于分离和分析的技术包括但不限于流式细胞术,其可以具有不同的复杂程度,例如,多个颜色通道、低角度和钝角光散射检测通道、阻抗通道。
通过采用与死细胞相关的染料,诸如碘化丙啶(PI),可以针对死细胞来选择细胞。在一些实施方案中,将细胞收集在包含2%胎牛血清(FCS)或0.2%牛血清白蛋白(BSA)的培养基或任何其他合适的、优选无菌的等渗培养基中。
可替代地,或除了分离或去除无关细胞之外,可以使用FoxP3靶向剂来制造工程化免疫细胞。在一些实施方案中,在用编码工程化受体的载体转导或转染之前,将FoxP3靶向剂给予细胞样品。在其他实施方案中,在用编码工程化受体的载体转导或转染过程中,将FoxP3靶向剂给予细胞样品。在其他实施方案中,在用编码工程化受体的载体转导或转染后,将FoxP3靶向剂给予细胞样品。
在工程化免疫细胞的制造中使用FoxP3靶向剂可以通过从细胞样品中消耗FoxP3+免疫抑制细胞(例如,Treg和Treg样细胞)来增加作为效应细胞的工程化免疫细胞的产率。在某些实施方案中,包含在FoxP3靶向剂的存在下制造的工程化免疫细胞的组合物含有比在不存在FoxP3靶向剂的情况下生产的效应细胞的数目多至少约2倍、约3倍、约4倍、约5倍、约6倍、约7倍、约8倍、约9倍、约10倍、约20倍、约30倍、约40倍、约50倍、约60倍、约70倍、约80倍、约90倍、或约100倍的效应细胞。
在一些实施方案中,工程化免疫细胞包含一个或多个另外的修饰。例如,在一些实施方案中,工程化免疫细胞包含并且表达(转导以表达)抗原识别受体,所述抗原识别受体与不同于肿瘤抗原的第二抗原结合。除了当前公开的工程化受体之外,工程化免疫细胞上还包含抗原识别受体可以增加工程化受体或包含它的工程化免疫细胞在靶细胞上的亲合力,尤其是,工程化受体是对特定肿瘤抗原具有低结合亲和力(例如,约2x 10-8M或更大、约5x 10-8M或更大、约8x 10-8M或更大、约9x 10-8M或更大、约1x 10-7M或更大、约2x 10-7M或更大、或约5x 10-7M或更大的Kd)的工程化受体。
在某些实施方案中,抗原识别受体是嵌合共刺激受体(CCR)。CCR描述在Krause等人(1998)J.Exp.Med.188(4):619-626和US20020018783中,将其内容通过引用以其整体并入。CCR模仿共刺激信号,但与工程化受体不同,不提供T细胞激活信号,例如,CCR缺少CD3ζ多肽。在抗原呈递细胞上不存在天然共刺激配体的情况下,CCR提供共刺激,例如CD28样信号。组合抗原识别(即,使用CCR与工程化受体的组合)可以加强针对双重抗原表达T细胞的T细胞反应性,从而改善选择性肿瘤靶向。Kloss等人描述了一种策略,所述策略整合了组合抗原识别、分裂的信号传导、以及至关重要地,T细胞激活和共刺激的强度平衡,以产生T细胞,所述T细胞消除表达抗原组合的靶细胞,同时保留单独地表达每种抗原的细胞(Kloss等人(2013)Nature Biotechnology 31(l):71-75)。用这种方法,T细胞激活需要工程化受体介导的识别一种抗原,而共刺激是由对第二种抗原具有特异性的CCR独立介导的。为了实现肿瘤选择性,组合抗原识别方法将T细胞激活的效率降低到在没有通过同时CCR识别第二抗原所提供的救援的情况下其无效的水平。在某些实施方案中,CCR包含与不同于所选肿瘤抗原的抗原结合的细胞外抗原结合结构域、跨膜结构域、和共刺激信号传导区,所述共刺激信号传导区包含至少一种共刺激分子,包括但不限于CD28、4-1BB、OX40、ICOS、PD-1、CTLA-4、LAG-3、2B4、和BTLA。在某些实施方案中,CCR的共刺激信号传导区包含一个共刺激信号传导分子。在某些实施方案中,所述一个共刺激信号传导分子是CD28。在某些实施方案中,所述一个共刺激信号传导分子是4-IBB。在某些实施方案中,CCR的共刺激信号传导区包含两个共刺激信号传导分子。在某些实施方案中,所述两个共刺激信号传导分子是CD28和4-IBB。选择第二抗原,使得所选肿瘤抗原和第二抗原两者的表达都限于靶细胞(例如,癌组织或癌细胞)。与工程化受体类似,细胞外抗原结合结构域可以是scFv、Fab、F(ab)2;或具有异源序列的融合蛋白以形成细胞外抗原结合结构域。在某些实施方案中,CCR包含与CD 138结合的scFv、包含CD28多肽的跨膜结构域、和包含两个共同刺激信号传导分子的共同刺激信号传导区,所述两个共同刺激信号传导分子是CD28和4-IBB。
在某些实施方案中,抗原识别受体是截短的CAR。“截短的CAR”与CAR的区别在于缺少细胞内信号传导结构域。例如,截短的CAR包含细胞外抗原结合结构域和跨膜结构域,并且缺少细胞内信号传导结构域。根据当前公开的主题,截短的CAR对在靶细胞(例如,骨髓瘤细胞)上表达的第二抗原具有高结合亲和力。截短的CAR起粘附分子的作用,所述粘附分子增强当前公开的工程化受体、尤其是对肿瘤抗原具有低结合亲和力的工程化受体的亲合力,从而改善当前公开的工程化受体或包含它的工程化免疫细胞(例如,T细胞)的功效。在某些实施方案中,截短的CAR包含与CD138结合的细胞外抗原结合结构域、包含CD8多肽的跨膜结构域。当前公开的T细胞包含或被转导以表达当前公开的靶向肿瘤抗原的工程化受体和靶向CD138的截短的CAR。在某些实施方案中,靶细胞是实体瘤细胞。
在一些实施方案中,将工程化免疫细胞进一步修饰以抑制一个或多个基因的表达。在一些实施方案中,通过基因组编辑来进一步修饰工程化免疫细胞。已经描述了用于靶向切割基因组DNA的各种方法和组合物。此类靶向切割事件可以用于例如诱导靶向诱变,诱导细胞DNA序列的靶向缺失,以及促进在预定染色体基因座处的靶向重组。参见例如美国专利号7,888,121;7,972,854;7,914,796;7,951,925;8,110,379;8,409,861;8,586,526;美国专利公开20030232410;20050208489;20050026157;20050064474;20060063231;201000218264;20120017290;20110265198;20130137104;20130122591;20130177983和20130177960,将其公开内容通过引用以其整体并入。这些方法通常涉及使用工程化切割系统来诱导靶DNA序列中的双链断裂(DSB)或切口,使得通过产生错误的过程(诸如非同源末端连接(NHEJ))修复断裂或使用修复模板(同源性定向修复或HDR)修复可以导致基因敲除或插入感兴趣的序列(靶向整合)。可以通过以下方式进行切割:使用特异性核酸酶(诸如工程化锌指核酸酶(ZFN)、转录激活子样效应子核酸酶(TALEN))或使用CRISPR/Cas系统与工程化crRNA/tracr RNA(“单一指导RNA”来指导特异性切割。在一些实施方案中,将工程化免疫细胞修饰以破坏或减少内源性T细胞受体基因的表达(参见例如WO 2014153470,将其通过引用以其整体并入)。在一些实施方案中,将工程化免疫细胞修饰以导致破坏或抑制PD1、PDL-1或CTLA-4(参见例如美国专利公开20140120622)或本领域已知的其他免疫抑制因子(Wu等人(2015)Oncoimmunology 4(7):e1016700,Mahoney等人(2015)Nature ReviewsDrug Discovery 14,561-584)。
FoxP3靶向剂
在一些实施方案中,本文提供了FoxP3靶向剂,其用于增强表达与靶抗原(诸如肿瘤抗原或病毒蛋白)结合的T细胞受体(TCR)或其他细胞表面配体的工程化免疫细胞的功效。本文还提供了FoxP3靶向剂,其用于制造表达与靶抗原(诸如肿瘤抗原或病毒蛋白)结合的T细胞受体(TCR)或其他细胞表面配体的工程化免疫细胞。
在一些实施方案中,FoxP3靶向剂是抗原结合蛋白,包括对FoxP3衍生的肽片段的FoxP3多肽具有特异性的抗体、嵌合抗原受体(CAR)、嵌合抗体TCR(caTCR)、和/或工程化TCR(eTCR)。在一些实施方案中,FoxP3多肽包含SEQ ID NO:1中列出的氨基酸序列。
在一些实施方案中,FoxP3衍生的肽片段具有8-12个氨基酸的长度。在一些实施方案中,所述FoxP3衍生的肽片段选自具有EQ ID NO:2中列出的氨基酸序列或其一部分的FoxP3-1、具有SEQ ID NO:3中列出的氨基酸序列或其一部分的FoxP3-2、具有SEQ ID NO:4中列出的氨基酸序列或其一部分的FoxP3-3、具有SEQ ID NO:5中列出的氨基酸序列或其一部分的FoxP3-4、具有SEQ ID NO:6中列出的氨基酸序列或其一部分的FoxP3-5、具有SEQ IDNO:7中列出的氨基酸序列或其一部分的FoxP3-6;和具有SEQ ID NO:8中列出的氨基酸序列或其一部分的FoxP3-7。在一些实施方案中,FoxP3衍生的肽片段是具有SEQ ID NO:8中列出的氨基酸序列或其一部分的FoxP3-7。
在一些实施方案中,FoxP3靶向剂与在MHC分子(例如,FoxP3/MHC复合物)背景下呈递的FoxP3结合。在一些实施方案中,FoxP3靶向剂与在HLA-A分子(例如,FoxP3/HLA-A复合物)背景下呈递的FoxP3结合。在一些实施方案中,FoxP3靶向剂与在HLA-A2分子(例如,FoxP3/HLA-A2复合物)背景下呈递的FoxP3结合。在一些实施方案中,FoxP3靶向剂与在HLA-A*02:01分子(例如,FoxP3/HLA-A*02:01复合物)背景下呈递的FoxP3结合。
在示例性实施方案中,本文提供的FoxP3靶向剂是双特异性抗体。在一些实施方案中,双特异性抗体与FoxP3多肽或其片段和细胞表面蛋白结合。在一些实施方案中,细胞表面蛋白是CD3或CD16。
在示例性实施方案中,FoxP3靶向剂是工程化免疫细胞,所述工程化免疫细胞表达与FoxP3结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,FoxP3靶向剂是工程化免疫细胞,所述工程化免疫细胞表达与在MHC分子背景下呈递的FoxP3结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,FoxP3靶向剂是工程化免疫细胞,所述工程化免疫细胞表达与在HLA-A2分子背景下呈递的FoxP3结合的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,与FoxP3结合的TCR或其他细胞表面配体包含如上所描述的工程化受体的跨膜结构域、工程化受体的细胞内结构域、和/或工程化受体的接头。在一些实施方案中,表达与FoxP3结合的TCR(即,工程化受体)或其他细胞表面配体的工程化免疫细胞是如上所描述的免疫细胞。在一些实施方案中,表达与FoxP3结合的TCR或其他细胞表面配体的工程化免疫细胞包括如上所描述的表达与靶抗原结合的TCR或其他细胞表面配体的工程化免疫细胞的一个或多个特征。
在示例性实施方案中,工程化免疫细胞表达与在MHC分子背景下呈递的FoxP3结合的单一类型的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,工程化免疫细胞表达与在MHC分子背景下呈递的FoxP3结合的两种或更多种工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。在一些实施方案中,工程化免疫细胞表达与在MHC分子背景下呈递的FoxP3结合的一种或多种工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体,并且还表达与不同的细胞表面受体(例如,CD19)结合的一种或多种另外的工程化受体(例如,CAR、caTCR、或eTCR)或其他细胞表面配体。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含SEQ ID NO:16中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:17中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:18中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:19中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:20中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:21中列出的氨基酸序列的轻链可变区CDR3。在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含SEQ ID NO:22中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:23中列出的氨基酸序列的重链可变区CDR2;包含SEQ IDNO:24中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:25中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:26中列出的氨基酸序列的轻链可变区CDR2;和包含SEQID NO:27中列出的氨基酸序列的轻链可变区CDR3。在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含SEQ ID NO:28中列出的氨基酸序列的重链可变区CDR1;包含SEQID NO:29中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:30中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:31中列出的氨基酸序列的轻链可变区CDR1;包含SEQID NO:32中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:33中列出的氨基酸序列的轻链可变区CDR3。在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含SEQ ID NO:34中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:35中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:36中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:37中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:38中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:39中列出的氨基酸序列的轻链可变区CDR3。在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含SEQ ID NO:40中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:41中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:42中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:43中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:44中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:45中列出的氨基酸序列的轻链可变区CDR3。在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含SEQ ID NO:46中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:47中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:48中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:49中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:50中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:51中列出的氨基酸序列的轻链可变区CDR3。在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含SEQ ID NO:52中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:53中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:54中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:55中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:56中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:57中列出的氨基酸序列的轻链可变区CDR3。在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含SEQ IDNO:58中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:59中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:60中列出的氨基酸序列的重链可变区CDR3;包含SEQ IDNO:61中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:62中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:63中列出的氨基酸序列的轻链可变区CDR3。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含具有序列SEQID NO:64-77的氨基酸的重链可变区或其功能片段或变体。在一些实施方案中,细胞外抗原结合结构域(例如,人scFv)包含:包含具有序列SEQ ID NO:78-91的氨基酸的轻链可变区或其功能片段或变体。在一些实施方案中,细胞外抗原结合结构域是人scFv,其包含:包含具有序列SEQ ID NO:64-77的氨基酸的重链可变区或其功能片段或变体,和包含具有序列SEQID NO:78-91的氨基酸的轻链可变区或其功能片段或变体,任选地具有(iii)在重链可变区与轻链可变区之间的接头序列,例如接头肽。在某些实施方案中,接头包含具有SEQ ID NO:118(SRGGGGSGGGGSGGGGSLEMA)中列出的序列的氨基酸。在某些实施方案中,细胞外抗原结合结构域是具有VH和VL区的人scFv-Fc融合蛋白或全长人IgG。
在某些实施方案中,细胞外抗原结合结构域包含VH,所述VH包含与SEQ ID NO:64-77至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。例如,细胞外抗原结合结构域包含VH,所述VH包含与SEQ ID NO:64-77约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的氨基酸序列。在某些实施方案中,细胞外抗原结合结构域包含VH,所述VH包含具有SEQ ID NO:64-77中列出的序列的氨基酸。在某些实施方案中,细胞外抗原结合结构域包含VL,所述VL包含与SEQ ID NO:78-91至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列。例如,细胞外抗原结合结构域包含VL,所述VL包含与SEQ ID NO:78-91约80%、约81%、约82%、约83%、约84%、约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、或约99%相同的氨基酸序列。在某些实施方案中,细胞外抗原结合结构域包含VL,所述VL包含具有SEQ ID NO:78-91中列出的序列的氨基酸。
在一些实施方案中,相对于指定序列(例如,SEQ ID NO:64-91)具有至少约80%、至少约85%、至少约90%、或至少约95%(例如,约81%、约82%、约83%、约84%、约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、或约99%)同源性的VH和/或VL氨基酸序列相对于一种或多种指定序列含有取代(例如,保守性取代)、插入、或缺失,但保留了与相应靶抗原结合的能力。在某些实施方案中,SEQ ID NO:64-91中总共1至10个氨基酸被取代、插入和/或缺失。在某些实施方案中,取代、插入、或缺失在细胞外抗原结合结构域的CDR之外的区中(例如,在框架区(FR)中)发生。在某些实施方案中,细胞外抗原结合结构域包含VH和/或VL序列,所述序列选自SEQ ID NO:64-91,包括所述序列的翻译后修饰。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含SEQ ID NO:69中列出的氨基酸序列的重链可变区,和包含SEQ ID NO:83中列出的氨基酸序列的轻链可变区。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含WO2017/124001中列出的氨基酸序列的重链可变区,将所述专利通过引用以其整体并入。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:具有WO2017/124001中列出的氨基酸序列的重链可变区CDR1,将所述专利通过引用以其整体并入。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:具有WO2017/124001中列出的氨基酸序列的重链可变区CDR2,将所述专利通过引用以其整体并入。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含具有WO2017/124001中列出的氨基酸序列的重链可变区CDR3,将所述专利通过引用以其整体并入。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:具有WO2017/124001中列出的氨基酸序列的轻链可变区CDR1,将所述专利通过引用以其整体并入。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:具有WO2017/124001中列出的氨基酸序列的轻链可变区CDR2,将所述专利通过引用以其整体并入。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:具有WO2017/124001中列出的氨基酸序列的轻链可变区CDR3,将所述专利通过引用以其整体并入。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:包含WO2017/124001中列出的氨基酸序列的轻链可变区,将所述专利通过引用以其整体并入。
在一些实施方案中,对FoxP3具有特异性的抗原结合蛋白包含:具有WO2017/124001中列出的氨基酸序列的scFv,将所述专利通过引用以其整体并入。
将如WO2017/124001中描述的所有FoxP3 scFv、抗体、和CAR序列通过引用以其整体并入,包括其中提供的氨基酸和核苷酸序列。这些序列包括但不限于WO2017/124001的表1、2和3以及附录A、B C、D、E、F和G的氨基酸和核苷酸序列,其包括用于所选FoxP3抗体scFV、轻链、重链、和CDR序列的氨基酸和核苷酸序列。可以将以上任何序列作为本文描述的FoxP3靶向剂的一部分并入。
载体
许多表达载体是可获得的并且是本领域技术人员已知的,并且可以用于表达本文提供的多肽。表达载体的选择将受到宿主表达系统的选择的影响。此类选择完全在技术人员的技术水平内。通常,表达载体可以包含转录启动子以及任选地增强子、翻译信号以及转录和翻译终止信号。用于稳定转化的表达载体典型地具有选择标记物,其允许选择和维持转化的细胞。在一些情况下,复制起点可以用于扩增细胞中载体的拷贝数。
载体还可以含有可操作地连接至连接的核酸分子的另外的核苷酸序列,例如像诸如用于定位的表位标签(例如,hexa-his标签或myc标签、血凝素标签)或用于纯化的标签(例如,GST融合体),和用于指导蛋白质分泌和/或膜缔和的序列。
抗体或其抗原结合片段的表达可以通过本领域已知的任何启动子/增强子来控制。合适的细菌启动子是本领域众所周知的,并且在下文描述。用于哺乳动物细胞、酵母细胞和昆虫细胞的其他合适启动子是本领域众所周知的,并且以下示例了一些。用于指导异源核酸表达的启动子的选择取决于特定的应用,并且在技术人员的技术水平内。可以使用的启动子包括但不限于含有SV40早期启动子的真核表达载体(Bernoist和Chambon,Nature290:304-310(1981))、鲁斯氏肉瘤病毒的3'长末端重复序列中含有的启动子(Yamamoto等人(1980)Cell 22:787-797)、疱疹胸苷激酶启动子(Wagner等人(1981)Proc.Natl.Acad.Sci.USA 75:1441-1445)、金属硫蛋白基因的调节序列(Brinster等人(1982)Nature 296:39-42);原核表达载体,诸如β-内酰胺酶启动子(Jay等人(1981)Proc.Natl.Acad.Sci.USA 75:5543)或tac启动子(DeBoer等人(1983)Proc.Natl.Acad.Sci.USA 50:21-25);还参见“Useful Proteins from RecombinantBacteria”(1980)in Scientific American 242:79-94);含有胭脂碱合成酶启动子的植物表达载体(Herrera-Estrella等人(1984)Nature 505:209-213)或花椰菜花叶病毒35S RNA启动子(Gardner等人(1981)Nucleic Acids Res.9:2871)和光合作用酶核糖二磷酸核糖羧化酶的启动子(Herrera-Estrella等人(1984)Nature 510:1 15-120);来自酵母和其他真菌的启动子元件,诸如Gal4启动子、醇脱氢酶启动子、磷酸甘油激酶启动子、碱性磷酸酶启动子,以及展现出组织特异性并且已用于转基因动物中的以下动物转录控制区:在胰腺腺泡细胞中有活性的弹性蛋白酶I基因控制区(Swift等人(1984)Cell 55:639-646;Ornitz等人(1986)Cold Spring Harbor Symp.Quant.Biol.50:399-409;MacDonald(1987)Hepatology 7:425-515);在胰腺β细胞中有活性的胰岛素基因控制区(Hanahan等人(1985)Nature 515:115-122),在淋巴样细胞中有活性的免疫球蛋白基因控制区(Grosschedl等人(1984)Cell 55:647-658;Adams等人(1985)Nature 515:533-538;Alexander等人(1987)Mol.Cell Biol.7:1436-1444),在睾丸、乳腺、淋巴样和肥大细胞中有活性的小鼠乳腺肿瘤病毒控制区(Leder等人(1986)Cell 15:485-495),在肝脏中有活性的白蛋白基因控制区(Pinckert等人(1987)Genes and Devel.1:268-276),在肝脏中有活性的α-胎蛋白基因控制区(Krumlauf等人(1985)Mol.Cell.Biol.5:1639-403);Hammer等人(1987)Science 255:53-58),在肝脏中有活性的α-1抗胰蛋白酶基因控制区(Kelsey等人(1987)Genes andDevel.7:161-171),在髓样细胞中有活性的β珠蛋白基因控制区(Magram等人(1985)Nature515:338-340);Kollias等人(1986)Cell 5:89-94),在脑的少突胶质细胞中有活性的髓磷脂碱性蛋白基因控制区(Readhead等人(1987)Cell 15:703-712),在骨骼肌中有活性的肌球蛋白轻链-2基因控制区(Shani(1985)Nature 514:283-286),和在下丘脑的促性腺激素细胞中有活性的促性腺激素释放激素基因控制区(Mason等人(1986)Science 254:1372-1378)。
除启动子之外,表达载体典型地含有转录单位或表达盒,所述转录单位或表达盒含有在宿主细胞中表达抗体或其一部分所需的所有另外的元件。典型的表达盒含有可操作地连接至编码抗体链的核酸序列的启动子以及转录物的有效聚腺苷酸化、核糖体结合位点、和翻译终止所需的信号。盒的另外元件可以包括增强子。另外,盒典型地在结构基因的下游含有转录终止区,以提供有效的终止。终止区可以从与启动子序列相同的基因获得,或者可以从不同的基因获得。
一些表达系统具有提供基因扩增的标记物,诸如胸苷激酶和二氢叶酸还原酶。可替代地,不涉及基因扩增的高产率表达系统也是合适的,诸如在昆虫细胞中使用杆状病毒载体,具有在多面体启动子或其他强杆状病毒启动子的指导下编码种系抗体链的核酸序列。
本领域技术人员已知的用于将DNA片段插入载体的任何方法都可以用于构建含有编码本文提供的任何多肽的核酸的表达载体。这些方法可以包括体外重组DNA和合成技术以及体内重组体(基因重组)。插入克隆载体中可以例如通过将DNA片段连接到具有互补的粘性末端的克隆载体中来完成。如果克隆载体中不存在用于将DNA片段化的互补限制性酶切位点,则可以对DNA分子的末端进行酶促修饰。可替代地,可以通过将核苷酸序列(接头)连接到DNA末端上来产生所希望的任何位点;这些连接的接头可以含有编码限制性核酸内切酶识别序列的特定化学合成核酸。
可用于产生本文提供的多肽的示例性质粒载体含有强启动子,诸如HCMV极早期增强子/启动子或MHC I类启动子;增强转录物的加工的内含子,诸如HCMV极早期基因内含子A;和聚腺苷酸化(poly A)信号,诸如晚期SV40 polyA信号。
可以通过向基本上均质的细胞组合物中转导重组DNA或RNA构建体来实现工程化免疫细胞(例如,T细胞、NK细胞)的遗传修饰。载体可以是逆转录病毒载体(例如,γ逆转录病毒的),其用于将DNA或RNA构建体引入宿主细胞基因组中。例如,可以将编码靶向肿瘤抗原的工程化受体的多核苷酸和FoxP3靶向剂克隆到逆转录病毒载体中,并且可以从其内源性启动子、逆转录病毒长末端重复序列、或替代性内部启动子驱动表达。
也可以使用非病毒载体或RNA。可以使用随机染色体整合、或靶向整合(例如,使用核酸酶、转录激活子样效应子核酸酶(TALEN)、锌指核酸酶(ZFN)、和/或成簇的规律间隔的短回文重复序列(CRISPR)、或转基因表达(例如,使用天然或化学修饰的RNA的)。
为了对细胞进行初始遗传修饰以提供靶向肿瘤抗原的工程化受体和/或FoxP3靶向剂表达细胞或以产生FoxP3靶向剂,可以采用逆转录病毒载体来转导。然而,任何其他合适的病毒载体或非病毒递送系统可以用于细胞的遗传修饰。为了随后对细胞进行遗传修饰以提供包括包含至少两个共刺激性配体的抗原呈递复合物的细胞,逆转录病毒基因转移(转导)同样被证明是有效的。逆转录病毒载体和适当的包装线的组合也是合适的,其中衣壳蛋白将具有感染人细胞的功能。已知产生双嗜性病毒的各种细胞系,包括但不限于PA12(Miller等人(1985)Mol.Cell.Biol.5:431-437);PA317(Miller等人(1986)Mol.Cell.Biol.6:2895-2902);和CRIP(Danos等人(1988)Proc.Natl.Acad.Sci.USA 85:6460-6464)。双嗜性颗粒也是合适的,例如用VSVG、RD114或GALV包膜和本领域已知的任何其他包膜假型化的颗粒。
可能的转导方法还包括将细胞与生产细胞直接共培养(例如通过Bregni等人(1992)Blood 80:1418-1422的方法)、或与单独的病毒上清液或含或不含适当的生长因子和聚阳离子的浓载体原液一起培养,例如通过Xu等人(1994)Exp.Hemat.22:223-230;和Hughes等人(1992)J.Clin.Invest.89:1817的方法。
转导的病毒载体可以用于在工程化免疫细胞中表达共刺激配体和/或分泌细胞因子(例如,4-1BBL和/或IL-12)。在一些实施方案中,所选载体展现出高的感染效率和稳定的整合和表达(参加例如Cayouette等人(1997)Human Gene Therapy 8:423-430;Kido等人(1996)Current Eye Research 15:833-844;Bloomer等人(1997)Journal of Virology71:6641-6649;Naldini等人(1996)Science 272:263 267;和Miyoshi等人(1997)Proc.Natl.Acad.Sci.U.S.A.94:10319)。可以使用的其他病毒载体包括,例如腺病毒、慢病毒和腺相关病毒载体,牛痘病毒,牛乳头瘤病毒,或疱疹病毒(诸如爱泼斯坦-巴尔(Epstein-Barr)病毒)(还参见例如以下的载体:Miller(1990)Human Gene Therapy 15-14;Friedman(1989)Science 244:1275-1281;Eglitis等人(1988)BioTechniques 6:608-614;Tolstoshev等人(1990)Current Opinion in Biotechnology 1:55-61;Sharp(1991)The Lancet 337:1277-1278;Cornetta等人(1987)Nucleic Acid Research andMolecular Biology 36:311-322;Anderson(1984)Science 226:401-409;Moen(1991)Blood Cells 17:407-416;Miller等人(1989)Biotechnology 7:980-990;Le Gal LaSalle等人(1993)Science 259:988-990;和Johnson(1995)Chest 107:77S-83S)。逆转录病毒载体发展特别好并且已经用于临床环境中(Rosenberg等人(1990)N.Engl.J.Med 323:370;Anderson等人,美国专利号5,399,346)。
在某些非限制性实施方案中,表达当前公开的靶向肿瘤抗原的工程化受体的载体是逆转录病毒载体,例如癌瘤逆转录病毒载体。在一些情况下,逆转录病毒载体是SFG逆转录病毒载体或鼠干细胞病毒(MSCV)逆转录病毒载体。在某些非限制性实施方案中,表达当前公开的靶向肿瘤抗原的工程化受体的载体是慢病毒载体。在某些非限制性实施方案中,表达当前公开的靶向肿瘤抗原的工程化受体的载体是转座子载体。
非病毒方法也可以用于在细胞中表达蛋白质。例如,可以通过在脂质转染(Feigner等人(1987)Proc.Nat'l.Acad.Sci.U.S.A.84:7413;Ono等人(1990)NeuroscienceLetters 17:259;Brigham等人(1989)Am.J.Med.Sci.298:278;Staubinger等人(1983)Methods in Enzymology 101:512)、脱唾液酸血清类粘蛋白-聚赖氨酸缀合(Wu等人(1988)Journal of Biological Chemistry 263:14621;Wu等人(1989)Journal of BiologicalChemistry 264:16985)的存在下给予核酸或通过在手术条件下的微量注射(Wolff等人(1990)Science 247:1465)将核酸分子引入细胞中。用于基因转移的其他非病毒手段包括使用磷酸钙、DEAE葡聚糖、电穿孔、和原生质体融合进行体外转染。脂质体对于将DNA递送到细胞中也可能是潜在有益的。向受试者的受影响组织中移植正常基因也可以通过以下方式来完成:将正常核酸转移到离体的可培养的细胞类型(例如,自体或异源原代细胞或其后代),之后将细胞(或其后代)注射到靶组织中或全身注射。重组受体也可以使用转座酶或靶核酸酶(例如,锌指核酸酶、大范围核酸酶、或TALE核酸酶)衍生或获得。瞬时表达可以通过RNA电穿孔获得。
用于多核苷酸疗法方法的cDNA表达可以从任何合适的启动子(例如,人巨细胞病毒(CMV)、猿猴病毒40(SV40)、或金属硫蛋白启动子)指导,并且通过任何适当的哺乳动物调节元件或内含子(例如,延伸因子la增强子/启动子/内含子结构)调节。例如,如果希望的话,已知优先在特定细胞类型中指导基因表达的增强子可以用于指导核酸的表达。所使用的增强剂可以包括但不限于被表征为组织或细胞特异性增强剂的那些。可替代地,如果将基因组克隆用作治疗性构建体,则可以通过同源调节序列或,如果希望的话,通过衍生自异源来源的调节序列(包括上面描述的任何启动子或调节元件)来介导调节。
可以使所得细胞在与未修饰的细胞类似的条件下生长,由此可以扩增修饰的细胞并且将其用于多种目的。VI.多肽及类似物和多核苷酸
当前公开的主题还包括与肿瘤抗原(例如,人肿瘤抗原)特异性结合的细胞外抗原结合结构域(例如,scFv(例如,人scFv)、Fab、或(Fab)2)、CD3ζ、CD8、CD28等,多肽或其片段,以及编码它们的多核苷酸,所述多核苷酸以当在工程化免疫细胞中表达时增强其抗肿瘤活性的方式被修饰。当前公开的主题提供了用于通过产生序列的改变来优化氨基酸序列或核酸序列的方法。此类改变可以包括某些突变、缺失、插入、或翻译后修饰。当前公开的主题进一步包括当前公开的主题的任何天然存在的多肽的类似物。类似物与当前公开的主题的天然存在的多肽的差异可以是氨基酸序列差异、翻译后修饰、或两者。当前公开的主题的类似物通常可以展现出相对于当前公开的主题的天然存在的氨基酸序列的全部或一部分至少约85%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%)、约98%、约99%或更大的同一性或同源性。序列比较的长度为至少约5、约10、约15、约20、约25、约50、约75、约100或更多个氨基酸残基。同样,在确定同一性程度的示例性方法中,可以使用BLAST程序,其中在e-3e-100之间的概率得分指示密切相关的序列。修饰包括多肽的体内和体外化学衍生,例如乙酰化、羧化、磷酸化、或糖基化;此类修饰可以在多肽合成或加工过程中或在用分隔的修饰酶处理之后进行。类似物与当前公开的主题的天然存在的多肽的区别还可以是一级序列的改变。它们包括遗传变体,自然的和诱导的两者(例如,通过辐射或暴露于乙烷甲基硫酸盐进行无规突变或通过如Sambrook,Fritsch和Maniatis,Molecular Cloning:A Laboratory Manual(第2版),CSH Press,1989,或Ausubel等人(同上)中描述的位点特异性诱变产生)。还包括环化的肽、分子和类似物,其含有除L-氨基酸外的残基,例如D-氨基酸或非天然存在的或合成氨基酸(例如β或γ氨基酸)。
除全长多肽之外,当前公开的主题还提供了当前公开的主题的任何一种多肽或肽结构域的片段。片段可以是至少约5、约10、约13、或约15个氨基酸。在一些实施方案中,片段是至少约20个连续氨基酸、至少约30个连续氨基酸、或至少约50个连续氨基酸。在一些实施方案中,片段是至少约60至约80、约100、约200、约300或更多个连续氨基酸。当前公开的主题的片段可以通过本领域普通技术人员已知的方法产生,或者可以由正常蛋白质加工(例如,从新生多肽中除去生物活性不需要的氨基酸,或通过替代性mRNA剪接或替代性蛋白质加工事件除去氨基酸)产生。
非蛋白质类似物具有设计为模仿本发明蛋白质的功能活性的化学结构。根据当前公开的主题的方法给予此类类似物。此类类似物可以超过原始多肽的生理活性。类似物设计的方法在本领域中是众所周知的,并且可以根据此类方法通过修饰化学结构以使所得类似物当在工程化免疫细胞中表达时增加原始多肽的抗肿瘤活性来进行类似物的合成。这些化学修饰包括但不限于取代替代性R基团和改变参考多肽的特定碳原子处的饱和度。蛋白类似物可以相对耐受体内降解,导致在给予后更延长的治疗作用。用于测量功能活性的测定包括但不限于以下实施例中描述的那些。
根据当前公开的主题,编码与肿瘤抗原(例如,人肿瘤抗原)特异性结合的细胞外抗原结合结构域(例如,scFv(例如,人scFv)、Fab、或(Fab)2)、CD3、CD8、CD28)的多核苷酸可以通过密码子优化进行修饰。密码子优化可以改变天然存在的基因序列和重组基因序列两者,以在任何给定的表达系统中实现最高可能的生产力水平。蛋白质表达的不同阶段中涉及的因素包括密码子适应性、mRNA结构、以及转录和翻译中的各种顺式元件。本领域技术人员已知的任何合适的密码子优化方法或技术可以用于修饰当前公开的主题的多核苷酸,包括但不限于OptimumGeneTM、Encor优化和蓝鹭。
给予
可以将当前公开的主题的表达靶向肿瘤抗原的工程化受体的工程化免疫细胞和FoxP3靶向剂全身地或直接提供给受试者以治疗或预防疾病,诸如瘤形成或病毒感染。在某些实施方案中,将工程化免疫细胞和/或FoxP3靶向剂直接注射到感兴趣的器官(例如,受瘤形成影响的器官)中。可替代地或另外地,将工程化免疫细胞和/或FoxP3靶向剂例如通过给予循环系统(例如,肿瘤脉管系统)中来间接提供到感兴趣的器官中。可以在给予工程化免疫细胞和/或FoxP3靶向剂之前、之中或之后提供扩增和分化剂。
可以在任何生理上可接受的媒介物中全身地或区域地,通常血管内、腹膜内、鞘内、或胸膜内地给予当前公开的主题的工程化免疫细胞和/或FoxP3靶向剂,尽管也可以将它们引入骨或其中细胞可以找到用于再生和分化的适当位置的其他方便位点(例如,胸腺)中。在某些实施方案中,可以给予至少1x 105个细胞,最终达到1x 1010个或更多。在某些实施方案中,可以给予至少1x 106个细胞。包含工程化免疫细胞的细胞群体可以包含纯化的细胞群体。本领域技术人员可以使用各种众所周知的方法,诸如荧光激活细胞分选(FACS),容易地确定细胞群体中工程化免疫细胞的百分比。包含工程化免疫细胞的细胞群体中的纯度范围可以是从约50%至约55%、从约55%至约60%、从约65%至约70%、从约70%至约75%、从约75%至约80%、从约80%至约85%;从约85%至约90%、从约90%至约95%、或从约95至约100%。剂量可以由本领域技术人员容易调节(例如,纯度降低可能需要剂量增加)。可以通过注射、导管等引入工程化免疫细胞和/或FoxP3靶向剂。如果希望的话,也可以包括因子,包括但不限于白介素,例如IL-2、IL-3、IL 6、IL-11、IL-7、IL-12、IL-15、IL-21以及其他白介素;集落刺激因子,诸如G-、M-和GM-CSF;干扰素,例如γ-干扰素。
在某些实施方案中,当前公开的主题的组合物包括药物组合物,其包含表达靶向肿瘤抗原的工程化受体的工程化免疫细胞和FoxP3靶向剂以及药学上可接受的载体。给予可以是自体的或非自体的。例如,表达靶向肿瘤抗原的工程化受体的工程化免疫细胞和FoxP3靶向剂以及包含它们的组合物可以从一名受试者获得,并且给予同一受试者或不同的相容受试者。当前公开的主题的外周血衍生的T细胞或其后代(例如,体内、离体或体外衍生的)可以经由局部注射(包括导管给予)、全身注射、局部注射、静脉内注射或肠胃外给予来给予。当给予当前公开的主题的药物组合物(例如,包含表达靶向肿瘤抗原的工程化受体的工程化免疫细胞和FoxP3靶向剂的药物组合物)时,可以将其配制成单位剂量可注射形式(溶液、悬浮液、乳液)。
配制品
表达靶向肿瘤抗原的工程化受体的工程化免疫细胞和FoxP3靶向剂以及包含它们的组合物可以方便地以无菌液体制剂的形式提供,所述无菌液体制剂例如等渗水溶液、悬浮液、乳液、分散体、或粘性组合物,它们可以被缓冲至所选pH。液体制剂通常比凝胶、其他粘性组合物和固体组合物更容易制备。另外地,液体组合物稍微更方便给予,尤其是通过注射。在另一方面,可以将粘性组合物配制在适当的粘度范围内,以提供与特定组织的更长的接触时间段。液体或粘性组合物可以包含载体,所述载体可以是溶剂或分散介质,其含有例如水、盐水、磷酸盐缓冲盐水、多元醇(例如,甘油、丙二醇、液体聚乙二醇等)及其合适的混合物。
无菌可注射溶液可以通过将当前公开的主题的组合物(例如,包含工程化免疫细胞的组合物)掺入所需量的适当溶剂以及(根据需要)各种量的其他成分中来制备。可以将此类组合物与合适的载体、稀释剂或赋形剂(如诸无菌水、生理盐水、葡萄糖、右旋糖等)混合。组合物也可以是冻干的。组合物可以含有辅助物质,诸如润湿剂、分散剂或乳化剂(例如,甲基纤维素)、pH缓冲剂、胶凝或粘度增强添加剂、防腐剂、调味剂、颜料等,取决于给予途径和所希望的制剂。可以参考诸如“REMINGTON'S PHARMACEUTICAL SCIENCE”,第17版,1985(通过引用并入本文)的标准文本来制备合适的制剂而无需过多的实验。
可以添加增强组合物的稳定性和无菌性的各种添加剂,包括抗微生物防腐剂、抗氧化剂、螯合剂和缓冲剂。可以通过不同的抗细菌和抗真菌剂(例如,对羟基苯甲酸酯、三氯叔丁醇、苯酚、抗坏血酸等)来确保防止微生物的作用。可以通过使用延迟吸收的药剂(例如,单硬脂酸铝和明胶)来实现可注射药物形式的延长吸收。然而,根据当前公开的主题,所使用的任何媒介物、稀释剂或添加剂将必须与当前公开的主题的工程化免疫细胞和FoxP3靶向剂相容。
组合物可以是等渗的,即它们可以具有与血液和泪液相同的渗透压。当前公开的主题的组合物的希望等渗性可以使用氯化钠或其他药学上可接受的试剂(诸如葡萄糖、硼酸、酒石酸钠、丙二醇或其他无机或有机溶质)来实现。在一些实施方案中,氯化钠是优选的,特别是对于含有钠离子的缓冲剂而言。
如果希望,可以使用药学上可接受的增稠剂将组合物的粘度维持在所选水平。可以使用甲基纤维素,因为它容易且经济地可获得并且易于处理。其他合适的增稠剂包括,例如黄原胶、羧甲基纤维素、羟丙基纤维素、卡波姆等。增稠剂的浓度可以取决于所选试剂。重要的一点是使用将达到所选粘度的量。显然,合适的载体和其他添加剂的选择将取决于确切的给予途径和特定剂型(例如,液体剂型)的性质(例如,是否要将组合物配制成溶液、悬浮液、凝胶或其他液体形式,诸如时间释放形式或液体填充的形式)。
本领域技术人员应认识到,组合物的组分应选择为是化学惰性的,并且将不影响如当前公开的主题中所描述的工程化免疫细胞的活力或功效。对于化学和制药原理的技术人员而言,这不会带来问题,或者通过参考标准文本或通过简单的实验(不涉及过度的实验)从本公开文本和本文引用的文献中可以容易避免问题。
关于当前公开的主题的工程化免疫细胞(在一些情况下包括作为工程化免疫细胞的FoxP3靶向剂)的治疗用途的一个考虑是实现最佳作用所需的细胞数量。对于所治疗的受试者,待给予的细胞的数量将变化。在某些实施方案中,将从约102至约1012、从约103至约1011、从约104至约1010、从约105至约109、或从约106至约108个当前公开的主题的工程化免疫细胞给予受试者。可以以甚至更小的数目给予更有效的细胞。在一些实施方案中,将至少约1x 108、约2x 108、约3x 108、约4x 108、约5x 108、约1x 109、约5x 109、约1x 1010、约5x 1010、约1x 1011、约5x 1011、约1x 1012或更多个当前公开的主题的工程化免疫细胞给予人受试者。可以基于单独针对每个受试者的因素(包括其大小、年龄、性别、体重、和特定受试者的状况)来精确确定什么是将被认为是有效剂量。本领域技术人员从本公开文本和本领域知识中可以容易地确定剂量。
技术人员可以容易地确定组合物中细胞和任选的添加剂、媒介物和/或载体的量,并且以当前公开的主题的方法进行给予。典型地,任何添加剂(除一种或多种活性细胞和/或一种或多种试剂外)以按重量计从约0.001%至约50%的量)溶液存在于磷酸盐缓冲盐水中,并且活性成分以微克量级至毫克量级存在,诸如从约0.0001wt%至约5wt%、从约0.0001wt%至约1wt%、从约0.0001wt%至约0.05wt%、从约0.001wt%至约20wt%、从约0.01wt%至约10wt%、或从约0.05wt%至约5wt%。对于待给予动物或人的任何组合物以及对于任何特定的给予方法,应确定毒性,诸如通过在合适的动物模型(例如,啮齿动物,诸如小鼠)中确定致死剂量(LD)和LD50;以及一种或多种组合物的剂量,其中的组分的浓度和给予一种或多种组合物的时机,其引起合适的反应。根据技术人员的知识、本公开文本和本文引用的文献,此类确定不需要过度的实验。而且,无需过多实验即可确定顺序给予的时间
用于疗法的方法
对于治疗,所给予的本文提供的工程化免疫细胞的量是有效产生所希望的作用(例如,治疗癌症或传染性疾病或者癌症或传染性疾病的一种或多种症状)的量。可以以一次或一系列给予本文提供的工程化免疫细胞和/或FoxP3靶向剂来提供有效量。可以以大丸剂或通过连续灌注来提供有效量。对于使用抗原特异性T细胞的过继免疫疗法,典型地输注在约106至约1010的范围内的细胞剂量。当前公开的主题的工程化免疫细胞可以通过本领域已知的任何方法来给予,所述方法包括但不限于胸膜给予、静脉内给予、皮下给予、结节内给予、肿瘤内给予、鞘内给予、胸膜内给予、腹膜内给予、和直接给予胸腺。在某些实施方案中,将工程化免疫细胞和包含它们的组合物静脉内给予有需要的受试者。用于给予用于过继细胞疗法(包括例如,供体淋巴细胞输注和工程化T细胞疗法)的细胞的方法以及给予方案在本领域中是已知的,并且可以用于给予本文提供的工程化免疫细胞。
当前公开的主题提供了使用表达靶向肿瘤抗原的工程化受体(例如,CAR、caTCR、或eTCR)的本文提供的工程化免疫细胞(例如,T细胞)的各种方法。例如,当前公开的主题提供了减少受试者的肿瘤负荷的方法。在一个非限制性例子中,减少肿瘤负荷的方法包括向受试者给予有效量的当前公开的工程化免疫细胞,从而在受试者中诱导肿瘤细胞死亡。
当前公开的工程化免疫细胞可以减少肿瘤细胞的数目、减小肿瘤尺寸、和/或根除受试者的肿瘤。在某些实施方案中,减少肿瘤负荷的方法包括向受试者给予有效量的工程化免疫细胞,从而在受试者中诱导肿瘤细胞死亡。合适的肿瘤的非限制性例子包括肾上腺癌、膀胱癌、血液癌、骨癌、脑癌、乳腺癌、癌、子宫颈癌、结肠癌、结直肠癌、子宫体癌、耳鼻喉(ENT)癌、子宫内膜癌、食管癌、胃肠道癌、头颈癌、霍奇金病、肠癌、肾癌、喉癌、急性和慢性白血病、肝癌、淋巴结癌、淋巴瘤、肺癌、黑色素瘤、间皮瘤、骨髓瘤、鼻咽癌、神经母细胞瘤、非霍奇金淋巴瘤、口腔癌、卵巢癌、胰腺癌、阴茎癌、咽癌、前列腺癌、直肠癌、肉瘤、精原细胞瘤、皮肤癌、胃癌、畸胎瘤、睾丸癌、甲状腺癌、子宫癌、阴道癌、血管肿瘤、及其转移。在一些实施方案中,癌症是复发性或难治性癌症。在一些实施方案中,癌症耐受一种或多种癌症疗法(例如,一种或多种化疗药物)。
当前公开的主题还提供了增加或加长患有瘤形成(例如,肿瘤)的受试者的生存的方法。在一个非限制性例子中,增加或加长患有瘤形成(例如,肿瘤)的受试者的生存的方法包括向受试者给予有效量的当前公开的工程化免疫细胞,从而增加或加长受试者的生存。当前公开的主题进一步提供了用于治疗或预防受试者的瘤形成(例如,肿瘤)的方法,其包括向受试者给予当前公开的工程化免疫细胞。
其生长可以使用当前公开的主题的工程化免疫细胞来抑制的癌症包括典型地对免疫疗法有反应的癌症。治疗的癌症的非限制性例子包括多发性骨髓瘤、神经母细胞瘤、神经胶质瘤、急性髓样白血病、结肠癌、胰腺癌、甲状腺癌、小细胞肺癌、和NK细胞淋巴瘤。在某些实施方案中,癌症是多发性骨髓瘤。
另外,当前公开的主题提供了响应于受试者的癌细胞或病毒感染的细胞而增加免疫激活细胞因子产生的方法。在一个非限制性例子中,所述方法包括向受试者给予当前公开的工程化免疫细胞和FoxP3靶向剂。免疫激活细胞因子可以是粒细胞巨噬细胞集落刺激因子(GM-CSF)、IFNα、IFN-β、IFN-γ、TNF-a、IL-2、IL-3、IL-6、IL-1 1、IL-7、IL-12、IL-15、IL-21;干扰素调节因子7(IRF7);及其组合。在某些实施方案中,包含当前公开的主题的肿瘤抗原特异性工程化受体的工程化免疫细胞增加GM-CSF、IFN-γ、和/或TNF-a的产生。
用于疗法的合适的人受试者典型地包括可以通过临床标准区分的两个治疗组。患有“后期疾病”或“高肿瘤负荷”的受试者是带有临床上可测量的肿瘤(例如,多发性骨髓瘤)的受试者。临床上可测量的肿瘤是可以基于肿瘤块检测(例如,通过触诊、CAT扫描、声波图、乳房X线照片或X射线:阳性生化或组织病理学标记物本身不足以鉴定此群体)的肿瘤。将当前公开的主题体现的药物组合物给予这些受试者以引发抗肿瘤反应,其目的是缓解其病症。理想地,结果是发生了肿瘤块的减小,但是任何临床改善都带来益处。临床改善包括进展的风险或速率降低或者肿瘤(例如,多发性骨髓瘤)的病理后果减少。
第二组合适的受试者在本领域中称为“辅助组”。其为具有肿瘤形成(例如,多发性骨髓瘤)历史,但对另一种方式的疗法有反应的个体。先前的疗法可以包括但不限于手术切除、放射疗法和传统化学疗法。结果,这些个体没有临床上可测量的肿瘤。然而,他们被怀疑有处在疾病进展的风险中,在原发肿瘤部位附近或通过转移。此组可以进一步细分为高风险个体和低风险个体。基于在初始治疗之前或之后观察到的特征进行细分。这些特征在临床领域中是已知的,并且针对每种不同的瘤形成适当地被定义。高风险子组的典型特征是肿瘤(例如,多发性骨髓瘤)侵袭了邻近组织或显示牵连淋巴结的那些。另一组对瘤形成(例如,多发性骨髓瘤)具有遗传易感性,但尚未证明有瘤形成(例如,多发性骨髓瘤)的临床体征。例如,对于与乳腺癌相关的基因突变测试呈阳性但仍处于育龄的女性可能希望在治疗中预防性地接受本文描述的一种或多种组合物以预防瘤形成的发生,直到适合进行预防性手术。
受试者可能患有后期形式的疾病(例如,多发性骨髓瘤),在这种情况下,治疗目的可以包括减轻或逆转疾病进展和/或改善副作用。受试者可能具有已经过治疗的病症的历史,在这种情况下,治疗目的将典型地包括降低或延迟复发风险。
可以将进一步的修饰引入表达靶向肿瘤抗原的工程化受体的工程化免疫细胞(例如,T细胞)中,以避免或最小化以下风险:免疫学并发症(称为“恶性T细胞转化”)(例如,移植物抗宿主疾病(GvHD))或健康组织表达与肿瘤细胞相同的靶抗原时,导致类似于GvHD的结果。工程化免疫细胞的修饰可以包括将自杀基因工程化到表达靶向肿瘤抗原的工程化受体的T细胞中。合适的自杀基因包括但不限于单纯疱疹病毒胸苷激酶(hsv-tk)、可诱导的Caspase 9自杀基因(iCasp-9)、和截短的人表皮生长因子受体(EGFRt)多肽。在某些实施方案中,自杀基因是EGFRt多肽。EGFRt多肽可以通过给予抗EGFR单克隆抗体(例如,西妥昔单抗)使得能够实现T细胞消除。EGFRt可以共价结合至靶向肿瘤抗原的工程化受体的细胞内结构域的C末端。包含编码当前公开的靶向肿瘤抗原的工程化受体的核酸的载体中可以包含自杀基因。可以在CAR T细胞输注后的给定时间点先发地消除掺入有自杀基因的当前公开的工程化免疫细胞(例如,T细胞),或在最早毒性迹象时将其根除。
用于制造工程化免疫细胞的方法
在一些实施方案中,在不存在FoxP3靶向剂的情况下制造表达与靶抗原结合的T细胞受体(TCR)或其他细胞表面配体的工程化免疫细胞。在此类情况下,通过本领域已知的任何方法来制造工程化免疫细胞。用于在不存在FoxP3靶向剂的情况下制造工程化免疫细胞的示例性方法描述于例如WO 2016/191246、WO 2015/011450、WO 2017/070608、和WO 2017/124001中,将其通过引用以其整体并入。在一些实施方案中,将在不存在FoxP3靶向剂的情况下制造的工程化免疫细胞与FoxP3靶向剂共给予受试者。
在其他实施方案中,在FoxP3靶向剂的存在下制造表达与靶抗原结合的T细胞受体(TCR)或其他细胞表面配体的工程化免疫细胞。在一些实施方案中,用于制造工程化免疫细胞的方法包括(a)使细胞与编码工程化受体的载体接触,其中所述载体包含编码与靶抗原(即,细胞表面抗原)结合的细胞外抗原结合结构域的核苷酸序列;以及(b)使所述细胞与FoxP3靶向剂接触。在一些实施方案中,在与FoxP3靶向剂接触之前,使细胞与编码工程化受体的载体接触。在其他实施方案中,在与编码工程化受体的载体接触之前,使细胞与FoxP3靶向剂接触。在其他实施方案中,使细胞与编码工程化受体的载体和FoxP3靶向剂同时接触。
在一些实施方案中,所述方法进一步包括在与编码工程化受体的载体接触之前刺激和扩增细胞。在一些实施方案中,刺激和扩增细胞包括使细胞与CD3和/或CD28珠粒接触。在一些实施方案中,刺激和扩增细胞在白介素-2(IL-2)的存在下进行。在一些实施方案中,刺激和扩增细胞在FoxP3靶向剂的存在下进行。
在一些实施方案中,细胞在包含多个细胞的样品中。在一些实施方案中,使细胞与FoxP3靶向剂接触导致从样品中消耗FoxP3+细胞。在一些实施方案中,与未接触FoxP3靶向剂的样品相比,从样品中消耗FoxP3+细胞导致样品中FoxP3+细胞的数目减少至少5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、150%、200%、250%、或300%。在一些实施方案中,使细胞与FoxP3靶向剂接触导致样品中FoxP3-细胞的富集。在一些实施方案中,与未接触FoxP3靶向剂的样品相比,样品中FoxP3-细胞的富集导致样品中FoxP3-细胞的数目增加至少25%、30%、40%、50%、60%、70%、80%、90%、100%、150%、200%、250%、或300%。
制品和试剂盒
当前公开的主题提供了用于治疗或预防疾病(诸如瘤形成(例如,实体瘤)或传染性疾病)的试剂盒。在某些实施方案中,所述试剂盒包括治疗性或预防性组合物,其包含有效量的工程化免疫细胞,所述工程化免疫细胞包含靶向肿瘤抗原的工程化受体(例如,CAR、caTCR、或eTCR)。在特定的实施方案中,所述细胞进一步表达至少一种共刺激配体。
如果希望的话,可以将工程化免疫细胞与用于将工程化免疫细胞给予患有肿瘤或处于发展瘤形成(例如,实体瘤)的受试者的说明一起提供。说明通常将包括关于组合物用于治疗或预防瘤形成(例如,实体瘤)的用途的信息。在其他实施方案中,说明包括以下至少之一:治疗剂的描述;用于治疗或预防瘤形成(例如,实体瘤)或其症状的剂量计划和给予;注意事项;警告;适应症;禁忌症;过量信息;不良反应;动物药理学;临床研究:和/或参考。这些说明可以直接印在容器上(当存在时),或者作为标签施用在容器上,或者作为单独的纸页、小册子、卡片或折叠页提供在容器中或与其一起提供。
本文还提供了试剂盒,其用于制造表达与靶抗原(诸如肿瘤抗原或病毒蛋白)结合的T细胞受体(TCR)或其他细胞表面配体的工程化免疫细胞。在某些实施方案中,所述试剂盒包括(a)编码工程化受体的载体;和(b)FoxP3靶向剂。
在一些实施方案中,本文提供的试剂盒包括无菌容器,此类容器可以是盒、安瓿、瓶、小瓶、管、袋、小袋、泡罩包装或本领域已知的其他合适的容器形式。此类容器可以由塑料、玻璃、层压纸、金属箔或适合于容纳药剂的其他材料制成。在一些实施方案中,无菌容器含有治疗性或预防性疫苗。
实施例
除非另有指示,否则本发明的实践采用分子生物学(包括重组技术)、微生物学、细胞生物学、生物化学和免疫学的常规技术,所述技术完全在技术人员的技术范围内。此类技术在文献中有充分解释,所述文献诸如“Molecular Cloning:A Laboratory Manual”,第二版(Sambrook,1989);“Oligonucleotide Synthesis”(Gait,1984);“Animal CellCulture”(Freshney,1987);“Methods in Enzymology”“Handbook of ExperimentalImmunology”(Weir,1996);“Gene Transfer Vectors for Mammalian Cells”(Miller和Calos,1987);“Current Protocols in Molecular Biology”(Ausubel,1987);“PCR:ThePolymerase Chain Reaction”,(Mullis,1994);“Current Protocols in Immunology”(Coligan,1991)。这些技术适用于本发明的多核苷酸和多肽的产生,并且因此可以在进行和实践本发明时考虑。将在以下部分中讨论用于特定实施方案的特别有用的技术。
提出以下实施例以向本领域普通技术人员提供关于如何制造和使用本发明的组合物以及测定、筛选和治疗方法的完整公开内容和描述,并且不旨在限制诸位发明人视为其发明的范围。
实施例1.抗FoxP3抗体的合成
本实施例描述了合成示例性FoxP3靶向剂,诸如对FoxP3衍生的表位具有特异性的模仿TCR的单克隆抗体(例如,对FoxP3衍生的表位具有特异性的scFv和FoxP3-BsAb)和靶向FoxP3的嵌合抗原受体(CAR)T细胞。
先前在国际公开号WO 2017124001中鉴定和描述了靶向FoxP3的scFv克隆,将所述国际公开通过引用以其整体并入。靶向FoxP3的scFv克隆的非限制性例子的重链和轻链的互补决定区(CDR)在下表中示出。这些scFv克隆被工程化为全长人IgG1、双特异性抗体(BsAb)和/或嵌合抗原受体(CAR)T细胞。
Figure BDA0002720450840000921
Figure BDA0002720450840000931
使用所选scFv片段构建全长人IgG1
在HEK293和中国仓鼠卵巢(CHO)细胞系中产生所选噬菌体克隆的全长人IgG1。简而言之,将抗体可变区亚克隆到具有匹配的λ或κ轻链恒定序列和IgG1亚类Fc的哺乳动物表达载体中。在还原条件和非还原条件两者下通过电泳测量纯化的全长IgG抗体的分子量。
克隆EXT017-32的全长IgG1的重链序列在以下示出:
EVQLVESGGGVVQPGRSLRLSCAASGFTFNNHAMHWVRQAPGKGLEWVAVISFDGDDKFYADSVKGRFTISRDNSRNTLFLQMNNLRPEDTAVYYCSRDPYHFASGSYSYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK(SEQ ID NO:9)。
克隆EXT017-32的全长IgG1的轻链序列在以下示出:
QSVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDHYVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS(SEQ IDNO:10)。
FoxP3-BsAb的构建、表达和纯化
工程化FoxP3-#32BsAb,如先前所描述(Dao等人(2015)Nat Biotechnol.33(10):1079-86。将mAb#32scFv的N末端通过灵活接头与小鼠单克隆抗体的抗人CD3εscFv的C末端连接。通过GeneArt(InVitrogen)合成编码两种mAb的scFv的DNA片段,并且使用标准DNA技术将其亚克隆到Eureka哺乳动物表达载体pGSN-Hyg中。在#32BsAb下游C末端插入六组胺(His)标签,以用于检测和纯化BsAb。
将中国仓鼠卵巢(CHO)细胞用FoxP3-#32BsAb表达载体转染,并且通过用甲硫氨酸亚砜亚胺(MSX)(基于谷氨酰胺合成酶(GS)的方法)进行标准药物选择来实现稳定表达。收集含有分泌的FoxP3-#32BsAb分子的CHO细胞上清液。使用HisTrap HP柱(GE healthcare)通过FPLC AKTA系统将FoxP3-#32BsAb纯化。简而言之,将CHO细胞培养物澄清并且以低咪唑浓度(20mM)上样到柱上,并且然后使用等度高咪唑浓度洗脱缓冲剂(500mM)洗脱结合的FoxP3-#32BsAb。用无关人IgG1抗体(Cat#ET901,Eureka Therapeutics)替代Fox3-#32scFv来构建阴性对照BsAb。
下面提供了FoxP3-#32BsAb的序列:
QSVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDHYVFGTGTKVTVLGSRGGGGSGGGGSGGGGSLEMAEVQLVESGGGVVQPGRSLRLSCAASGFTFNNHAMHWVRQAPGKGLEWVAVISFDGDDKFYADSVKGRFTISRDNSRNTLFLQMNNLRPEDTAVYYCSRDPYHFASGSYSYFDYWGQGTLVTVSSTSGGGGSDVQLVQSGAEVKKPGASVKVSCKASGYTFTRYTMHWVRQAPGQGLEWIGYINPSRGYTNYADSVKGRFTITTDKSTSTAYMELSSLRSEDTATYYCARYYDDHYCLDYWGQGTTVTVSSGEGTSTGSGGSGGSGGADDIVLTQSPATLSLSPGERATLSCRASQSVSYMNWYQQKPGKAPKRWIYDTSKVASGVPARFSGSGSGTDYSLTINSLEAEDAATYYCQQWSSNPLTFGGGTKVEIKHHHHHH(SEQ ID NO:11)。
靶向FoxP3的CAR T细胞的构建
使用FoxP3 scFv序列来生产靶向FoxP3的第二代CAR。添加可变重链和轻链(与(Gly4Ser)3接头接连)和c-myc标签以允许通过流式细胞术检测CAR表达。如果需要,将CAR优化成在CD28跨膜结构域上游包括间隔结构域。将其克隆到SFG逆转录病毒载体中,所述SFG逆转录病毒载体含有CD28和CD3ζ或4-1BB或本领域众所周知的其他类似信号传导CAR形式,例如Park(2016)。产生稳定的293病毒生产细胞系,并且将其用于转导原代人T细胞,如先前所描述(Rafiq(2017))。转导后,通过流式细胞术,对掺入FoxP3-CAR中的c-myc标签进行染色来确认CAR表达。先前已经描述了原代人T细胞的逆转录病毒转导(Koneru(2015))。
CAR载体中FoxP3 scFv-CD28-CD3ζ的序列在下面示出
QSVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDHYVFGTGTKVTVLGSRGGGGSGGGGSGGGGSLEMAEVQLVESGGGVVQPGRSLRLSCAASGFTFNNHAMHWVRQAPGKGLEWVAVISFDGDDKFYADSVKGRFTISRDNSRNTLFLQMNNLRPEDTAVYYCSRDPYHFASGSYSYFDYWGQGTLVTVSSAAAIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR(SEQ ID NO:12)。
CAR载体中FoxP3 scFv-41BB-CD3ζ的序列在下面示出:
QSVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDHYVFGTGTKVTVLGSRGGGGSGGGGSGGGGSLEMAEVQLVESGGGVVQPGRSLRLSCAASGFTFNNHAMHWVRQAPGKGLEWVAVISFDGDDKFYADSVKGRFTISRDNSRNTLFLQMNNLRPEDTAVYYCSRDPYHFASGSYSYFDYWGQGTLVTVSSTGTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR(SEQ ID NO:13)。
靶向FoxP3的嵌合抗体/T细胞受体(caTCR)的构建
如国际公开号WO2017/070608中所描述产生靶向FoxP3的caTCR,将所述国际公开通过引用以其整体并入。简而言之,将靶向FoxF3的IgG1重链的恒定区和可变区附接到T细胞受体(TCR)的δ链上,以产生caTCR的重链。将靶向FoxP3的IgG1轻链的恒定区和可变区附接到T细胞受体(TCR)的γ链上,以产生caTCR的重链。将编码这些蛋白质的多核苷酸克隆到载体中。向T细胞中转导载体以表达caTCR,从而产生抗FoxP3 caTCR T细胞。
靶向FoxP3的caTCR的重链序列在以下示出:
METDTLLLWVLLLWVPGSTGEVQLVESGGGVVQPGRSLRLSCAASGFTFNNHAMHWVRQAPGKGLEWVAVISFDGDDKFYADSVKGRFTISRDNSRNTLFLQMNNLRPEDTAVYYCSRDPYHFASGSYSYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCEVKTDSTDHVKPKETENTKQPSKSCHKPKAIVHTEKVNMMSLTVLGLRMLFAKTVAVNFLLTAKLFFL(SEQ ID NO:14)。
靶向FoxP3的caTCR的轻链序列在以下示出:
METDTLLLWVLLLWVPGSTGQSVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDHYVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPIKTDVITMDPKDNCSKDANDTLLLQLTNTSAYYMYLLLLLKSVVYFAIITCCLLRRTAFCCNGEKS(SEQ ID NO:15).
实施例2.FoxP3靶向剂在制造抗CD19 caTCR-T细胞群体中的用途
实施例2a-2f评价了各种FoxP3靶向剂在改善抗CD19 caTCR-T细胞群体的制造中的作用。在一些例子中,在接触编码与CD19结合的工程化受体的载体之后,将FoxP3靶向剂添加到细胞样品中。在其他例子中,在接触编码与CD19结合的工程化受体的载体之前,将FoxP3靶向剂添加到细胞样品中。
实施例2a:在靶向FoxP3的双特异性抗体(BsAb)的存在下产生抗CD19caTCR-T细胞群体
在本实施例中,研究了抗FoxP3 BsAb改善抗CD19 caTCR-T细胞的制造效率或功效的能力。在本实施例中使用如实施例1中所描述的代表性抗FoxP3BsAb(SEQ ID NO:11)和编码代表性抗CD19 caTCR构建体的慢病毒载体。caTCR构建体具有抗CD19 IgVH-TCRδ链和抗CD19 IgVL-TCRγ链。
抗CD19 IgVH-TCRδ链的序列在下面示出:
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARQVWGWQGGMYPRSNWWYNLDSWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCEVKTDSTDHVKPKETENTKQPSKSCHKPKAIVHTEKVNMMSLTVLGLRMLFAKTVAVNFLLTAKLFFL(SEQ ID NO:103)。
抗CD19 IgVL-TCRγ链的序列在下面示出:
LPVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDYVVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPIKTDVITMDPKDNCSKDANDTLLLQLTNTSAYYMYLLLLLKSVVYFAIITCCLLRRTAFCCNGEKS(SEQ ID NO:104)。
从患者获得PBMC,并且将其在第0天用CD3/CD28珠粒处理以分隔和刺激T细胞。在第1天,将刺激/激活的T细胞分为六组:第1组(在整个过程中未添加编码抗CD19 caTCR的载体或抗FoxP3 BsAb),第2-6组均在第1天添加编码抗CD19 caTCR的载体。第2组在整个过程中未添加抗FoxP3 BsAb,而第3、4、5和6组分别在第1、2、3和4天添加抗FoxP3 BsAb。在第5天除去CD3/CD28珠粒和抗CD19 caTCR病毒载体,并且将T细胞扩增三或四天。在第5天或在第8天或第9天收获T细胞之前洗掉抗FoxP3 BsAb。
通过抗体染色(例如,CD4、CD25和FoxP3抗体)和流式细胞术分析来评价消耗免疫抑制性Treg的功效。抗CD19 caTCR-T细胞的制造效率或功效的改善由较高的增殖能力和增加的LDH杀伤活性来确定。进行增殖测定和LDH杀伤测定,如国际公开号WO 2017070608中所描述,将所述国际公开通过引用以其整体并入。简而言之,对于增殖测定,将抗CD19 caTCR-T细胞用羧基荧光素琥珀酰亚胺酯染料(CFSE)标记,并且与靶癌细胞(例如,NALM6或Raji)一起孵育,并且caTCR-T细胞的增殖能力通过CFSE FACS信号呈现。较高的增殖能力与工程化抗CD19 caTCR-T细胞的功能改善相关。对于LDH杀伤测定,将抗CD19 caTCR-T细胞与靶癌细胞(例如,NALM6或Raji)一起孵育,并且通过LDH测定确定上清液的杀伤活性。另外,在NODSCIDγ(NSG)小鼠的CD19阳性人淋巴瘤异种移植物模型中测试抗CD19 caTCR-T细胞的体内癌细胞杀伤功效。
实施例2b:在靶向FoxP3的IgG抗体的处理的情况下产生抗CD19 caTCR-T细胞群体
在本实施例中,研究了抗FoxP3 IgG抗体改善抗CD19 caTCR-T细胞的制造效率或功效的能力。在本实施例中使用如实施例1中所描述的代表性抗FoxP3 IgG1(SEQ ID NO:9和SEQ ID NO:10)和如实施例2a中所描述的编码相同的代表性抗CD19 caTCR构建体的慢病毒载体。
从患者获得PBMC,并且在没有CD3/CD28珠粒的情况下将其用抗FoxP3 IgG1处理,以便在PBMC中存在NK细胞的情况下杀伤Treg细胞。PBMC的一部分未用抗FoxP3 IgG1处理以用作阴性对照。在4小时至2天的抗FoxP3 IgG1处理的时间段(例如,4h、6h、8h、10h、12h、14h、16h、20h、24h、36h、或48h)后,洗掉IgG1并且将PBMC用CD3/CD28珠粒处理以分隔和激活T细胞。这一天被认为是第0天。然后从第1天开始在CD3/CD28珠粒的存在下向激活的T细胞中转导编码抗CD19 caTCR的慢病毒载体持续3-5天。在第4-6天除去CD3/CD28珠粒和抗CD19caTCR病毒载体,并且将T细胞扩增三或四天。在第8天或第9天收获抗CD19 caTCR T细胞。
在T细胞激活之前,通过抗体染色和流式细胞术分析来评价消耗免疫抑制性Treg的功效,并且在收获转导的T细胞时确认。抗CD19 caTCR-T细胞的制造效率或功效的改善由体外较高的增殖能力和增加的LDH杀伤活性和体内较高的抗肿瘤活性来确定,如实施例2a所描述。
实施例2c:在靶向FoxP3的CAR-T细胞的处理的情况下产生抗CD19 caTCR-T细胞群体
在本实施例中,研究了抗FoxP3 CAR-T细胞改善抗CD19 caTCR-T细胞的制造效率或功效的能力。在本实施例中使用如实施例1中所描述的编码代表性抗FoxP3 CAR的慢病毒载体(例如,SEQ ID NO:12或SEQ ID NO:13)和如实施例2a中所描述的编码相同的代表性抗CD19 caTCR构建体的慢病毒载体(例如,SEQ ID NO:103和SEQ ID NO:104)。
从患者获得PBMC,并且在第0天将其用CD3/CD28珠粒处理,以分隔和刺激/激活T细胞。在第1天,将激活的T细胞分为三组细胞。向第1组转导编码抗CD19 caTCR的载体,向第2组转导编码抗FoxP3 CAR的载体,而第3组是模拟转导的(不用任何一种载体)。转导四、五或六天后,洗掉病毒载体,并且从第1组和第2组中除去CD3/CD28珠粒。将第1组细胞(抗CD19caTCR转导的T细胞)分为两组:将第1a组细胞与抗FoxP3 CAR T细胞的第2组细胞混合以杀伤Treg细胞,将第1b组细胞与作为对照的第3组细胞混合。在将细胞混合物孵育2、3、4或5天后,用诸如Lim和June(2017)Cell 168:724-740,Wang等人(2011)Blood 118:1255-1263,和Stasi等人(2011)N Engl J Med 365:1673-1683(将其中每一个通过引用以其整体并入)中描述的那些方法的方法(例如,用iCasp9或表达EGFR的细胞外结构域)或通过例如使用抗独特型抗体进行抗CD19 caTCR T细胞的阳性选择来除去抗FoxP3 CAR T细胞。
在第8天或第9天收获抗CD19 caTCR T细胞。通过抗体染色和流式细胞术分析来评价消耗免疫抑制性Treg的功效,如实施例2a中所描述。抗CD19 caTCR-T细胞的制造效率或功效的改善由体外较高的增殖能力和增加的LDH杀伤活性和体内较高的抗肿瘤活性来确定,如实施例2a所描述。
实施例2d:在靶向FoxP3的caTCR-T细胞的处理的情况下产生抗CD19 caTCR-T细胞群体
在本实施例中,研究了抗FoxP3 caTCR-T细胞改善抗CD19 caTCR-T细胞的制造效率或功效的能力。在本实施例中使用如实施例1中所描述的编码代表性抗FoxP3 caTCR-T的慢病毒载体(例如,SEQ ID NO:14和SEQ ID NO:15)和如实施例2a中所描述的编码相同的代表性抗CD19 caTCR构建体的慢病毒载体(例如,SEQ ID NO:103和SEQ ID NO:104)。
以与如实施例2c中所描述的相同方式进行实验,不同之处在于使用编码抗FoxP3caTCR的慢病毒载体替代编码抗FoxP3 CAR的载体。
在第8天或第9天收获抗CD19 caTCR T细胞。通过抗体染色和流式细胞术分析来评价消耗免疫抑制性Treg的功效,如实施例2a中所描述。抗CD19 caTCR-T细胞的制造效率或功效的改善由体外较高的增殖能力和增加的LDH杀伤活性和体内较高的抗肿瘤活性来确定,如实施例2a所描述。
实施例2e:在抗FoxP3微珠的处理的情况下产生抗CD19 caTCR-T细胞群体
在本实施例中,研究了抗FoxP3微珠改善抗CD19 caTCR-T细胞的制造效率或功效的能力。根据制造商的说明,将抗FoxP3抗体(IgG、IgA、IgD、IgM、或IgE,包含抗原结合部分的全长抗体或抗体片段)与磁性珠粒(例如,CliniMACS抗生物素微珠[Miltenyl BiotecCat#130-019-201]、
Figure BDA0002720450840001001
生物素结合剂[Thermofisher ScientificCat#11047]偶联。
在第0天,从患者获得PBMC,并且将其分成两组。将测试组用抗FoxP3磁性珠粒处理以消耗FoxP3阳性免疫抑制性Treg,而对照组则不这样。然后将PBMC用CD3/CD28珠粒处理,以分隔和刺激T细胞。在第1天,将T细胞通过编码抗CD19 caTCR的慢病毒载体转导4-6天。在第8天或第9天收获抗CD19 caTCR T细胞。
在T细胞激活之前,通过抗体染色和流式细胞术分析来评价消耗免疫抑制性Treg的功效,并且在收获转导的T细胞时确认。抗CD19 caTCR-T细胞的制造效率或功效的改善由体外较高的增殖能力和增加的LDH杀伤活性和体内较高的抗肿瘤活性来确定,如实施例2a所描述。
实施例2f:在抗FoxP3微珠(用于物理分离Treg)和抗FoxP3 BsAb/CAR-T/caTCR-T(用于诱导T细胞杀伤Treg)或游离IgG(用于诱导NK细胞杀伤Treg)的组合的处理的情况下产生抗CD19 caTCR-T细胞群体
在本实施例中,研究了抗FoxP3微珠、抗FoxP3 BsAB、抗FoxP3 CAR-T细胞、和抗FoxP3 caTCR-T细胞改善抗CD19 caTCR-T细胞的制造效率或功效的能力。如实施例2e所描述产生抗FoxP3微珠,如实施例1所描述产生抗FoxP3 BsAB和抗FoxP3 IgG1,如实施例2c所描述产生抗FoxP3 CAR-T细胞,并且如实施例2d所描述产生抗FoxP3 caTCR-T细胞。另外,在本实施例中使用如实施例2a中所描述的编码相同的代表性抗CD19 caTCR构建体的慢病毒载体(例如,SEQ ID NO:103和SEQ ID NO:104)。
在第0天,从患者获得PBMC,并且将其分成两组(第1组和第2组)。将第1组用抗FoxP3磁性珠粒处理以消耗FoxP3阳性免疫抑制性Treg,而第2组则不这样。然后将来自第1组和第2组的PBMC用CD3/CD28珠粒处理,以分隔和刺激T细胞。在第1天,将T细胞通过编码抗CD19 caTCR的慢病毒载体转导4-6天。在第8天或第9天收获抗CD19 caTCR T细胞。
将来自第1组和第2组的抗CD19 caTCR T细胞进一步分为子组,如下所示:
Figure BDA0002720450840001011
如上表所示,将第1组和第2组分为5个子组。不将子组A与IgG1或任何另外的抗FoxP3靶向剂混合。将子组B与如实施例2a中所描述的抗FoxP3 BsAb混合。将子组C与如实施例2b中所描述的抗FoxP3 IgG1混合。将子组D与如实施例2c中所描述的抗FoxP3 CAR-T细胞混合。将子组E与如实施例2d中所描述的抗FoxP3 caTCR-T细胞混合。
在实施例2a和e中通过抗体染色和流式细胞术来评价消耗免疫抑制性Treg的功效。抗CD19 caTCR-T细胞的制造效率或功效的改善由体外较高的增殖能力和增加的LDH杀伤活性和体内较高的抗肿瘤活性来确定,如实施例2a所描述。
实施例3.FoxP3靶向剂在制造抗AFP caTCR-T细胞群体中的用途
实施例3a-3f评价了各种FoxP3靶向剂在改进抗AFP caTCR-T细胞群体的制造中的作用。在一些例子中,在接触编码与AFP结合的工程化受体的载体之后,将FoxP3靶向剂添加到细胞样品中。在其他例子中,在接触编码与AFP结合的工程化受体的载体之前,将FoxP3靶向剂添加到细胞样品中。
实施例3a:在靶向FoxP3的双特异性抗体(BsAb)的存在下产生抗AFP CAR-T细胞群体
在本实施例中,研究了抗FoxP3 BsAb改善抗α胎儿蛋白(AFP)CAR-T细胞的制造效率或功效的能力。在本实施例中使用如实施例2a所用的代表性抗FoxP3 BsAb和编码代表性抗AFP CAR构建体的慢病毒载体。抗AFP CAR构建体具有scFv,其特异性地结合包含AFP肽和MHC I类蛋白的复合物,但不结合单独的AFP肽或MHC。抗AFP CAR构建体具有与scFv片段融合的CD28和CD3ζ片段。
抗AFP scFv的序列在下面示出:
QSVLTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVNNRPSEVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTTGSRAVFGGGTKLTVLGSRGGGGSGGGGSGGGGSLEMAEVQLVQSGAEVKKPGESLTISCKASGYSFPNYWITWVRQMSGGGLEWMGRIDPGDSYTTYNPSFQGHVTISIDKSTNTAYLHWNSLKASDTAMYYCARYYVSLVDIWGQGTLVTVSS(SEQ ID NO:98)。
与抗AFP scFv融合的CD28-CD3ζ片段的序列在下面示出:
AAAIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR(SEQ ID NO:99)。
从患者获得PBMC,并且将其在第0天用CD3/CD28珠粒处理以分隔和刺激T细胞。在第1天,将刺激/激活的T细胞分为五组:第1组(在整个过程中未添加抗AFP CAR-编码载体或抗FoxP3 BsAb),第2-5组均在第1天添加抗AFP CAR-编码载体,第2组在整个过程中不添加抗FoxP3 BsAb,而第3、4和5组分别在第1、3和5天添加抗FoxP3 BsAb。在第8天或第9天收获T细胞之前洗掉抗FoxP3 BsAb。
通过抗体染色(例如,CD4、CD25和FoxP3抗体)和流式细胞术分析来评价消耗免疫抑制性Treg的功效。抗AFP CAR-T细胞的制造效率或功效的改善由较高的增殖能力和增加的LDH杀伤活性来确定。对于增殖测定,将抗AFP CAR-T细胞用羧基荧光素琥珀酰亚胺酯染料(CFSE)标记,并且与靶癌细胞(例如,HEPG2和SK-HEP1-MiniG(用AFP158微基因盒转染的SK-HEP1细胞系))一起孵育,并且caTCR-T细胞的增殖能力通过CFSE FACS信号呈现。较高的增殖能力与工程化抗AFP CAR-T细胞的功能改善相关。对于LDH杀伤测定,将抗AFP CAR-T细胞与靶癌细胞(例如,HEPG2和SK-HEP1-MiniG(用AFP158微基因盒转染的SK-HEP1细胞系))一起孵育,并且通过LDH测定确定上清液的杀伤活性。此外,在NOD SCIDγ(NSG)小鼠的AFP阳性人肝细胞癌异种移植物模型中测试抗AFP CAR-T细胞的体内癌细胞杀伤功效。
实施例3b:在靶向FoxP3的IgG抗体的处理的情况下产生抗AFP CAR-T细胞群体
在本实施例中,研究了抗FoxP3 IgG抗体改善抗AFP CAR-T细胞的制造效率或功效的能力。在本实施例中,以与实施例2b几乎相同的方式进行抗AFP CAR-T细胞的产生,不同之处在于使用编码抗AFP CAR的慢病毒载体(如实施例3a中所描述)生产抗AFP CAR-T细胞,而不是使用编码抗CD19 CAR的慢病毒载体生产抗CD19 CAR T细胞。
在T细胞激活之前,通过抗体染色和流式细胞术分析来评价消耗免疫抑制性Treg的功效,并且在收获转导的T细胞时确认。抗AFP CAR-T细胞的制造效率或功效的改善由体外较高的增殖能力和增加的LDH杀伤活性和体内较高的抗肿瘤活性来确定,如实施例3a所描述。
实施例3c:在靶向FoxP3的CAR-T细胞的处理的情况下产生抗AFP CAR-T细胞群体
在本实施例中,研究了抗FoxP3 CAR-T细胞改善抗AFP CAR-T细胞的制造效率或功效的能力。在本实施例中,以与实施例2c几乎相同的方式进行抗AFP CAR-T细胞的产生,不同之处在于使用编码抗AFP CAR的慢病毒载体(如实施例3a中所描述)生产抗AFP CAR-T细胞,而不是使用编码抗CD19 CAR的慢病毒载体生产抗CD19 CAR T细胞。
在第8天或第9天收获抗AFP CAR T细胞。通过抗体染色和流式细胞术分析来评价消耗免疫抑制性Treg的功效,如实施例3a中所描述。抗AFP CAR-T细胞的制造效率或功效的改善由体外较高的增殖能力和增加的LDH杀伤活性和体内较高的抗肿瘤活性来确定,如实施例3a所描述。
实施例3d:在靶向FoxP3的caTCR-T细胞的处理的情况下产生抗AFP CAR-T细胞群体
在本实施例中,研究了抗FoxP3 caTCR-T细胞改善抗AFP CAR-T细胞的制造效率或功效的能力。在本实施例中,以与实施例2d几乎相同的方式进行抗AFP CAR-T细胞的产生,不同之处在于使用编码抗AFP CAR的慢病毒载体(如实施例3a中所描述)生产抗AFP CAR-T细胞,而不是使用编码抗CD19 CAR的慢病毒载体生产抗CD19 CAR T细胞。
通过抗体染色和流式细胞术分析来评价消耗免疫抑制性Treg的功效,如实施例3a中所描述。抗AFP CAR-T细胞的制造效率或功效的改善由体外较高的增殖能力和增加的LDH杀伤活性和体内较高的抗肿瘤活性来确定,如实施例3a所描述。
实施例3e.在抗FoxP3微珠的处理的情况下产生抗AFP caTCR-T细胞群体
在本实施例中,研究了抗FoxP3微珠改善抗AFP caTCR-T细胞的制造效率或功效的能力。在本实施例中,以与实施例2e几乎相同的方式进行抗AFP CAR-T细胞的产生,不同之处在于使用编码抗AFP CAR的慢病毒载体(如实施例3a中所描述)生产抗AFP CAR-T细胞,而不是使用编码抗CD19 CAR的慢病毒载体生产抗CD19 CAR T细胞。
在T细胞激活之前,通过抗体染色和流式细胞术分析来评价消耗免疫抑制性Treg的功效,并且在收获转导的T细胞时确认。抗AFP CAR-T细胞的制造效率或功效的改善由体外较高的增殖能力和增加的LDH杀伤活性和体内较高的抗肿瘤活性来确定,如实施例3a所描述。
实施例3f.在抗FoxP3微珠(用于物理分离Treg)和抗FoxP3 BsAb/CAR-T/caTCR-T(用于诱导T细胞杀伤Treg)或游离IgG(用于诱导NK细胞杀伤Treg)的组合的处理的情况下产生抗AFP caTCR-T细胞群体
在本实施例中,研究了抗FoxP3微珠、抗FoxP3 BsAB、抗FoxP3 CAR-T细胞、和抗FoxP3 caTCR-T细胞改善抗AFP caTCR-T细胞的制造效率或功效的能力。如实施例2e所描述产生抗FoxP3微珠,如实施例1所描述产生抗FoxP3 BsAB和抗FoxP3 IgG1,如实施例2c所描述产生抗FoxP3 CAR-T细胞,并且如实施例2d所描述产生抗FoxP3 caTCR-T细胞。另外,在本实施例中使用如实施例3a中所描述的编码相同的代表性抗AFP caTCR构建体的慢病毒载体(例如,SEQ ID NO:98和SEQ ID NO:99)。
在本实施例中,以与实施例2f几乎相同的方式进行抗AFP CAR-T细胞的产生,不同之处在于使用编码抗AFP CAR的慢病毒载体(如实施例3a中所描述)生产抗AFP CAR-T细胞,而不是使用编码抗CD19 CAR的慢病毒载体生产抗CD19 CAR T细胞。
通过抗体染色和流式细胞术分析来评价消耗免疫抑制性Treg的功效,如实施例3a和e中所描述。抗AFP CAR-T细胞的制造效率或功效的改善由体外较高的增殖能力和增加的LDH杀伤活性和体内较高的抗肿瘤活性来确定,如实施例3a所描述。
实施例4.使用FoxP3靶向剂合成表达靶向ROR2的scFv的CAR T细胞
在一些实施方案中,工程化免疫细胞表达靶向ROR2的CAR。在本实施例中,描述了产生表达CAR的工程化免疫细胞的方法,所述CAR包含靶向ROR2的scFv。
靶向ROR2的CAR的序列
在一些实施方案中,CAR包含抗ROR2抗体或其抗原结合片段。对于每种抗体,信息组织如下:
1.抗体名称;
2.轻链可变区(LCVR)DNA序列;
3.轻链可变区(LCVR)蛋白质序列;
4.重链可变区(HCVR)DNA序列;和
5.重链可变区(HCVR)蛋白质序列。
本文公开的CAR可以包含LCVR和/或HCVR,其具有下面描述的抗ROR2抗体的LCVR和/或HCVR的蛋白质或DNA序列。可替代地或另外地,本文描述的CAR可以包含LCVR和/或HCVR,其具有下面描述的抗ROR2抗体的轻链互补决定区(LCDR)或重链CDR(HCDR)的蛋白质或DNA序列(还参见WO 2016142768A1的表5和表6,将所述专利通过引用以其整体并入)。
1)抗体ROR2克隆#016
016-λ轻链可变区(DNA序列)
tcttctgagctgactcaggaccctgctgtgtctgtggccttgggacagacagtcaggatcacatgccaaggagacagcctcagaagctattatgcaagctggtaccagcagaagccaggacaggcccctgtacttgtcatctatggtaaaaacaaccggccctcagggatcccagaccgattctctggctccagctcaggaaacacagcttccttgaccatcactggggctcaggcggaagatgaggctgactattactgtaactcccgggacagcagtggtaaccatctggtattcggcggagggaccaagctgaccgtcctagg[SEQ ID NO:217]
016-λ轻链可变区(氨基酸序列)
SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHLVFGGGTKLTVLG[SEQ ID NO:204]
016-重链可变区(DNA序列)
gaggtccagctggtacagtctggggctgaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttcaccgactactatatacactgggtgcggcaggcccctggacaagggctggagtggatgggatggatgaaccctaacagtgggaactcagtctctgcacagaagttccagggcagagtcaccatgaccagggatacctccataaacacagcctacatggagctgagcagcctgacatctgacgacacggccgtgtattactgtgcgcgcaactctgaatggcatccgtggggttactacgattactggggtcaaggtactctggtgaccgtctcctca[SEQ IDNO:218]
016-重链可变区(氨基酸序列)
EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYYIHWVRQAPGQGLEWMGWMNPNSGNSVSAQKFQGRVTMTRDTSINTAYMELSSLTSDDTAVYYCARNSEWHPWGYYDYWGQGTLVTVSS[SEQ ID NO:191]
2)抗体ROR2克隆#023
023-κ轻链可变区(DNA序列)
gaaacgacactcacgcagtctccaggcaccctgtctgtgtctccaggggaaagagccaccctctcctgcagggccagtcagagtgttagcagcaacttagcctggtaccagcagaaacgtggccaggctcccaggctcctcatctatggtgcgtctacccgggccactggtatcccagtcaggttcagtggcagtgggtctgggacagagttcactctcaccatcagcagattggagcctgaagattttgcagtgtattactgtcagcagtatggtaggtcaccgctcactttcggcggagggaccaaagtggatatcaaacgt[SEQ ID NO:219]
023-κ轻链可变区(氨基酸序列)
ETTLTQSPGTLSVSPGERATLSCRASQSVSSNLAWYQQKRGQAPRLLIYGASTRATGIPVRFSGSGSGTEFTLTISRLEPEDFAVYYCQQYGRSPLTFGGGTKVDIKR[SEQ ID NO:205]
023-重链可变区(DNA序列)
gaagtgcagctggtgcagtctggagcagaggtgaaaaagcccggggagtctctgaagatctcctgtcagggttctggatacaggttcagcaagtactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggtgactctgataccagatacagcccgtccttccaaggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgcgctctttctcttctttcatctacgattactggggtcaaggtactctggtgaccgtctcctca[SEQ ID NO:220]
023-重链可变区(氨基酸序列)
EVQLVQSGAEVKKPGESLKISCQGSGYRFSKYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARSFSSFIYDYWGQGTLVTVS[SEQ ID NO:192]
3)抗体ROR2克隆#024
024-κ轻链可变区(DNA序列)
gaaattgtgatgacacagtctccagccaccctgtctgtgtctccaggggaaagtgccaccctctcctgcagggccagtcagggtgttggcatcaacttagcctggtaccagcagagacctggccagcctcccaggctcctcatctatgatgcatccaacagggccactggcatcccagccaggttcagtggcagtgggtctgggacagatttcactctcaccatcagcagcctgcaggctgaagatgtggcagtctattactgtcagcaatactatagttttccgtggacgttcggccaggggaccaaggtggaaatcaaacgt[SEQ ID NO:221]
024-κ轻链可变区(氨基酸序列)
EIVMTQSPATLSVSPGESATLSCRASQGVGINLAWYQQRPGQPPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSFPWTFGQGTKVEIKR[SEQ ID NO:206]
024-重链可变区(DNA序列)
gaggtgcagctggtgcagtctggggcagaggtgaaaaagcccggggagtctctgaaaatctcctgtaaggcttctggatacagctttagcaactactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctgatgactctgataccagatacagcccgtccgtccaaggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggtacagcctgaaggtcgcggacaccgccaaatattactgtgtgcgccctaggggggcttttgatatctggggccaagggaccacggtcaccgtctcctca[SEQ ID NO:222]
024-重链可变区(氨基酸序列)
EVQLVQSGAEVKKPGESLKISCKASGYSFSNYWIGWVRQMPGKGLEWMGIIYPDDSDTRYSPSVQGQVTISADKSISTAYLQWYSLKVADTAKYYCVRPRGAFDIWGQGTTVTVSS[SEQ ID NO:193]
4)抗体ROR2克隆#027
027-轻链可变区(DNA序列)
cagtctgtgctgacgcagccgccctcagtgtctggggccccagggcagagggtcacgatctcctgcactgggagtagctccaacatcggggcaggtcatgctgtacactggtaccagcaacttccaggaacagcccccaaactcctcatctatgataacgccaatcggccctcaggggtccctgaccgattctctggctcccagtctggcacttcagcctccctggccatcaccggactccagactggggacgaggccgattattactgcggaacatgggatgacagcccgagtgcttatgtcttcggaactgggaccaaggtcaccgtcctaggt[SEQ ID NO:223]
027-轻链可变区(氨基酸序列)
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGHAVHWYQQLPGTAPKLLIYDNANRPSGVPDRFSGSQSGTSASLAITGLQTGDEADYYCGTWDDSPSAYVFGTGTKVTVLG[SEQ ID NO:207]
027-重链可变区(DNA序列)
caggtgcagctggtggagtctggggcagaggtgaaaaagcccggggagtctctgaaaatctcctgtaaggcttctggatacagctttagcaactactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctgatgactctgataccagatacagcccgtccttccaaggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggtacagcctgaaggtcgcggacaccgccaaatattactgtgtgcgccctaggggggcttttgatatctggggccaagggaccacggtcaccgtctcctca[SEQ ID NO:224]
027-重链可变区(氨基酸序列)
QVQLVESGAEVKKPGESLKISCKASGYSFSNYWIGWVRQMPGKGLEWMGIIYPDDSDTRYSPSFQGQVTISADKSISTAYLQWYSLKVADTAKYYCVRPRGAFDIWGQGTTVTVSS[SEQ ID NO:194]
5)抗体ROR2克隆#084
084-κ轻链可变区(DNA序列)
gatgttgtgatgactcagtctccactctccctgcccgtcacccttggacagccggcctccatctcctgcaggtctagtcaaagcctcgttcacagtgatggaaacacctacttgaattggtttcagcagaggccaggccaatctccaaggcgcctaatttataaagtttctagccgggactctggggtcccagatagattcagcggcactgggtcaggcactgatttcacactgaaaatcagcagggtggaggctgaagatgttggcgtttattactgcatgcaaaccacacactggcctccgacgttcggccaagggaccaaggtggagatcaaacgt[SEQ ID NO:225]
084-κ轻链可变区(氨基酸序列)
DVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYKVSSRDSGVPDRFSGTGSGTDFTLKISRVEAEDVGVYYCMQTTHWPPTFGQGTKVEIKR[SEQ ID NO:208]
084-重链可变区(DNA序列)
caggtgcagctggtggagtctgggggaggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcacctttagtagctattggatgagctgggtccgccaggctccagggaaagggctggagtgggtggccaacataaagcaagatggaagtgagaaatactatgtggactctgtgaggggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacaccgccatgtattactgtgcgcgcggttctttctcttacgacagtgatctgtggggtcaaggtactctggtgaccgtctcctca[SEQ ID NO:226]
084-重链可变区(氨基酸序列)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVANIKQDGSEKYYVDSVRGRFTISRDNAKNSLYLQMNSLRAEDTAMYYCARGSFSYDSDLWGQGTLVTVSS[SEQ ID NO:195]
6)抗体ROR2克隆#90
090-轻链可变区(DNA序列)
cagcctgtgctgactcagccaccctcagcgtctgggacccccgggcagagggtcaccatctcttgttctggaagcagctccaacatcgggagtgattatgtatcctggtaccaacagctcccaggaacggcccccaaactcctcatctataggaatgatcagcggccctcaggggtccctgaccgattctctggctccaagtctggcacctcagcctccctggccatcagtgggctccggtccgaggatgaggctgattattactgtgtagcatgggatgacagcctgagtggttatgtcttcggaagtgggaccaaggtcaccgtcctaggt[SEQ ID NO:227]
090-轻链可变区(氨基酸序列)
QPVLTQPPSASGTPGQRVTISCSGSSSNIGSDYVSWYQQLPGTAPKLLIYRNDQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCVAWDDSLSGYVFGSGTKVTVLG[SEQ ID NO:209]
090-重链可变区(DNA序列)
gaggtgcagctggtggagtctggcccaggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagcagtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagtgggagcacctactacaacccgtccctcaagagtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacaccgccatgtattactgtgcgcgcggtggtctgtactggacttactctcaggatgtttggggtcaaggtactctggtgaccgtctcctca[SEQ IDNO:228]
090-重链可变区(氨基酸序列)
EVQLVESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAMYYCARGGLYWTYSQDVWGQGTLVTVSS[SEQ ID NO:196]
7)抗体ROR2克隆#093
093-κ轻链可变区(DNA序列)
gaaattgtgatgacgcagtctccagccaccctgtctttgtctccaggggaaagagccaccctctcctgcggggccagtcagagtgttagcagcagctacttagcctggtaccagcagaaacctggcctggcgcccaggctcctcatctatgatacatccagaagggccactggcatcccagacaggttcagtggcagtgggtctgggacagacttcactctcaccatcagcagactggagccggaagattttgcagtgtattactgtcttcactatggtcgctcacctccggtcactttcggcggagggaccaaggtggagatcaaacgt[SEQ ID NO:229]
093-κ轻链可变区(氨基酸序列)
EIVMTQSPATLSLSPGERATLSCGASQSVSSSYLAWYQQKPGLAPRLLIYDTSRRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCLHYGRSPPVTFGGGTKVEIKR[SEQ ID NO:210]
093-重链可变区(DNA序列)
cagatgcagctggtgcagtctgggggaggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttcagtaactatgacatgcactgggtccgccgggctccaggcaaggggctggagtgggtggcagttatatcatatgatggaagtaataattactatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggccgtgtattactgtgcgcgctcttctgcttgggttggtggtggtttcctgtctggtactgatgactggggtcaaggtactctggtgaccgtctcctca[SEQ ID NO:230]
093-重链可变区(氨基酸序列)
QMQLVQSGGGVVQPGRSLRLSCAASGFTFSNYDMHWVRRAPGKGLEWVAVISYDGSNNYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSSAWVGGGFLSGTDDWGQGTLVTVSS[SEQ ID NO:197]
8)抗体ROR2克隆#096
096-轻链可变区(DNA序列)
gaaattgtgctgactcagtctccactctccctgcccgtcacccttggacagccggcctccatctcctgcaggtctagtcaaagcctcgcatacagtgatggaaacacctacttgaattggtttcaccagaggccaggccaatctccaaggcgcctaatctataaggtttctaagcgggactctggggtcccagacagattcagcggcagtgggtcaggcactgatttcacactgagaatcagcagggtggaggctgaggatgttgggatttattactgcatgcaaggtacacactggcctcacactttcggccctgggaccaaagtggatatcaaacgt[SEQ ID NO:231]
096-轻链可变区(氨基酸序列)
EIVLTQSPLSLPVTLGQPASISCRSSQSLAYSDGNTYLNWFHQRPGQSPRRLIYKVSKRDSGVPDRFSGSGSGTDFTLRISRVEAEDVGIYYCMQGTHWPHTFGPGTKVDIKR[SEQ ID NO:211]
096-重链可变区(DNA序列)
gaagtgcagctggtgcagtctgggggaggcttggtccagcctggagggtccctgagactctcctgtgcagcctctggattcagcctcaatgactattacatggactgggtccgccaggctccaggggaggggctggagtgggttggccgtattagagacaaagctcacggtgacaccacagaatacatcgcgtctgtgaaagacagatttatcgtctcaagagatgactccaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacaccgccatgtattactgtgcgcgctgggttgacgactaccagggttactggatctggtcttaccacgatttctggggtcaaggtactctggtgaccgtctcctca[SEQ ID NO:232]
096-重链可变区(氨基酸序列)
EVQLVQSGGGLVQPGGSLRLSCAASGFSLNDYYMDWVRQAPGEGLEWVGRIRDKAHGDTTEYIASVKDRFIVSRDDSKNSLYLQMNSLKTEDTAMYYCARWVDDYQGYWIWSYHDFWGQGTLVTVSS[SEQ ID NO:198]
9)抗体ROR2克隆#121
121-轻链可变区(DNA序列)
tcctatgtgctgactcagccaccctcagtgtccgtgtccccaggacagacagccagcgtcacctgttctggatatagattgagagagaagtatgtttcctggtatcaacagaggccaggccactcccctgtcttggtcatctatgaagatactaagaggccttcagggatccctgagcgattctctggctccaattctggggacacagccactctgaccatcagagggacccaggctatagatgaggctgactattactgtcaggcgtgggacagcagcgtgattttcggcggagggaccaagctgaccgtcctaggt[SEQ ID NO:233]
121-轻链可变区(氨基酸序列)
SYVLTQPPSVSVSPGQTASVTCSGYRLREKYVSWYQQRPGHSPVLVIYEDTKRPSGIPERFSGSNSGDTATLTIRGTQAIDEADYYCQAWDSSVIFGGGTKLTVLG[SEQ ID NO:212]
121-重链可变区(DNA序列)
caggtgcagctggtgcagtctgggggaggcttggtacagcctggggggtccctgagactctcctgtgcagccactggattcacctttagcagctatgccatgagttgggtccgccaggctccagggaaggggctggagtgggtctcagttattagtggtagtggtggtagcacatactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgttgtatctgcaaatgaacagcctgagagccgacgacactgccgtgtattactgtgcgcgccattactactcttctgattcttggggtcaaggtactctggtgaccgtctcctca[SEQ ID NO:234]
121-重链可变区(氨基酸序列)
QVQLVQSGGGLVQPGGSLRLSCAATGFTFSSYAMSWVRQAPGKGLEWVSVISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRADDTAVYYCARHYYSSDSWGQGTLVTVSS[SEQ ID NO:199]
10)抗体ROR2克隆#159
159-轻链可变区(DNA序列)
caatctgccctgactcagcctgcctccgtgtctgggtctcctggacagtcgatcaccatctcctgcactggaaccagcagtgacgttggtggttataactatgtctcttggtaccaacagcacccaggcaaagcccccaaattcatgatttatgatgtcagtaagcggccctcaggtgtttctaatcgcttctctggctccaagtctggcaacacggcctccctgaccatctctgggctccaggctgaggacgaggctgattattactgcggctcatttacaagcagcatcacttatgtcttcggaactgggaccaaggtcaccgtcctaggt[SEQ ID NO:235]
159-轻链可变区(氨基酸序列)
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKFMIYDVSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCGSFTSSITYVFGTGTKVTVLG[SEQ ID NO:213]
159-重链可变区(DNA序列)
cagatgcagctggtgcagtctggggctgaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttcaccagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagtggtggtagcacaagctacgcacagaagttccagggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacactgccgtgtattactgtgcgcgcggtggttacactggttggtctccgtctgatccgtggggtcaaggtactctggtgaccgtctcctca[SEQ ID NO:236]
159-重链可变区(氨基酸序列)
QMQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGYTGWSPSDPWGQGTLVTVSS[SEQ ID NO:200]
11)抗体ROR2克隆#173
173-λ轻链可变区(DNA序列)
cagtctgtgttgactcagccaccctcagtgtcagtggccccaggaaagacggccaggattacctgtggtggagacaacattggacgtaaaagtgtgcactggtaccagcagaagccaggccaggcccctgtgctggtcatctattatgatagcgaccggccctcagggatccctgagcgattctctggctccacctctgggaacacggccaccctgaccatcagtagggtcgaagccggggatgaggccgactattactgtcaggtgtgggatcgtagtagtgacctttatgtcttcggaactgggaccaaggtcaccgtcctaggt[SEQ ID NO:237]
173-λ轻链可变区(氨基酸序列)
QSVLTQPPSVSVAPGKTARITCGGDNIGRKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSTSGNTATLTISRVEAGDEADYYCQVWDRSSDLYVFGTGTKVTVLG[SEQ ID NO:214]
173-重链可变区(DNA酸序列)
caggtgcagctggtgcagtctggggctgaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacacctttaccagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttacaatggtaacacaaactatgcacagaagctccagggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggctgtgtattactgtgcgcgccatctgggtccgatgggtatgtacgactggtctttcgataaatggggtcaaggtactctggtgaccgtctcctca[SEQID NO:238]
173-重链可变区(氨基酸序列)
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISAYNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARHLGPMGMYDWSFDKWGQGTLVTVSS[SEQ ID NO:201]
12)抗体ROR2克隆#240
240-轻链可变区(DNA酸序列)
caatctgccctgactcagcctgcctccgtgtctgggtctcctggacagtcgatcaccatctcctgcactggaaccagcggtgacgttggcggttataactatgtctcctggtaccaacaccacccaggcaaagcccccaaactcataatttatgatgtcaataagcggccctcaggtttttctgatcggttctctggctccaagtctggcaacacggcctccctgacaatctctgggctccaggctgaggacgaggctgattattactgcagctcatatacaagcaccagcaccgtcttcggcggagggaccaagctgaccgtcctaggt[SEQ ID NO:239]
240-轻链可变区(氨基酸序列)
QSALTQPASVSGSPGQSITISCTGTSGDVGGYNYVSWYQHHPGKAPKLIIYDVNKRPSGFSDRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSTSTVFGGGTKLTVLG[SEQ ID NO:215]
240-重链可变区(DNA酸序列)
cagatcaccttgaaggagtctggtcctgagctggtgaaacccacacagaccctcacactgacctgcaccttttctgggttctcactcagcactagtggaatgtctgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggatgatgataaatactacagcacatctctgaagaccaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacacggaccctgtggacacagccacgtattactgtgcgcgcggtttctacctggcttacggttcttacgattcttggggtcaaggtactctggtgaccgtctcctca[SEQ IDNO:240]
240-重链可变区(氨基酸序列)
QITLKESGPELVKPTQTLTLTCTFSGFSLSTSGMSVSWIRQPPGKALEWLARIDWDDDKYYSTSLKTRLTISKDTSKNQVVLTMTNTDPVDTATYYCARGFYLAYGSYDSWGQGTLVTVSS[SEQ ID NO:202]
13)抗体ROR2克隆#241
241-轻链可变区(DNA酸序列)
tcctatgagctgactcagccactctcagtgtcagtggccctgggacagacggccaggattacctgtgggggaaacaacattggaagtaaaaatgtgcactggtaccagcagaagccaggccaggcccctgtgctggtcatctatagggatagcaaccggccctctgggatccctgagcgattctctggctccaactcggggaacacggccaccctgaccatcagcagagcccaagccggggatgaggctgactattactgtcaggtgtgggacagcagtattgtggtattcggcggagggaccaagctgaccgtcctaggt[SEQ ID NO:241]
241-轻链可变区(氨基酸序列)
SYELTQPLSVSVALGQTARITCGGNNIGSKNVHWYQQKPGQAPVLVIYRDSNRPSGIPERFSGSNSGNTATLTISRAQAGDEADYYCQVWDSSIVVFGGGTKLTVLG[SEQ ID NO:216]
241-重链可变区(DNA酸序列)
gaagtgcagctggtgcagtctggggctgaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttcaccaattactatatacactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctacaagtggtaggacaaggtacgcacagaggttccagggcagagtcaccatgaccagggacacgtccacgaacacagtctacatggacctgagcagcctgagatctgaagacaccgccatgtattactgtgcgcgctctggttactactggggtgttaacggtgatcagtggggtcaaggtactctggtgaccgtctcctca[SEQ ID NO:242]
241-重链可变区(氨基酸序列)
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYIHWVRQAPGQGLEWMGIINPTSGRTRYAQRFQGRVTMTRDTSTNTVYMDLSSLRSEDTAMYYCARSGYYWGVNGDQWGQGTLVTVSS[SEQ ID NO:203]
Figure BDA0002720450840001141
Figure BDA0002720450840001151
靶向ROR的CAR T细胞的合成
使用ROR2 scFv序列来产生靶向ROR2的第二代CAR。在一些实施方案中,ROR2 scFv序列包含上面描述的LCVR、HCVR、LCDR和HCDR中的任何一种。添加可变重链和轻链(与(Gly4Ser)3接头接连)和可检测的标签(例如,c-myc标签)以允许通过流式细胞术检测CAR表达。如果需要,将CAR优化成在CD28跨膜结构域上游包括间隔结构域。将其克隆到SFG逆转录病毒载体中,所述SFG逆转录病毒载体含有CD28和CD3ζ或4-1BB或本领域众所周知的其他类似信号传导CAR形式,例如Park(2016)。产生稳定的293病毒生产细胞系,并且使用病毒上清液来转导原代人T细胞。转导对照样品和测试样品。对照样品包含在逆转录病毒转导之前未用FoxP3靶向剂处理的原代人T细胞。测试样品包含在逆转录病毒转导之前用FoxP3靶向剂(例如,抗FoxP3/抗CD3双特异性抗体)处理的原代人T细胞。进行对照样品和测试样品的逆转录病毒转导,如Rafiq(2017)和Koneru(2015)中所描述。转导后,通过流式细胞术,对掺入ROR2-CAR中的c-myc标签进行染色来确认CAR表达。另外,通过流式细胞术确定对照样品和测试样品中的效应细胞(FoxP3阴性细胞)和免疫抑制性细胞(FoxP3阳性细胞)的数目。
实施例5.使用所选scFv片段合成靶向ROR2的CAR T细胞
在本实施例中,描述了用于使用抗原特异性scFv片段产生靶向ROR2的CAR T细胞的方法。尽管噬菌体展示技术允许快速选择和生产抗原特异性scFv片段,但是具有Fc结构域的完整mAb相对于scFv具有许多优点。首先,仅携带Fc的抗体发挥免疫功能,诸如补体依赖性细胞毒性(CDC)和抗体依赖性细胞毒性(ADCC)。第二,二价单克隆抗体(mAb)比单体Fab或scFv Ab具有更强的抗原结合亲合力。第三,与全长IgG相比,Fab或scFv的血浆半衰期和肾脏清除率要快得多。第四,与相应的单价Fab或scFv的速率相比,二价mAb可以以更快的速率被内化。尽管与Fc区缀合的α发射体可能不需要被内化以杀伤靶标,但许多药物和毒素将从免疫复合物的内化中受益。
基于通过竞争性ELISA获得的亲和力排名结果以及使用流式细胞术确定的针对ROR2阳性癌细胞系的细胞表面结合,选择特异性地识别ROR2的具有高ROR2结合亲和力的五个噬菌体展示克隆,以工程化到CAR T细胞中。将这些所选克隆的scFv重建成全长人IgG1重组抗体,将其掺入工程化受体(例如,CAR、caTCR、eTCR)中。
使用Tomimatsu等人(2009)Biosci Biotechnol Biochem 73(7)1465-1469的方法使用HEK293细胞将所选scFv转化为全长单克隆IgG。使用本领域已知的常规技术将抗体可变区与匹配的κ或λ轻链恒定和IgG1子类Fc一起亚克隆到如WO 2016142768A1中公开的哺乳动物表达载体(参见WO 2016142768A1的图9a和9b,将所述专利通过引用以其整体并入)中。
hIgG1的λ轻链恒定区的一个实施方案的多肽序列在本文中提供为SEQ ID NO:322,如下:
QPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS[SEQ ID NO:322]
编码hIgG1的λ轻链恒定区的一个实施方案的编码序列在本文中提供为SEQ IDNO:323,如下:
cagcctaaggccaaccctaccgtgaccctgttccccccatcctccgaggaactgcaggccaacaaggccaccctcgtgtgcctgatctccgacttctaccctggcgccgtgaccgtggcctggaaggctgatggatctcctgtgaaggccggcgtggaaaccaccaagccctccaagcagtccaacaacaaatacgccgcctcctcctacctgtccctgacccctgagcagtggaagtcccaccggtcctacagctgccaagtgacccacgagggctccaccgtggaaaagaccgtggctcctaccgagtgctcctag[SEQ ID NO:323]
hIgG1的κ轻链恒定区的一个实施方案的多肽序列在本文中提供为SEQ ID NO:324,如下:
TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC[SEQ ID NO:324]
编码hIgG1的κ轻链恒定区的一个实施方案的编码序列在本文中提供为SEQ IDNO:325,如下:
accgtggccgctccctccgtgttcatcttcccaccttccgacgagcagctgaagtccggcaccgcttctgtcgtgtgcctgctgaacaacttctacccccgcgaggccaaggtgcagtggaaggtggacaacgccctgcagagcggcaactcccaggaatccgtgaccgagcaggactccaaggacagcacctactccctgtcctccaccctgaccctgtccaaggccgactacgagaagcacaaggtgtacgcctgcgaagtgacccaccagggcctgtctagccccgtgaccaagtctttcaaccggggcgagtgctag[SEQ ID NO:325]
hIgG1的重链恒定区的一个实施方案的多肽序列在本文中提供为SEQ ID NO:326,如下:
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK[SEQ ID NO:326]
编码hIgG1的重链恒定区的一个实施方案的编码序列在本文中提供为SEQ ID NO:327,如下:
gtctcctcagcttccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccagcggcgtgcacaccttcccggccgtcctacagtcctcaggactctactccctcagcagcgtggtgaccgtgccctccagcagcttgggcacccagacctacatctgcaacgtgaatcacaagcccagcaacaccaaggtggacaagaaggttgagcccaaatcttgtgacaaaactcacacatgcccaccgtgcccagcacctgaactcctggggggaccgtcagtcttcctcttccccccaaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggtggtggacgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaagccgcgggaggagcagtacaacagcacgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtctccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaaagggcagccccgagaaccacaggtgtacaccctgcccccatcccgggaggagatgaccaagaaccaggtcagcctgacctgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaatgggcagccggagaacaactacaagaccacgcctcccgtgctggactccgacggctccttcttcctctacagcaagctcaccgtggacaagagcaggtggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcagaagagcctctccctgtctccgggtaaatga[SEQ ID NO:327]。
使用全长抗ROR2抗体来产生靶向ROR2的CAR。在一些实施方案中,ROR2 scFv序列包含上面描述的轻链恒定区或重链恒定区中的任何一种。添加可变重链和轻链(与(Gly4Ser)3接头接连)和可检测的标签(例如,c-myc标签)以允许通过流式细胞术检测CAR表达。如果需要,将CAR优化成在CD28跨膜结构域上游包括间隔结构域。将其克隆到SFG逆转录病毒载体中,所述SFG逆转录病毒载体含有CD28和CD3ζ或4-1BB或本领域众所周知的其他类似信号传导CAR形式,例如Park(2016)。产生稳定的293病毒生产细胞系,并且使用病毒上清液来转导原代人T细胞。转导包含原代人T细胞的对照样品和测试样品。进行对照样品和测试样品的逆转录病毒转导,如Rafiq(2017)和Koneru(2015)中所描述。转导后,在补充有FoxP3靶向剂(例如,抗FoxP3/MHC双特异性抗体)的培养基中培养测试样品,而在单独的培养基(例如,未补充有FoxP3靶向剂)中培养对照样品。随后,通过流式细胞术,对掺入ROR2-CAR中的c-myc标签进行染色来确认测试样品和对照样品中的CAR表达。另外,通过流式细胞术确定对照样品和测试样品中的效应细胞(FoxP3阴性细胞)和免疫抑制性细胞(FoxP3阳性细胞)的数目。
实施例6.使用FoxP3靶向剂合成pMSCV-602-90GA-BBz-ires-EGFP CAR和pMSCV-901scFv-BBz-ires-EGFP CAR
在本实施例中,描述了使用FoxP3靶向剂合成pMSCV-602-90GA-BBz-ires-EGFPCAR和pMSCV-901scFv-BBz-ires-EGFP CAR的方法。将抗ROR2抗体工程化为嵌合抗体受体,并且通过逆转录病毒哺乳动物表达系统在T细胞表面上表达。将PG13(GaLV假型化的)包装细胞系用于pMSCV质粒的转染。在30U/ml的白介素-2的存在下用CD3/CD28珠粒(
Figure BDA0002720450840001191
Invitrogen)进行4天刺激和扩增后,使用人T细胞进行转导(对照样品),而将测试样品另外用FoxP3靶向剂(例如,抗FoxP3抗体)处理。将来自PG13包装细胞系的无细胞上清液过滤,并且在PG13病毒生产细胞系转染后48小时和72小时,将其施用在Retronectin(Takara)包被的6孔板中的T细胞上。
使用生物素化的蛋白-L(一级)抗体(GeneScript)和PE缀合的(二级)抗体(BDBiosciences)通过FACS评估转导效率。另外,通过FACS确定对照样品和测试样品中的效应细胞(FoxP3阴性细胞)和免疫抑制性细胞(FoxP3阳性细胞)的数目。在72小时以及此后每3-4天进行重复FACS分析。
实施例7.使用FoxP3靶向剂合成靶向WT1的CAR T细胞
在本实施例中,描述了生产表达CAR的工程化免疫细胞的方法,所述CAR靶向WT1。使用ESK1 scFv序列来产生靶向WT1的第二代CAR。ESK1scFv氨基酸和核苷酸序列的非限制例子在下表中示出。添加可变重链和轻链(与(Gly4Ser)3接头接连)和c-myc标签以允许通过流式细胞术检测CAR表达。如果需要,将CAR优化成在CD28跨膜结构域上游包括间隔结构域。将其克隆到SFG逆转录病毒载体中,所述SFG逆转录病毒载体含有CD28和CD3ζ或4-1BB或本领域众所周知的其他类似信号传导CAR形式,例如Park(2016)Blood 127(26):3312-20。产生稳定的293病毒生产细胞系,并且使用病毒上清液来转导原代人T细胞。将对照样品用病毒上清液逆转录病毒地转导,而将测试样品用补充有FoxP3靶向剂(例如,抗FoxP3抗体)的病毒上清液逆转录病毒地转导。进行逆转录病毒转导,如Rafiq等人(2017)Leukemia 31(8):1788-1797和Koneru等人(2015)Oncoimmunology 4(3):e994446中所描述。转导后,通过流式细胞术,对掺入WT1-CAR中的c-myc标签进行染色来确认CAR表达。另外,通过流式细胞术确定对照样品和测试样品中的效应细胞(FoxP3阴性细胞)和免疫抑制性细胞(FoxP3阳性细胞)的数目。
Figure BDA0002720450840001201
实施例8.使用与FoxP3肽/HLA-A*02复合物反应的模仿TCR的单克隆抗体消耗T调节细胞
肿瘤微环境中T调节细胞(Treg)的消耗是成功的癌症免疫疗法的关键策略之一。然而,目前用于消耗Treg的方法受到缺乏特异性的限制,这也导致同时消耗抗肿瘤效应T细胞。转录因子叉头框p3(Foxp3)在Treg的发育和抑制功能中发挥核心作用,并且可能是用于消除Treg的理想靶标,但是Foxp3是细胞内无药可及的蛋白质。产生模仿T细胞受体的mAb,称为Foxp3-#32,其与在HLA-A*02:01的背景下的Foxp3衍生的表位反应。mAb Foxp3-#32选择性地识别并且通过ADCC消耗CD4+CD25+CD127低以及Foxp3+Treg和Treg样T恶性细胞系(表达Foxp3和HLA-A*02:01两者)。因此,靶向细胞内Foxp3表位的TCRm mAb可能是在人癌症免疫疗法环境中消耗Treg的新型方法。
材料和方法
肽合成
在此研究中使用的所有肽均是通过Genemed Synthesis,Inc.(圣安东尼奥市,德克萨斯州)购买和合成的。肽是无菌的,并且80%至>90%纯。将肽溶解在DMSO中,并且以5mg/mL稀释在盐水中,并且储存在-80℃。用于HLA-A*02:01的对照肽是尤文氏肉瘤衍生的肽EW(QLQNPSYDK)和胆碱转运蛋白样蛋白4衍生的肽CT(KLLVVGGVGV)。通过在EurekaTherapeutics,Inc.(埃默里维尔,加利福尼亚州)将肽与重组HLA-A*02和β2微球蛋白(β2M)一起重折叠来合成生物素化的单链Foxp3p/HLA-A*02:01复合物。
细胞因子、抗体和细胞
人粒细胞-巨噬细胞集落刺激因子(GM-CSF),白介素(IL)-1β、IL-2、IL-4、IL-6、IL-15,肿瘤坏死因子(TNF)-α和前列腺素E2(PGE2)、TGF-β购自R&D Systems(明尼阿波利斯,明尼苏达州)。β2-微球蛋白(β2-m)和人IFN-γ购自Sigma(圣路易斯,密苏里州)。用于CD14和CD3的细胞分隔试剂盒购自Miltenyi Biotec.(贝尔吉施格拉德巴赫,德国)。人Treg分隔试剂盒购自Stem Cell Technology(加拿大)。Foxp3+和HLA-A*02:01+皮肤T淋巴瘤细胞系MAC-1和MAC-2A由丹麦大学的Mads H.Anderson博士友善提供。人T白血病病毒(HTLV)阳性细胞系C5MJ由Alexander Rudensky博士实验室(MSK,纽约)友善提供,并且向细胞中转导HLA-A*02:01分子,如Latouche等人(2000)Nat Biotech 18:405-409所描述。HLA-A*02:01SFG载体是MSKCC的Michelle Sadelain博士的赠礼。使用含有编码luc/GFP的质粒的逆转录病毒载体,将MAC-1和MAC-2A细胞系工程化以表达高水平的GFP-荧光素酶融合蛋白。在补充有10%FCS、青霉素、链霉素、2mmol/l谷氨酰胺、和2-巯基乙醇的RPMI 1640中于37℃/5%CO2下培养细胞系。定期检查细胞的支原体。通过mAb表型或基因型确认细胞身份。在纪念斯隆-凯特琳机构审查委员会(Memorial Sloan-Kettering Institutional Review Board)批准的协议的知情同意后,获得来自健康供体的外周血单核细胞(PBMC)和来自患有卵巢癌的患者在经受手术后的肿瘤样品。
在Eureka Therapeutics,Inc.生产小鼠IgG1的Foxp3-#32双特异性mAb(对于流式细胞术)及其相应的对照(Veomett等人(2014)Clin Cancer Res 20(15):4036-4046;Dao等人(2015)Nat Biotech 33(10):1079-1086)。根据制造商(Novus Biologicals)的说明通过使用lightening-link APC抗体标记试剂盒进行APC与小鼠IgG1形式的Foxp3-#32及其对照的缀合。针对人HLA A*02的Mab(克隆BB7.2)、其同种型对照小鼠IgG2b(克隆MPC-11)、人CD3(克隆HIT3A和OKT3)、CD4(克隆RPA-T4)、CD8(克隆RPA-T8)、CD25(克隆2A3)、CD33(克隆WM53)、与FITC或PE缀合的小鼠抗His标签mAb(克隆F24-796)购自BD Biosciences(圣地亚哥,加利福尼亚州)。对人Foxp3克隆PCH101具有特异性的Mab、其同种型对照大鼠IgG2aκ、克隆236A/E7及其同种型对照小鼠IgG1κ、CD4(克隆OKT4)、CD127(克隆HIL-7R-M21)购自eBioscience。用于细胞内染色的固定和透化试剂盒也购自eBioscience。
流式细胞术分析
对于细胞表面染色,将细胞与适当的mAb在冰上一起孵育30分钟,洗涤,并且在必要时与二级抗体试剂一起孵育。对于Foxp3-#32-双特异性mAb染色,将人T细胞或癌细胞与不同浓度的Foxp3-#32-双特异性mAb或对照双特异性mAb在冰上一起孵育30分钟,洗涤并且与针对His-标签的二级mAb一起孵育。在Beckman Dickinson Fortesa上收集流式细胞术数据,并且使用FlowJo 9.8.1和FlowJo10软件进行分析。
体外刺激和人T细胞培养
通过Ficoll密度离心获得来自HLA-A*02:01健康供体的PBMC。通过使用与磁性珠粒偶联的针对人CD14的mAb进行阳性选择来分隔CD14+单核细胞,并且将其用于T细胞的第一刺激。将PBMC的CD14-级分用于分隔CD3,通过使用pan T细胞分隔试剂盒进行阴性免疫磁性细胞分离来进行。细胞的纯度始终大于98%。在补充有5%自体血浆(AP)、20μg/mL合成肽、2μg/mLβ2-m和5-10ng/mL IL-15的RPMI 1640的存在下,将T细胞刺激7天。通过在补充有1%AP、500单位/mL重组IL-4、和1,000单位/mL GM-CSF的RPMI 1640培养基中进行细胞培养,从CD14+细胞产生单核细胞衍生的树突状细胞(DC)。在孵育的第2天和第4天,添加含有IL-4和GM-CSF的新鲜培养基,或者更换一半培养基。在第5天,将20μg/mL II类肽添加到未成熟的DC中。在第6天,添加成熟细胞因子混合物(IL-4、GM-CSF、500IU/mL IL-1、1,000IU/mL IL-6、10ng/ml TNF-α、和1μg/mL PGE-2)。在第7天或第8天,在IL-15的情况下将T细胞用成熟的DC以30:1的T:APC比率再刺激。使用自体DC或CD14+细胞作为抗原呈递细胞(APC)以相同的方式将T细胞刺激3至5次。最终刺激后一周,通过IFN-γ酶联免疫斑点(ELISPOT)测定检查肽特异性T细胞应答(May等人(2007)Clin Cancer Res 13:4547-4555;Dao等人(2009)Plos One 4(8):e6730)。
IFN-γELISPOT测定
将HA-Multiscreen板(Millipore)用在PBS中的100μL小鼠抗人IFN-γ抗体(10Ag/mL;克隆1-D1K;Mabtech)包被,在4C下孵育过夜,用PBS洗涤以除去未结合的抗体,并且在37℃下用RPMI 1640/10%自体血浆(AP)封闭2h。将CD3+T细胞接种自体CD14+(10:1的E:APC比率)或自体DC(30:1的E:APC比率)。将各种测试肽以20μg/ml添加到孔中。阴性对照孔含有APC和T细胞,不含肽或含无关肽。阳性对照孔含有T细胞加APC加20μg/ml植物血凝素(PHA,Sigma)。所有条件都进行三次重复。将微量滴定板在37℃下孵育20h并且然后用PBS/0.05%Tween大量洗涤,并且添加100μl/孔的针对人IFN-γ的生物素化检测抗体(2μg/ml;克隆7-B6-1;Mabtech)。将板在37℃下孵育另外2h,并且进行斑点显影,如所描述(7-9)。使用带有KS ELISPOT 4.0软件的计算机辅助视频图像分析仪(Carl Zeiss Vision)自动确定斑点数目(May等人(2007)和Dao等人(2009))。
51铬释放测定
在标准铬释放测定中测量特异性CTL的存在,如所描述(May等人(2007)和Dao等人(2009))。简而言之,将靶细胞以50μCi/百万个细胞的Na2 51CrO4进行标记(NEN LifeScience Products,Inc.)。大量洗涤后,将靶细胞与T细胞一起以各种效应子:靶标(E:T)比率孵育。所有条件都进行三次重复。将板在37℃下在5%CO2中孵育4-5小时。收获上清液,并且在γ计数器中测量放射性。从下式确定特异性裂解百分比:[(实验释放-自发释放)/(最大释放-自发释放)]x 100%。通过在1%SDS中裂解放射性标记的靶标来确定最大释放。
对Foxp3衍生的表位具有特异性的scFv的噬菌体筛选、选择
使用人ScFv抗体噬菌体展示文库(7x 1010个克隆)来选择mAb克隆,如先前所描述(Dao等人(2013)Sci Transl Med 5(176):176ra33;Chang等人(2017)J Clin Invest 127(7):2705-2718)。简而言之,使用生物素化的无关肽/HLA-A*02:01复合物来除去潜在地与HLA-A*02:01结合的任何克隆。针对Foxp3p/HLA-A*02:01复合物,对剩余的克隆进行筛选。通过3-4轮淘选富集所选克隆。通过标准ELISA方法针对生物素化的单链Foxp3p/HLA-A*02:01复合物确定阳性克隆。通过流式细胞术使用在内源性HLA相关肽的呈递方面有缺陷的TAP缺陷型HLA-A*02:01+细胞系T2进一步测试阳性克隆,以得到其与活细胞表面上的肽/HLA-A*2复合物的结合。在无血清的RPMI1640培养基中,在20μg/mlβ2M的存在下,将T2细胞用阳性和多对照肽(50μg/ml)脉冲过夜。洗涤细胞,并且在以下步骤中进行染色。首先用纯化的scFv噬菌体克隆将细胞染色,并且然后用小鼠抗M13(细菌噬菌体)mAb染色,并且最后用与FITC或PE偶联的山羊Fab2抗小鼠IgG进行染色。染色的每个步骤在冰上进行30-60分钟之间,并且在染色的各步骤之间将细胞洗涤两次(Dao等人(2013)和Chang等人(2017))。
使用所选scFv片段工程化全长人IgG1
在HEK293和中国仓鼠卵巢(CHO)细胞系中生产所选噬菌体克隆的全长人IgG1,如所描述(Dao等人(2009))。简而言之,将抗体可变区亚克隆到具有匹配的λ或κ轻链恒定序列和IgG1亚类Fc的哺乳动物表达载体中。在还原条件和非还原条件两者下通过电泳测量纯化的全长IgG抗体的分子量。
Foxp3-#32双特异性mAb的构建、表达和纯化
工程化呈典型的双特异性T细胞衔接器形式的Foxp3-#32双特异性mAb,如先前所描述(Veomett等人(2014))。将mAb Foxp3-#32scFv的N末端通过灵活接头与小鼠单克隆抗体的抗人CD3εscFv的C末端连接。通过GeneArt(InVitrogen)合成编码两种mAb的scFv的DNA片段,并且使用标准DNA技术将其亚克隆到Eureka哺乳动物表达载体pGSN-Hyg中。在Foxp3-#32双特异性mAb下游C末端插入六组胺(His)标签,以用于检测和纯化双特异性mAb。
将中国仓鼠卵巢(CHO)细胞用Foxp3-双特异性mAb表达载体转染,并且通过用甲硫氨酸亚砜亚胺(MSX)(基于谷氨酰胺合成酶(GS)的方法)进行标准药物选择来实现稳定表达。收集含有分泌的Foxp3-#32双特异性mAb分子的CHO细胞上清液。使用HisTrap HP柱(GEhealthcare)通过FPLC AKTA系统将Foxp3-双特异性mAb纯化。简而言之,将CHO细胞培养物澄清并且以低咪唑浓度(20mM)上样到柱上,并且然后使用等度高咪唑浓度洗脱缓冲剂(500mM)洗脱结合的Foxp3-双特异性mAb蛋白。用无关人IgG1抗体(Cat#ET901,EurekaTherapeutics)替代Foxp3-#32scFv来构建阴性对照双特异性mAb抗体。
全长人IgG1针对Foxp3肽/HLA-A*02:01复合物的表征
通过使用直接或间接染色将用或不用Foxp3肽或各种类似物或对照肽脉冲的T2细胞染色来确定完全人IgG1 mAb对Foxp3肽/A2复合物的特异性。通过流式细胞术测量荧光强度。使用相同的方法确定mAb与细胞系的结合。
Treg产生、表型分析和Foxp3-#32mAb结合
通过FACS分选从健康HLA-A*02:01阳性供体的PBMC纯化CD4+T细胞,并且在重组人IL-2(100单位)和TGF-β(10ng/ml)的存在下用作为刺激细胞和饲养细胞的allo-PBMC(HLA-A*02:01阴性)以1:5-10的效应物:刺激物(E:S)比率或用肿瘤细胞(E:S:1:1)刺激一至两周,并且重复相同的刺激以维持Treg细胞(Levings等人(2002)J Exp Med 196(10):1335-1346;Lu等人(2010)Plos One 5(12):e15150;Godfrey等人(2004)Blood 104(2):453-461)。通过在冰上用针对CD4、CD25+、CD127、CD45RA、与APC缀合的小鼠Foxp3 mAb-Foxp3-#32的mAb对细胞进行表面染色30分钟来测定Treg的表型,洗涤。根据制造说明,通过使用针对人Foxp3的mAb(克隆PCH101或其同种型对照大鼠IgG2aκ)和Cytofix/CytoPerm试剂盒(eBiosciences)进行细胞内蛋白染色来测量Foxp3的表达。通过在Beckman DickinsonFortesa上的流式细胞术进行分析。
Foxp3-#32双特异性mAb对在HLA-A*02:01的背景下的Treg具有特异性的细胞毒性
使用四种方法来测量Foxp3-#32双特异性mAb针对Treg的ADCC。第一,对于天然Treg,将来自HLA-A*02:01阳性或阴性的健康供体的PBMC与或不与1μg/ml的Foxp3-#32双特异性mAb或对照无关双特异性mAb一起孵育一至三天。收获细胞,将其洗涤并且用针对CD4、CD25、CD127、CD45RA的mAb进行染色,然后用针对Foxp3的mAb或其同种型对照进行细胞内染色。通过明确定义的Treg标记物的表达得到Treg降低。简而言之,基于前向和侧面散射将淋巴细胞设门,然后对CD4+CD127高或CD4+CD127低的群体进行设门。通过2组Treg标记物:CD25与Foxp3;或CD45RA与Foxp3,来进一步确定CD4+CD127高或CD4+CD127低的群体。第二,天然Treg仅占CD4+T细胞的百分之几;因此,为了获得足够的Treg杀伤读数,也将产生的Treg在体外用作靶标。通过流式细胞术,通过Treg群体的减少来确定对Treg的杀伤。简而言之,在存在或不存在Foxp3-#32双特异性mAb(1μg/ml)或其对照双特异性mAb的情况下,将用作效应子的通过从HLA-A*02:01阴性供体进行阴性选择得到的纯化CD3T细胞与从HLA-A*02:01+供体产生的Treg以5:1的E:T比率一起孵育过夜。将细胞洗涤并且用针对CD4、CD25、Foxp3和HLA-A*02的mAb进行染色。将HLA-A*02阳性细胞设门(作为Treg靶标),并且通过与仅含效应子或含效应子加对照双特异性mAb的对照培养物相比CD4+CD25+Foxp3+细胞在HLA-A*02:01+细胞中的百分比降低来确定Treg的杀伤。第三,在通过标准51Cr释放测定进行的ADCC测定中,将Treg样T淋巴瘤细胞系MAC-2A或T白血病细胞系C5MJ/A2(Foxp3+/HLA-A*02:01+)用作靶标。第四,由于51Cr释放测定不能用于确定较长期的ADCC,使用体外生物发光成像(BLI)方法来测试Foxp3-#32双特异性mAb的ADCC活性。简而言之,在1μg/ml的Foxp3-#32双特异性mAb或其对照双特异性mAb的存在下,将来自HLA-A*02:01阴性供体的PBMC与已转导GFP/荧光素酶的MAC-1或MAC-2A细胞以30:1的E:T比率一起孵育3天,向每孔中添加30μg萤光素,然后成像。通过一式三份的微孔培养物的发光信号的平均值来计算肿瘤的生长。
另外,为了测试mAb是否对正常细胞显示出任何非特异性或靶外毒性(off-targettoxicity),在存在或不存在0.2或1μg/ml Foxp3-#32双特异性mAb或其对照双特异性mAb的情况下将来自HLA-A*02:01阳性或阴性健康供体的PBMC孵育过夜。将细胞洗涤并且用针对人CD3、CD19和CD33的mAb进行染色以确定这些细胞谱系是否被双特异性mAb杀伤。通过台盼蓝排他染色测量总细胞数目。
抗体依赖性细胞毒性(ADCC)
用于ADCC的靶细胞是用或不用Foxp3-TLIp或无关对照肽脉冲的T2细胞,或未用肽脉冲的Foxp3+和HLA-A*02:01+或阴性细胞系MAC2A、C5MJ/A2、C5MJ、Jurkat和HL-60。将不同浓度的Foxp3-#32双特异性mAb或其同种型对照与靶细胞和来自HLA-A*02:01-供体的新鲜PBMC或激活的T细胞以不同的E:T比率一起孵育4-5h。通过标准51Cr释放测定来测量细胞毒性。当激活的T细胞用作效应子时,将通过阴性选择分隔的CD3 T细胞用Dynabead人T激活子CD3/CD28(GibcoTM 11131D,Gibco)刺激5-7天。
结果
在HLA-A*02:01的背景下Foxp3衍生的表位的选择
关于可以诱导T细胞应答的衍生自Foxp3的表位的信息很少。因此,鉴定了可以产生针对Foxp3的细胞毒性CD8 T细胞的免疫原性表位。使用三种基于计算机的预测算法BIMAS(www-bimas.cit.nih.gov/cgi-bin/molbio/ken_parker_comboform)、SYFPEITHI(www.syfpeithi.de/)和RANKPEP(bio.dfci.harvard.edu/Tools/rankpep.html)筛选整个人Foxp3蛋白序列以鉴定针对HLA-A*02:01潜在的高亲和力结合剂。在HLA-A*02:01分子的背景下针对CD8 T细胞的许多衍生自人Foxp3的潜在表位,以测试所述肽是否能够诱导特异性CD8 T细胞应答(表3)。重要的是,预测所有所选HLA-A*02:01结合肽均在C末端被切割,表明被蛋白酶体加工的可能性更高。
表3.FoxP3衍生的肽的序列
位置 序列
p344-353 TLIRWAILEA(SEQ ID NO:328)
p252-260 KLSAMQAHL(SEQ ID NO:329)
p390-398 SLHKCFVRV(SEQ ID NO:330)
p304-312 SLFAVRRHL(SEQ ID NO:331)
p388-396 NLSLHKCFV(SEQ ID NO:332)
p95-103 LLQDRPHFM(SEQ ID NO:333)
p69-77 LQLPTLPLV(SEQ ID NO:334)
在HLA-A*02:01分子的背景下的肽特异性T细胞应答
由于计算机算法不总是能够预测体外或体内活性,因此测试通过HLA-A*02结合在T2细胞上的预测肽的通过其从HLA-HLA-A*02:01+供体中刺激肽特异性CD8 T细胞应答的能力的免疫原性。最初,选择7种肽来测试T细胞应答(表3)。七种肽中的六种(肽304-312除外)在多个供体中一致地诱导肽特异性T细胞应答。由于人Foxp3是相关蛋白的大叉头家族的成员,为了避免在所述家族蛋白内共用的潜在靶外物(off target),选择除其他免疫原性表位以外的肽TLIRWAILEA(位置344-353;“TLI”)作为关注的表位,因为相对于其他Foxp家族成员(诸如Foxp1、2和4),TLI肽具有最小的同源性。有趣的是,还显示这种肽诱导强的肽特异性CD8+T细胞应答,其识别Foxp3+/HLA-A*02:01+皮肤T淋巴瘤细胞(Larsen等人(2013)Leukemia 27:2332-2340)。
将来自多个HLA-A*02:01+供体的CD3+T细胞用TLI肽刺激3至5次,并且通过IFN-γELISPOT和51Cr释放测定测量肽特异性T细胞应答。经过四轮刺激后,通过IFN-γELISPOT测定,T细胞识别出用TLI肽脉冲的自体CD14+单核细胞,但识别不出单独的或用无关HLA-A*02:01结合肽EW脉冲的CD14+APC(图1A)。重要的是,还观察到针对HLA-A*02:01+Foxp3+皮肤T淋巴瘤细胞系MAC-1和MAC-2A的T细胞应答,但未观察到针对Foxp3阴性/HLA-A*02:01阴性T白血病细胞系Jurkat的应答,表明TLI刺激的T细胞可以识别由HLA-A*02:01分子呈递的天然加工的Foxp3表位(图1B)。与IFN-γ分泌的结果一致,TLI肽刺激的T细胞杀伤了用TLI肽脉冲的T2细胞以及未用肽脉冲的MAC-1和MAC-2A细胞,但是没有杀伤HLA-A*02:01阴性Foxp3+细胞系HL-60(图1C和D)。
对在HLA-A*02:01分子的背景下的Foxp3肽TIL具有特异性的模仿TCR的mAb的选择
通过确认Foxp3-TLI肽能够诱导表位特异性T细胞应答(其识别表达Foxp3蛋白的肿瘤细胞),通过使用如先前所描述(Dao等人(2013))的噬菌体展示技术产生对TLI/HLA-A*02:01复合物具有特异性的TCRm mAb。测试所选克隆,以得到其与用TLI或对照肽脉冲的活T2细胞的结合。除去在没有TLI肽的情况下或在HLA-A*02:01结合无关的肽的情况下显示出与T2细胞的结合的任何克隆。基于这些数据以及与表达Foxp3和HLA-A*02:01的活细胞的结合,选择八个scFv克隆用于另外的表征。
对Foxp3 TIL/HLA-A*02:01复合物具有特异性的双特异性mAb的表征
预期对于TCR和TCRm靶标的细胞表面表位密度比对于识别细胞表面蛋白的典型mAb的细胞表面表位密度低50-100倍,这可能限制细胞裂解活性。因此,作为增强TCRm细胞毒性的策略,产生与Foxp3-TLI肽/HLA-A*02:01复合物反应的八个所选克隆的双特异性T细胞衔接器(双特异性mAb)构建体(Dao等人(2015))。针对用或不用Foxp3-TLI或无关肽脉冲的T2细胞以及针对未用肽脉冲的细胞系MAC-1、MAC-2A和Jurkat,测试双特异性mAb。尽管所有双特异性mAb构建体显示出与用Foxp3-TLI肽脉冲的T2细胞的结合,但是它们均不结合单独的或与对照肽一起的T2细胞。此外,仅双特异性mAb Foxp3-#32结合MAC-1和MAC-2A细胞两者,表明其具有足够的亲合力识别天然加工的表位(图2A示出了对MAC-2A的数据)。Foxp3-#32双特异性mAb还结合CD3+T细胞系Jurkat,证明了双特异性mAb的抗CD3臂与CD3的结合。为了排除与JurkaT细胞的非特异性结合,使用小鼠IgG1形式的Foxp3-#32mAb来测试与MAC-2A和JurkaT细胞两者的结合。mAb-Foxp3-#32仅结合MAC-2A,但不结合Jurkat(图2B),证实结合需要HLA-A*02:01表达;MAC-2A,而非Jurkat是HLA-A2阳性的(图2C)。
通过Foxp3-#32双特异性mAb与用类似物TLI肽脉冲的T2细胞的结合来进一步分析Foxp3-#32mAb对肽的氨基酸特异性。将TLI肽在位置1、2、3、4、5、7、8和9处用丙氨酸取代,或在位置10处用甘氨酸取代。位置6已经是丙氨酸,并且将其保持完整。将突变肽负载到T2细胞上,并且测试Foxp3双特异性mAb结合。与天然TLI肽相比,在位置2、5、8、9或10处的丙氨酸或甘氨酸取代强烈降低了Foxp3双特异性mAb的结合,并且在位置4和7处的丙氨酸取代也降低了Foxp3-#32mAb结合,但程度更小(图3A)。在位置2处的结合损失和在位置10处的更小程度的结合损失可能是由于肽与HLA-A*02分子的结合降低,因为这两种肽均在T2稳定测定中显示出降低的结合,而在位置4和7处的变化增加了结合(图3B)。总体而言,mAb Foxp3-#32显示出对于结合,全肽范围的氨基酸要求。这些结果进一步证明了Foxp3双特异性mAb对TLI肽/HLA-A*02:01复合物的特异性。
通过Foxp3-#32mAb识别表达Foxp3和HLA-A*02:01的人Treg和肿瘤细胞
尽管Foxp3-#32mAb已证明对用TLI肽脉冲的T2细胞的选择性结合,测试是否在天然存在的Treg和诱导的Treg中通过HLA-A*02:01分子加工和呈递TLI表位是至关重要的。将与来自健康供体的HLA-A*02:01阳性或阴性PBMC的Treg结合的Foxp3-#32mAb进行比较。将CD4+T细胞对CD25高/CD127低的群体(天然Treg的特征)设门。与在HLA-A*02:01+供体中的其同种型对照相比,主要在CD4+CD25CD127群体中看到Foxp3-#32mAb的结合(图4A,右下方直方图),但与CD4+CD25中/低CD127细胞相比不是(图4A,左下直方图)。mAb Foxp3-#32不结合来自HLA-A*02:01阴性供体的相同CD4+CD25CD127Treg群体(图4B),也不结合来自HLA-A*02:01阳性供体的CD3/CD8双阳性T细胞(补充图1A)。
有很多体外产生Treg的方法,这些方法会产生显著量的Treg进行研究(Levingset al.(2002):Lu等人(2010);Godfrey等人(2004))。因此,为了测试Foxp3-#32mAb是否也能识别可诱导的Treg,通过在IL-2和TGF-β的存在下将来自HLA-A*02:01+供体的纯化CD4+T细胞用allo-PBMC或肿瘤细胞MAC-2A重复刺激产生Treg克隆,因为已显示肿瘤细胞会诱导Treg(同上)。通过肿瘤刺激产生的T细胞导致74%CD4+CD25+细胞的群体(图5A,左上图),其胞质内Foxp3蛋白和Foxp3-#32mAb均为阳性(图5A,左下图)。双重同型对照显示不与Foxp3蛋白或Foxp3-#32mAb结合。当将CD4+CD25+群体设门时,与其同种型对照相比,显示出mAbFoxp3-#32的结合强(图5A,右上图)。mAb-Foxp3-#32与CD4+CD25阴性群体的结合弱。在使用HLA-A*02:01阴性供体进行allo-PBMC刺激产生的Treg中也观察到类似的结果(图5B)。可能的是,除了带有相同设门的标记物的Treg,Foxp3还可能在激活的CD4 T细胞上瞬时表达,或者仲裁门(arbitral gate)可能无法精确反映Treg群体。尽管如此,结果证明Foxp3-#32mAb能够识别衍生自两种不同制备方法的人Treg细胞。
许多类型的人癌细胞表达Foxp3,其与不良的预后和更大的转移潜能相关(Karanikas等人(2008)J Transl Med 6:19-26;Truiulzi等人(2013)J Cell Physiol228:30-35)。特别地,已显示T细胞恶性肿瘤在表型和功能上共享Treg的特征。因此,靶向Foxp3的mAb也可能潜在地杀伤表达Foxp3的肿瘤细胞。除MAC-1和MAC-2A T淋巴瘤细胞系外,T白血病病毒转导的细胞系C5MJ也表达Foxp3。因此,转导具有HLA-A*02:01的C5MJ细胞系,以测试Foxp3-#32mAb是否也可以识别这些细胞中的表位。尽管针对Foxp3蛋白(小鼠IgG2k)和Foxp3-#32(小鼠IgG1)的两种mAb的双重同种型对照对于两种两种mAb均为阴性,但是Foxp3-#32mAb仅结合MAC-2A和C5-MJ/A2细胞两者中的细胞质Foxp3+群体(图5C)。相比之下,Foxp3-#32mAb的小鼠IgG1同种型不结合细胞质Foxp3蛋白阳性群体。结果因此显示Foxp3-#32mAb与Foxp3+/HLA-A*02:01阳性癌细胞结合。然而,由于没有可行的A02+/Foxp3敲除系,因此不确定与这些癌细胞系的结合可归因于TLI肽表达的程度(与其他可能的靶外交叉反应肽相比)。
Foxp3-#32双特异性mAb介导的针对在HLA-A*02:01的背景下的Foxp3+Treg和肿瘤细胞的T细胞细胞毒性
已经证明了Foxp3-#32与Foxp3+HLA-A2+细胞的结合,接下来测试Foxp3-#32双特异性mAb是否介导细胞裂解活性,诸如ADCC。首先,在存在或不存在Foxp3-#32-双特异性mAb或其对照双特异性mAb的情况下,将用TLI或对照HLA-A*02:01结合肽CT脉冲的T2细胞与用作效应子的人PBMC一起孵育。Foxp3-#32双特异性mAb介导针对用TLI肽脉冲的T2细胞的特异性有效的杀伤活性,但对单独的或用对照肽脉冲的T2细胞不是如此(图6A),对Foxp3阴性/HLA-A*02:01阴性细胞系HL-60也不是如此(图6B-D)。类似地,在Foxp3-#32-双特异性mAb的存在下,PBMC在所指示的浓度下对Treg样T淋巴瘤细胞系MAC-1和MAC2A细胞显示出剂量依赖性杀伤(图6C和D)。MAC-1和MAC-2A细胞系均不表达CD3,并且抗CD3 mAb的scFv臂不介导针对这些细胞系的T细胞细胞毒性。
当激活的T细胞用作效应子时,Foxp3-#32双特异性mAb介导的针对抗MAC-2A细胞的杀伤进一步增强。另外,Foxp3-#32双特异性mAb介导针对转导了HLA-A*02:01的另一种Treg样T白血病细胞系C5MJ的T细胞杀伤,但对其亲本细胞C5MJ不是如此,对JurkaT细胞也不是如此。这些结果进一步证实,Foxp3-#32双特异性mAb能够杀伤表达Foxp3和HLA-A*02:01两者的肿瘤细胞(图6E-H),并且上面提到了关于也可能有助于反应性的靶外交叉反应肽的作用的类似解释。
用一组Treg标记物通过使用流式细胞术分析,测试Foxp3-#32双特异性mAb的ADCC功能是否能够从PBMC中选择性地消耗天然Treg。由于mAb靶向Foxp3衍生的表位,表达真正Treg标记物的细胞中Foxp3+群体的减少将为Foxp3+Treg的消耗提供更直接的证据。将来自HLA-A*02:01阳性或阴性供体两者的PBMC与Foxp3-#32双特异性mAb或对照双特异性mAb一起孵育一至三天。采用若干种设门策略:首先,对淋巴细胞群体设门,然后对CD4+CD127高(常规T细胞)或CD127低(Treg)群体设门,然后对两组标记物:CD25与胞质内Foxp3或CD45RA与胞质内Foxp3进行设门。示出了孵育两天后的代表性流式细胞术分析(图7A)。单独的PBMC和用对照双特异性mAb处理的PBMC(分别为顶行和底行)显示出相似的图案,其具有大约30%CD4+CD127高和5%CD4+CD127低的群体。用Foxp3-#32双特异性mAb处理的细胞(中间行)最低限度地改变这两个群体的百分比(左列图)。此外,仅在CD4+CD127低中检测到CD25+胞质内Foxp3+细胞,而在CD4+CD127高的群体中则没有检测到,因为静息的常规T细胞既不表达CD25,也不表达Foxp3(参见中图与右图)。与用对照双特异性mAb处理的细胞或不用双特异性mAb处理的细胞相比,用FoxP3-#32双特异性mAb处理的CD25+Foxp3+细胞中减少了约60%(中间列,中间行与中间列,顶行或底行)。数据与从PBMC中选择性除去Treg群体一致。
由于在Foxp3-#32双特异性mAb处理组中CD4+CD127低的群体增加,因此为进一步确认细胞减少是Foxp3+Treg的绝对消耗还是相对消耗,使用一组更详细的标记物来进一步分析这两个群体(图7B),PBMC和用对照双特异性mAb处理的PBMC显示出两个Treg亚群的类似百分比。(为清楚起见,这些亚群在第一个图中用罗马数字I到V标记,并且设门框中每种细胞类型的百分比由数字指示。)上图示出了CD127低细胞,并且下图示出了CD127高细胞。当将细胞用Foxp3-#32双特异性mAb处理时,所有FoxP3阳性细胞群体均被消耗:部分I(初始Treg)和II(效应子和终末分化Treg)以及部分III(非Treg:CD45RA-,Foxp3低)。在两个对照组中,来自部分I和II的总Treg是约28%。引人注目地,用#32双特异性mAb处理的细胞显示这些细胞中减少了近60%。值得注意地,在部分III中Foxp3低的群体的百分比也降低,显示出Foxp3特异性消耗,尽管这些部分III细胞不是经典的Treg。相比之下,与对照双特异性mAb组相比,在Foxp3-#32双特异性mAb处理组中CD45RA+T细胞增加了超过4倍。这表明在通过#32双特异性mAb与Treg靶细胞接合后,初始T细胞被激活成为效应细胞。还表明通过#32双特异性mAb处理没有或最低限度地消耗激活的常规T细胞。在所有三个组的CD45RA+/CD4+/CD127高的群体中未观察到Foxp3+细胞(下部3个图)。
在处理三天后以相同的方式分析细胞时,CD4+/CD127低/CD25+/Foxp3+Treg群体显示出进一步消耗:与对照双特异性mAb处理的组中剩余的78%(减少82%)相比,Foxp3-#32双特异性mAb处理的细胞的群体中剩余14%(图7C)。此外,与对照双特异性mAb中剩余的29%相比,CD45RA低/Foxp3+初始和CD45RA-/Foxp3高效应Treg减少至群体的7%。
早在治疗后的第一天看到在Foxp3-#32双特异性mAb处理的组中CD4+CD25+CD127低和Foxp3+细胞的减少。在PBMC、Foxp3-#32双特异性mAb处理的组和对照双特异性mAb处理的组中,CD4+CD127低的群体为约4%。然而,这三组中CD25+Foxp3+细胞为62.3%、42.5%和57%,显示出30%的减少。CD8+(非CD4+)CD127低的群体显示出无CD25+Foxp3+细胞。另外,在两个单独的实验中,在三个组中处理一至三天后,总细胞数目没有显示出任何显著变化。然而,用Foxp3-#32双特异性mAb处理的细胞中淋巴细胞的百分比显示出最小的减少(图9B)。
在相同的实验中,在HLA-A*02:01阴性供体中Foxp3+Treg未被消耗(图10A)。这些结果证明,在HLA-A*02:01分子的背景下,Foxp3-#32双特异性mAb选择性消耗Foxp3+细胞。
使用来自HLA-A*02:01阳性的卵巢患者的腹水进行类似的实验。用Foxp3-#32双特异性mAb处理两天后,CD4+CD25高/Foxp3+Treg从32%(对照双特异性mAb)降低至4%(图7D)。用另一组标记证实了这一点:CD4+CD127低/Foxp3+群体从24%(对照)降低至3%。还将细胞用具有突变成改善ADCC的Fc区的FoxP3-#32IgG处理(Veomett(2014)),因为在患者腹水中观察到CD33+CD14+单核细胞/巨噬细胞浸润。在用特异性TCRm处理后第2天,效应Treg(部分II)的消耗明显(图10B,上图),并且与未处理的细胞(4.8%)和对照mAb处理的细胞(3.4%)相比,此群体减少至0.4%(图10B,下图)。第2天没有典型的初始Treg群体(部分I)。由于肿瘤样品的异质性,在其他类型的癌症中也已经显示出类似的表型(Tanaka等人(2017)Cell Res 27:109-118)。
为了进一步证实这些结果,产生来自HLA-A*02:01+供体的Treg系(图5B所示的表型),并且将其用作Treg靶标。在存在或不存在Foxp3-#32双特异性mAb或对照双特异性mAb的情况下,将用作靶标的Treg系与来自HLA-A*02:01-阴性供体的纯化T细胞一起孵育过夜。在此之后,通过将细胞用针对HLA-A2和细胞内Foxp3蛋白的mAb染色来测量HLA-A*02:01+T细胞群体中Foxp3+细胞的百分比。由于HLA-A*02:01+细胞仅存在于靶Treg系中,因此HLA-A*02:01和Foxp3双阳性细胞的减少指示Foxp3-#32双特异性mAb介导的针对Treg的细胞毒性(图11A)。虽然用单独的效应PBMC(左上图)或具有对照双特异性mAb的效应子(右下图)处理的对照细胞培养物显示出在共培养物中9%-10%HLA-A*02:01/Foxp3双阳性细胞,但是在Foxp3-#32-双特异性mAb的存在下,HLA-A*02:01+/Foxp3+T细胞的百分比降低了超过60%(左下图)。Foxp3+/HLA-A*02:01阴性细胞(效应T细胞,可能通过Treg allo刺激激活)未被Foxp3-#32mAb杀伤,指示HLA-A2限制mAb的识别。从第二Treg系#2获得类似的结果(图11B)。这些结果证明,针对在HLA-A*02:01分子的背景下的人Treg,Foxp3-#32-双特异性mAb能够识别和介导T细胞细胞毒性。
为了测试Foxp3-#32-双特异性mAb对Foxp3+/HLA-A*02:01+细胞的长期细胞毒性作用,在Foxp3-#32-或对照双特异性mAb的存在下将GFP/荧光素酶+MAC-1或MAC-2A细胞与来自HLA-A*02:01阴性供体的效应PBMC一起孵育,并且三天后测量总生物发光强度(BLI)。看到Foxp3-#32双特异性mAb对MAC-2A的显著细胞毒性,因为几乎没有靶BLI信号残留,指示了在Foxp3-#32-双特异性mAb的存在下MAC-2A细胞被杀伤(图11C)。对于MAC-1细胞系也观察到了类似的结果。
在HLA-A*02:01的背景下对于Mab Foxp3-#32的潜在靶外物
已知αβTCR具有与其他肽/MHC复合物显著的交叉反应性(Oates等人(2015)MolImmunol 67:67-74;Attaf等人(2015)Clin Exp Immunol 181:1-18)。从理论上,TCRm mAb可能具有并且确实具有相似的特性,因为TCR和TCRm mAb两者都识别嵌入在MHC I类结合槽中的短线性肽表位,并且外显子组中的其他肽可能共享允许结合的氨基酸同源性或理化特征。使用被肽脉冲的T2细胞筛选衍生自各种蛋白质的95种HLA-A2结合肽。Foxp3-#32mAb仅识别衍生自两种次要抗原HA-1和HA-8的两种肽(图12);这两种肽与Foxp3-TLI表位共享C末端亮氨酸和谷氨酸。如上所示(图3),TLI的位置#8是Foxp3-#32mAb识别的关键残基之一。
然而,为了测试由于这些细胞中可能表达的靶外表位而导致Foxp-#32mAb是否能够具有针对正常造血细胞的细胞毒性,在Foxp3-#32-双特异性mAb的存在下将来自3个正常健康供体的PBMC孵育过夜,所述供体是HLA-A*02:01阳性或阴性的。尽管对照MAC-1细胞完全被Foxp3-#32-双特异性mAb杀伤(图8),但是在HLA-A*02:01阳性或阴性供体中未检测到T(CD3+)、B(CD19+)和单核细胞(CD33+)的显著减少。
讨论
由于不存在Treg特异性表面标记物,也不存在药物可及的Treg特异性途径,因此在不损害抗肿瘤免疫力的情况下消耗或干扰Treg的功能的治疗策略的开发一直具有挑战性。Treg的特异性消耗的障碍之一是,Treg和效应T细胞两者都可以展现出激活的表型,特别是在关键细胞表面蛋白的表达模式中;两种细胞类型均表达高水平的CD25、CTLA-4、OX40和GITR(Schaer等人(2012)Curr Opin Immunol 24(2):217-224)。尽管Treg表达CTLA-4,但是临床研究结果表明,抗CTLA-4治疗的作用主要是由于效应T细胞的激活增强(Colombo等人(2007)Nat Rev Cancer 7:880-887)。最近的研究显示,C-C趋化因子受体4(CCR4)是CC趋化因子CCL17和CCl22的同源受体,主要在黑色素瘤患者的TIL中的效应Treg(eTreg;CD45RA-Foxp3CD4+)中表达,而且也在其他各种细胞类型中表达。当用NY-ESO-1肽刺激时,使用抗CCR4mAb体外消耗此群体会增强T细胞应答(Sugiyama等人(2013)PNAS 110(44):17945-17950),并且在患有T细胞白血病-淋巴瘤的治疗患者中,Treg部分减少并且NY-ESO-1特异性CD8 T细胞应答加强(Ogura等人(2014)J Clin Oncol 32(11):1157-1163;Ishida等人(2017)Cancer Sci 108(10):2022-2029)。类似地,使用同源配体或激动mAb靶向GITR已显示在鼠癌症模型中有效。然而,此类策略的临床功效仍需在人试验中进行研究。
Foxp3+Treg细胞被癌细胞募集,并且显著富集在癌症患者的肿瘤微环境、外周血或腹水中。在TIL中,效应T细胞与Treg的比率可以在包括卵巢癌、乳腺癌、非小细胞肺癌、肝细胞癌、肾细胞癌、胰腺癌和胃癌的多种癌症中预测疾病结果。Delleuw等人(2012)ClinCancer Res 18:3022-3029;Colombo(2007))。有趣的是,Foxp3的免疫抑制功能不限于Treg细胞,这进一步支持了Foxp3在肿瘤抑制微环境中的重要作用(Karanikas(2008);Truiulzi(2013))。在大多数胰腺癌中检测到Foxp3表达(Hinz等人(2007)Cancer Res 2007;67(17):8344-8350),并且这些细胞在体外诱导对T细胞增殖的完全抑制;潜在地通过使用siRNA沉默Foxp3基因表达来部分地废除这种作用。在以在白血病细胞中组成性表达CD4和CD25并且具有明显的免疫缺陷状态为特征的成人T白血病(ATL)患者中也表明了Foxp3的免疫抑制功能(Heid等人(2009)J Invest Dermatol 129:2875-2885;Matsubara等人(2005)Leukemia19:482-483)。
Foxp3是鉴定并且选择性杀伤Treg的有吸引力的靶标,并且可以在人PBMC中、尤其是在癌症患者中检测到Foxp3特异性细胞毒性CD8 T细胞(Larsen(2013))。先前的研究证明了通过使用肽特异性CTL的方法靶向细胞内Foxp3的可能性。这里的这些结果与早期研究一致,并且形成了制造针对此表位的TCRm mAb的前提。
激活的T细胞(非Treg)也可以瞬时表达Foxp3(Wang等人(2007)EJ Immunol 37:129-138)。然而,激活的CD4+CD25+T细胞和Treg可以通过CD127(IL-7受体的α链)的表达水平来区分(Seddiki等人(2006)J Exp Med 203(7):1693-1700;Liu等人(2006)J Exp Med203(7):1701-1711)。
Liu,W.等人,CD127表达与Foxp3和人CD4+Treg细胞的抑制功能成反向相关,Treg表达低水平的CD127,而常规T细胞表达高水平的CD127。证明了TCRm mAb Foxp3-#32仅与HLA-A*02:01+健康供体中CD4+T细胞的CD127低/CD25高/Foxp3高的群体结合(图4)。引人注目地,当将来自HLA-A*02:01+供体的PBMC用mAb处理时,检测到Foxp3-#32双特异性mAb选择性消耗这个小的Treg群体。使用另一组标记物CD45RA与Foxp3表达来证实这种选择性。效应Treg和初始(静息的)Treg(部分I和II)以及部分III(图7A)都被消耗,证明了Foxp3特异性消耗。重要的是,还检测到由Foxp3-#32双特异性mAb和Fc增强的IgG1导致的来自患有卵巢癌的HLA-A*02:01阳性患者的腹水中的“TIL”的Foxp3选择性消耗(图7D和补充图1B)。
同样,当测试体外诱导的Treg的与mAb Foxp3-#32的结合时,mAb仅结合CD4+CD25的群体,而不结合CD25/阴性群体。肽/MHC表位典型地以极低的密度发现于靶细胞上,使识别和细胞毒性变得困难。因此,Foxp3TCRm mAb将仅与Foxp3表达最高的细胞结合。这为设计有效的组合疗法开辟了可能的治疗窗口和方法,通过首先使用针对Foxp3表位的TCRm mAb消耗Treg,然后激活和扩增效应T细胞的策略(诸如疫苗接种或检查点阻断)。另外,由于治疗性抗Treg抗体的目标是打乱T细胞的平衡以利于CD8和CD4 T细胞的抗癌活性,因此与针对癌细胞本身的抗体的情况不同,可能不需要完全消除靶Treg细胞;此外,可能不需要绝对的特异性。
TCRm mAb结合其靶标的特性与典型抗体的特性的不同之处在于具有限制临床效用的潜力的方式。肽必须经过加工并且以足以被TCRm识别的量呈递;这些过程的控制仍知之甚少,并且可能受到细胞的激活状态的影响(Chang等人(2016)Expert Opin Biol Ther16(8):979-987)。由于表位是在HLA槽的约束内的线性肽,因此如果由其他细胞呈递,则与靶外肽结合是可能的,这在TCR和TCRm mAb两者的情况下均已见到(Chang等人(2016);Ataie等人(2016)J.Mol.Biol 428(1):194-205)。然而,结合不总是等同于细胞毒性。尽管未见到双特异性mAb形式的此TCRm针对任何PBMC的显著杀伤(图8),也未见到与已知结合HLA-A*02:01的95种其他肽中的93种结合(图12),但是在推进TCRm(诸如这种)进入全身临床使用之前,将需要更好地定义在其他细胞上呈递的可能靶外物(在分子水平上和在细胞水平上两者)。
以下是本发明的实施方案的非限制性列表:
实施方案1:一种制造工程化免疫细胞的方法,其包括:使包含多个免疫细胞的样品与(a)编码工程化受体的载体;和(b)叉头框P3(FoxP3)靶向剂接触,从而产生包含所述载体的工程化免疫细胞。
实施方案2:根据实施方案1所述的方法,其中所述多个免疫细胞包括一个或多个外周血单核细胞(PBMC)。
实施方案3:根据实施方案2所述的方法,其中所述一个或多个PBMC包括白细胞。
实施方案4:根据实施方案3所述的方法,其中所述白细胞是淋巴细胞。
实施方案5:根据实施方案4所述的方法,其中所述淋巴细胞是T细胞。
实施方案6:根据实施方案5所述的方法,其中所述T细胞是效应T细胞。
实施方案7:根据实施方案6所述的方法,其中所述效应T细胞是细胞毒性T细胞。
实施方案8:根据实施方案7所述的方法,其中所述细胞毒性T细胞是分化簇8阳性(CD8+)T细胞。
实施方案9:根据实施方案6所述的方法,其中所述效应细胞是辅助T细胞。
实施方案10:根据实施方案9所述的方法,其中所述辅助T细胞是分化簇4阳性(CD4+)T细胞。
实施方案11:根据实施方案5所述的方法,其中所述T细胞是调节性T细胞。
实施方案12:根据实施方案1至11中任一项所述的方法,其中所述多个免疫细胞包括一个或多个FoxP3表达细胞(即,FoxP3+细胞)。
实施方案13:根据实施方案1至12中任一项所述的方法,其中所述多个免疫细胞包括一个或多个不表达FoxP3的细胞。
实施方案14:根据实施方案1至13中任一项所述的方法,其中所述多个免疫细胞包括一个或多个FoxP3表达细胞和一个或多个不表达FoxP3的细胞。
实施方案15:根据实施方案1至14中任一项所述的方法,其中所述样品与所述FoxP3靶向剂的接触使所述样品中FoxP3阳性(FoxP3+)细胞的数目减少。
实施方案16:根据实施方案15所述的方法,其中与在与所述FoxP3靶向剂接触之前所述样品中FoxP3+细胞的数目相比,所述样品与所述FoxP3靶向剂的接触使所述样品中FoxP3+细胞的数目减少至少约30%、40%、50%、60%、70%、80%、90%或更多。
实施方案17:根据实施方案15所述的方法,其中与在未与所述FoxP3靶向剂接触的对照样品中FoxP3+细胞的数目相比,所述样品与所述FoxP3靶向剂的接触使所述样品中FoxP3+细胞的数目减少至少约30%、40%、50%、60%、70%、80%、90%或更多。
实施方案18:根据实施方案12至17中任一项所述的方法,其中裂解或杀伤所述一个或多个FoxP3表达细胞中的至少一个。
实施方案19:根据实施方案12至18中任一项所述的方法,其中将所述一个或多个FoxP3表达细胞中的至少一个与所述不表达FoxP3的细胞分离。
实施方案20:根据实施方案12至19中任一项所述的方法,其中裂解或杀伤所述一个或多个FoxP3表达细胞中的至少一个,并且将所述一个或多个FoxP3表达细胞中的至少一个与所述不表达FoxP3的细胞分离。
实施方案21:根据实施方案1至20中任一项所述的方法,其中使所述样品与所述FoxP3靶向剂接触包括使所述样品与两种或更多种不同的FoxP3靶向剂接触。
实施方案22:根据实施方案1至20中任一项所述的方法,其中在与所述载体接触之前,使所述样品与所述FoxP3靶向剂接触。
实施方案23:根据实施方案22所述的方法,其中在所述样品与所述载体接触之前至少4、6、8、10、12、16、20、24、36、或48小时进行所述样品与所述FoxP3靶向剂的接触。
实施方案24:根据实施方案1至20中任一项所述的方法,其中使所述样品同时与所述FoxP3靶向剂和所述载体接触。
实施方案25:根据实施方案1至20中任一项所述的方法,其中在与所述载体接触之后,使所述样品与所述FoxP3靶向剂接触。
实施方案26:根据实施方案25所述的方法,其中在所述样品与所述FoxP3靶向剂接触之前至少12、24、36、48、60、72、84、96、108、120、132、或144小时进行所述样品与所述载体的接触。
实施方案27:根据实施方案1至26中任一项所述的方法,其中所述工程化受体选自嵌合抗原受体(CAR)、嵌合抗体-T细胞受体(caTCR)、和工程化T细胞受体(eTCR)。
实施方案28:根据实施方案27所述的方法,其中所述工程化受体是CAR。
实施方案29:根据实施方案28所述的方法,其中所述CAR包含至少一个细胞外抗原结合结构域。
实施方案30:根据实施方案29所述的方法,其中所述至少一个细胞外抗原结合结构域包含单链可变区片段(scFv)。
实施方案31:根据实施方案28至30中任一项所述的方法,其中所述CAR包含至少一个细胞内信号传导结构域。
实施方案32:根据实施方案31所述的方法,其中所述至少一个细胞内信号传导结构域包含CD3ζ多肽或其片段。
实施方案33:根据实施方案27所述的方法,其中所述工程化受体是caTCR。
实施方案34:根据实施方案33所述的方法,其中所述caTCR包含:(a)第一多肽链,所述第一多肽链包含:包含VH抗体结构域的第一抗原结合结构域和包含第一TCR跨膜结构域(TCR-TM)的第一TCR结构域(TCRD);和(b)第二多肽链,所述第二多肽链包含:包含VL抗体结构域的第二抗原结合结构域和包含第二TCR-TM的第二TCRD,其中第一抗原结合结构域的VH结构域和第二抗原结合结构域的VL结构域形成特异性结合靶抗原的抗原结合模块,并且其中第一TCRD和第二TCRD形成能够募集至少一个TCR相关的信号传导模块的TCR模块(TCRM)。
实施方案35:根据实施方案34所述的方法,其中所述第一TCR-TM衍生自第一天然存在的TCR的一个跨膜结构域,并且所述第二TCR-TM衍生自所述第一天然存在的TCR的其他跨膜结构域。
实施方案36:根据实施方案35所述的方法,其中所述第一天然存在的TCR是γ-δTCR。
实施方案37:根据实施方案34至36中任一项所述的方法,其中所述第一多肽链进一步包含在所述第一抗原结合结构域与所述第一TCRD之间的第一肽接头,并且所述第二多肽链进一步包含在所述第二抗原结合结构域与所述第二TCRD之间的第二肽接头。
实施方案38:根据实施方案37所述的方法,其中所述第一肽接头和/或第二肽接头单独地包含来自免疫球蛋白或TCR亚基的恒定结构域或其片段。
实施方案39:根据实施方案38所述的方法,其中所述第一肽接头和/或第二肽接头单独地包含CH1、CH2、CH3、CH4、或CL抗体结构域、或其片段。
实施方案40:根据实施方案39所述的方法,其中所述第一肽接头和/或第二肽接头单独地包含Cα、Cβ、Cγ、或CδTCR结构域、或其片段。
实施方案41:根据实施方案27所述的方法,其中所述工程化受体是eTCR。
实施方案42:根据实施方案41所述的方法,其中所述eTCR包含抗原/MHC结合区。
实施方案43:根据实施方案42所述的方法,其中所述抗原/MHC结合区衍生自天然存在的TCR的抗原/MHC结合区。
实施方案44:根据实施方案1至43中任一项所述的方法,其中所述工程化受体与细胞表面抗原结合。
实施方案45:根据实施方案44所述的方法,其中所述细胞表面抗原选自蛋白质、碳水化合物、和脂质。
实施方案46:根据实施方案45所述的方法,其中所述细胞表面抗原选自分化簇19(CD19)、CD20、CD47、磷脂酰肌醇蛋白聚糖3(GPC-3)、受体酪氨酸激酶样孤儿受体1(ROR1)、ROR2、B细胞成熟抗原(BCMA)、G蛋白偶联受体C类5组成员D(GPRC5D)、和Fc受体样5(FCRL5)。
实施方案47:根据实施方案46所述的方法,其中所述细胞表面抗原是CD19。
实施方案48:根据实施方案1至43中任一项所述的方法,其中所述工程化受体与包含肽和主要组织相容性复合物(MHC)蛋白的复合物结合。
实施方案49:根据实施方案48所述的方法,其中所述肽衍生自选自以下的蛋白质:威尔姆氏肿瘤基因1(WT-1)、α-胎蛋白(AFP)、人乳头状瘤病毒16E7蛋白(HPV16-E7)、纽约食管鳞状细胞癌1(NY-ESO-1)、黑色素瘤优先表达抗原(PRAME)、爱泼斯坦-巴尔病毒-潜伏膜蛋白2α(EBV-LMP2A)、人免疫缺陷病毒1(HIV-1)、KRAS、组蛋白H3.3、和前列腺特异性抗原(PSA)。
实施方案50:根据实施方案49所述的方法,其中所述肽衍生自AFP。
实施方案51:根据实施方案50所述的方法,其中衍生自AFP的肽包含序列FMNKFIYEI。
实施方案52:根据实施方案48所述的方法,其中所述MHC蛋白是MHC I类蛋白。
实施方案53:根据实施方案52所述的方法,其中所述MHC I类蛋白是HLA-A02等位基因的HLA-A*02:01亚型。
实施方案54:根据实施方案1至53中任一项所述的方法,其中所述工程化受体是多特异性的。
实施方案55:根据实施方案1至53中任一项所述的方法,其中所述工程化受体是单特异性的。
实施方案56:根据实施方案1至55中任一项所述的方法,其中编码所述工程化受体的所述载体是哺乳动物表达载体。
实施方案57:根据实施方案56所述的方法,其中所述哺乳动物表达载体是慢病毒载体或转座子载体。
实施方案58:根据实施方案1至57中任一项所述的方法,其中所述FoxP3靶向剂是抗体、CAR、caTCR、或eTCR,或包含其抗原结合片段。
实施方案59:根据实施方案1至57中任一项所述的方法,其中所述FoxP3靶向剂是TCR分子或包含TCR分子的抗原结合部分。
实施方案60:根据实施方案1至59中任一项所述的方法,其中所述FoxP3靶向剂包含抗原结合蛋白,所述抗原结合蛋白与包含FoxP3衍生的肽和MHC蛋白的复合物结合。
实施方案61:根据实施方案60所述的方法,其中所述MHC蛋白是MHC I类蛋白。
实施方案62:根据实施方案61所述的方法,其中所述MHC I类蛋白是人白细胞抗原(HLA)I类分子。
实施方案63:根据实施方案62所述的方法,其中所述HLA I类分子是HLA-A。
实施方案64:根据实施方案63所述的方法,其中所述HLA-A是HLA-A2。
实施方案65:根据实施方案64所述的方法,其中所述HLA-A2是HLA-A*02:01。
实施方案66:根据实施方案60至65中任一项所述的方法,其中所述抗原结合蛋白是抗体、CAR、或caTCR。
实施方案67:根据实施方案66所述的方法,其中所述抗原结合蛋白是单特异性的。
实施方案68:根据实施方案66所述的方法,其中所述抗原结合蛋白是全长抗体。
实施方案69:根据实施方案68所述的方法,其中所述抗原结合蛋白是IgG。
实施方案70:根据实施方案68或69所述的方法,其中将所述抗原结合蛋白与固体支持物偶联。
实施方案71:根据实施方案70所述的方法,其中所述固体支持物选自珠粒、微孔、和平面玻璃表面。
实施方案72:根据实施方案71所述的方法,其中所述珠粒选自磁性珠粒、交联聚合物珠粒、和珠粒状琼脂糖。
实施方案73:根据实施方案66所述的方法,其中所述抗原结合蛋白是多特异性的。
实施方案74:根据实施方案73所述的方法,其中所述抗原结合蛋白是双特异性抗体。
实施方案75:根据实施方案74所述的方法,其中所述双特异性抗体包含:(a)对包含FoxP3肽和MHC蛋白的复合物具有特异性的抗原结合结构域,和(b)对分化簇3(CD3)具有特异性的抗原结合结构域。
实施方案76:根据实施方案66、67和73中任一项所述的方法,其中所述抗原结合蛋白是嵌合抗原受体(CAR)。
实施方案77:根据实施方案76所述的方法,其中所述FoxP3靶向剂是抗FoxP3 CAR-T细胞。
实施方案78:根据实施方案60至77中任一项所述的方法,其中所述FoxP3衍生的肽片段具有8至12个氨基酸的长度。
实施方案79:根据实施方案60至78中任一项所述的方法,其中所述FoxP3衍生的肽片段选自具有SEQ ID NO:2中列出的氨基酸序列或其一部分的FoxP3-1、具有SEQ ID NO:3中列出的氨基酸序列或其一部分的FoxP3-2、具有SEQ ID NO:4中列出的氨基酸序列或其一部分的FoxP3-3、具有SEQ ID NO:5中列出的氨基酸序列或其一部分的FoxP3-4、具有SEQ IDNO:6中列出的氨基酸序列或其一部分的FoxP3-5、具有SEQ ID NO:7中列出的氨基酸序列或其一部分的FoxP3-6;和具有SEQ ID NO:8中列出的氨基酸序列或其一部分的FoxP3-7。
实施方案80:根据实施方案79所述的方法,其中所述FoxP3衍生的肽片段是具有SEQ ID NO:8中列出的氨基酸序列或其一部分的FoxP3-7。
实施方案81:根据实施方案79所述的方法,其中所述抗原结合蛋白包含:(i)包含SEQ ID NO:16中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:17中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:18中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:19中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:20中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:21中列出的氨基酸序列的轻链可变区CDR3;(ii)包含SEQ ID NO:22中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:23中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:24中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:25中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:26中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:27中列出的氨基酸序列的轻链可变区CDR3;(iii)包含SEQ ID NO:28中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:29中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:30中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:31中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:32中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:33中列出的氨基酸序列的轻链可变区CDR3;(iii)包含SEQ ID NO:34中列出的氨基酸序列的重链可变区CDR1;包含SEQID NO:35中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:36中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:37中列出的氨基酸序列的轻链可变区CDR1;包含SEQID NO:38中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:39中列出的氨基酸序列的轻链可变区CDR3;(iv)包含SEQ ID NO:40中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:41中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:42中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:43中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:44中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:45中列出的氨基酸序列的轻链可变区CDR3;(v)包含SEQ ID NO:46中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:47中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:48中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:49中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:50中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:51中列出的氨基酸序列的轻链可变区CDR3;(vi)包含SEQ ID NO:52中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:53中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:54中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:55中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:56中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ IDNO:57中列出的氨基酸序列的轻链可变区CDR3;或(vii)包含SEQ ID NO:58中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:59中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:60中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:61中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:62中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:63中列出的氨基酸序列的轻链可变区CDR3。
实施方案82:根据实施方案81所述的方法,其中所述抗原结合蛋白包含:包含SEQID NO:46中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:47中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:48中列出的氨基酸序列的重链可变区CDR3;包含SEQID NO:49中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:50中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:51中列出的氨基酸序列的轻链可变区CDR3。
实施方案83:根据实施方案29或实施方案34所述的方法,其中实施方案29的至少一个细胞外抗原结合结构域或实施方案34的抗原结合模块与CD19结合,并且包含:(i)分别包含与SEQ ID NO:105、106和107至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的重链CDR1、CDR2和CDR3;和/或(ii)分别包含与SEQ ID NO:109、110或111至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的轻链CDR1、CDR2和CDR3;(ii)分别包含与SEQ ID NO:105、106和108至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的重链CDR1、CDR2和CDR3;和/或(ii)分别包含与SEQ ID NO:109、110或111至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的轻链CDR1、CDR2和CDR3;(iii)分别包含与SEQ ID NO:105、106和107至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的重链CDR1、CDR2和CDR3;和/或(ii)分别包含与SEQ ID NO:109、110或112至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的轻链CDR1、CDR2和CDR3;或(iv)分别包含与SEQ ID NO:105、106和108至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的重链CDR1、CDR2和CDR3;和/或(ii)分别包含与SEQ ID NO:109、110或112至少80%、至少85%、至少90%或至少95%相同的氨基酸序列的轻链CDR1、CDR2和CDR3。
实施方案84:根据实施方案1至58中任一项所述的方法,其中所述FoxP3靶向剂包含FoxP3靶向CAR,并且其中所述FoxP3靶向CAR与包含FoxP3肽和主要组织相容性复合物(MHC)蛋白的复合物结合。
实施方案85:根据实施方案84中任一项所述的方法,其中所述FoxP3靶向CAR包含scFv,所述scFv与包含FoxP3肽和主要组织相容性复合物(MHC)蛋白的复合物结合。
实施方案86:根据实施方案85中任一项所述的方法,其中所述FoxP3靶向CAR进一步包含与scFv融合的CD28-CD3ζ肽。
实施方案87:根据实施方案86中任一项所述的方法,其中所述FoxP3靶向CAR包含具有与SEQ ID NO:12至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的scFv-CD28-CD3ζ融合体。
实施方案88:根据实施方案85中任一项所述的方法,其中所述FoxP3靶向CAR进一步包含与scFv融合的41BB-CD3ζ肽。
实施方案89:根据实施方案88中任一项所述的方法,其中所述FoxP3靶向CAR包含具有与SEQ ID NO:13至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的scFv-41BB-CD3ζ融合体。
实施方案90:根据实施方案1至58中任一项所述的方法,其中所述FoxP3靶向剂包含FoxP3靶向caCAR,并且其中所述FoxP3靶向caCAR与包含FoxP3肽和主要组织相容性复合物(MHC)蛋白的复合物结合。
实施方案91:根据实施方案90所述的方法,其中所述FoxP3靶向caTCR包含:(a)第一多肽链,所述第一多肽链包含:包含VH抗体结构域的第一抗原结合结构域和包含第一TCR跨膜结构域(TCR-TM)的第一TCR结构域(TCRD);和(b)第二多肽链,所述第二多肽链包含:包含VL抗体结构域的第二抗原结合结构域和包含第二TCR-TM的第二TCRD,其中第一抗原结合结构域的VH结构域和第二抗原结合结构域的VL结构域形成特异性结合靶抗原的抗原结合模块,并且其中第一TCRD和第二TCRD形成能够募集至少一个TCR相关的信号传导模块的TCR模块(TCRM)。
实施方案92:根据实施方案91所述的方法,其中所述第一TCR-TM衍生自第一天然存在的TCR的一个跨膜结构域,并且所述第二TCR-TM衍生自所述第一天然存在的TCR的其他跨膜结构域。
实施方案93:根据实施方案92所述的方法,其中所述第一天然存在的TCR是γ-δTCR。
实施方案94:根据实施方案91所述的方法,其中所述caTCR包含具有与SEQ ID NO:15至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的抗FoxP3轻链/γ链融合体。
实施方案95:根据实施方案91所述的方法,其中所述caTCR包含具有与SEQ ID NO:14至少80%、至少85%、至少90%、或至少95%相同的氨基酸序列的抗FoxP3重链/δ链融合体。
实施方案96:一种用于消耗包含表达工程化受体的工程化免疫细胞的治疗组合物中的FoxP3阳性细胞的方法,所述方法包括使所述治疗组合物与FoxP3靶向剂接触。
实施方案97:一种用于富集样品中表达工程化受体的细胞毒性T细胞的方法,其包括使所述样品与FoxP3靶向剂接触。
实施方案98:一种组合物,其包含:(a)工程化免疫细胞,其中所述工程化免疫细胞表达工程化受体;和(b)FoxP3靶向剂。
实施方案99:一种组合物,其包含:(a)编码工程化受体的载体;和(b)FoxP3靶向剂。

Claims (30)

1.一种制造工程化免疫细胞的方法,其包括:使包含多个免疫细胞的样品与(a)编码工程化受体的载体;和(b)叉头框P3(FoxP3)靶向剂接触,从而产生包含所述载体的工程化免疫细胞。
2.根据权利要求1所述的方法,其中所述多个免疫细胞包括一个或多个外周血单核细胞(PBMC)。
3.根据权利要求2所述的方法,其中所述一个或多个PBMC包括T细胞。
4.根据权利要求3所述的方法,其中所述T细胞是细胞毒性T细胞、辅助T细胞、或调节性T细胞。
5.根据权利要求4所述的方法,其中所述细胞毒性T细胞是分化簇8阳性(CD8+)T细胞。
6.根据权利要求4所述的方法,其中所述辅助T细胞是分化簇4阳性(CD4+)T细胞。
7.根据权利要求1-6中任一项所述的方法,其中所述多个免疫细胞包括一个或多个FoxP3阳性(FoxP3+)细胞;或者包括一个或多个FoxP3+细胞和一个或多个不表达FoxP3的细胞。
8.根据权利要求1至7中任一项所述的方法,其中所述样品与所述FoxP3靶向剂的接触使所述样品中FoxP3+细胞的数目减少。
9.根据权利要求8所述的方法,其中与在与所述FoxP3靶向剂接触之前所述样品中FoxP3+细胞的数目相比,所述样品与所述FoxP3靶向剂的接触使所述样品中FoxP3+细胞的数目减少至少约30%、40%、50%、60%、70%、80%、90%或更多;或者与未与所述FoxP3靶向剂接触的对照样品中FoxP3+细胞的数目相比,使所述样品中FoxP3+细胞的数目减少至少约30%、40%、50%、60%、70%、80%、90%或更多。
10.根据权利要求7-9中任一项所述的方法,其中使所述一个或多个FoxP3+细胞中的至少一个与不表达FoxP3的所述细胞分离。
11.根据权利要求1-10中任一项所述的方法,其中使所述样品与所述FoxP3靶向剂接触包括使所述样品与两种或更多种不同的FoxP3靶向剂接触。
12.根据权利要求1-11中任一项所述的方法,其中在与所述载体接触之前、同时或之后,使所述样品与所述FoxP3靶向剂接触。
13.根据权利要求1-12中任一项所述的方法,其中所述工程化受体选自嵌合抗原受体(CAR)、嵌合抗体-T细胞受体(caTCR)、和工程化T细胞受体(eTCR)。
14.根据权利要求13所述的方法,其中所述CAR包含至少一个细胞外抗原结合结构域和/或至少一个细胞内信号传导结构域。
15.根据权利要求14所述的方法,其中所述至少一个细胞外抗原结合结构域包含单链可变区片段(scFv)和/或所述至少一个细胞内信号传导结构域包含CD3ξ多肽或其片段。
16.根据权利要求1至15中任一项所述的方法,其中所述工程化受体与细胞表面抗原结合。
17.根据权利要求16所述的方法,其中所述细胞表面抗原选自分化簇19(CD19)、CD20、CD47、磷脂酰肌醇蛋白聚糖3(GPC-3)、受体酪氨酸激酶样孤儿受体1(ROR1)、ROR2、B细胞成熟抗原(BCMA)、G蛋白偶联受体C类5组成员D(GPRC5D)、和Fc受体样5(FCRL5)。
18.根据权利要求1至15中任一项所述的方法,其中所述工程化受体与包含肽和主要组织相容性复合物(MHC)蛋白的复合物结合。
19.根据权利要求18所述的方法,其中所述肽衍生自选自以下的蛋白质:威尔姆氏肿瘤基因1(WT-1)、α-胎蛋白(AFP)、人乳头状瘤病毒16E7蛋白(HPV16-E7)、纽约食管鳞状细胞癌1(NY-ESO-1)、黑色素瘤优先表达抗原(PRAME)、爱泼斯坦-巴尔病毒-潜伏膜蛋白2α(EBV-LMP2A)、人免疫缺陷病毒1(HIV-1)、KRAS、组蛋白H3.3、和前列腺特异性抗原(PSA)。
20.根据权利要求1至19中任一项所述的方法,其中编码所述工程化受体的所述载体是哺乳动物表达载体、慢病毒载体或转座子载体。
21.根据权利要求1-20中任一项所述的方法,其中所述FoxP3靶向剂包含抗原结合蛋白,所述抗原结合蛋白是抗体、CAR、caTCR、或eTCRR,或者包含其抗原结合片段;或者是TCR分子或包含TCR分子的抗原结合部分。
22.根据权利要求1-21中任一项所述的方法,其中所述FoxP3靶向剂包含抗原结合蛋白,所述抗原结合蛋白与包含FoxP3衍生的肽和MHC蛋白的复合物结合。
23.根据权利要求21或22所述的方法,其中将所述抗原结合蛋白与固体支持物偶联。
24.根据权利要求21-23中任一项所述的方法,其中所述抗原结合蛋白是双特异性抗体,所述双特异性抗体包含:(a)对包含所述FoxP3肽和MHC蛋白的所述复合物具有特异性的抗原结合结构域,和(b)对分化簇3(CD3)具有特异性的抗原结合结构域。
25.根据权利要求21或22所述的方法,其中所述FoxP3靶向剂是抗FoxP3CAR-T细胞。
26.根据权利要求22至25中任一项所述的方法,其中所述FoxP3衍生的肽片段选自具有EQ ID NO:2中列出的氨基酸序列或其一部分的FoxP3-1、具有SEQ ID NO:3中列出的氨基酸序列或其一部分的FoxP3-2、具有SEQ ID NO:4中列出的氨基酸序列或其一部分的FoxP3-3、具有SEQ ID NO:5中列出的氨基酸序列或其一部分的FoxP3-4、具有SEQ ID NO:6中列出的氨基酸序列或其一部分的FoxP3-5、具有SEQ ID NO:7中列出的氨基酸序列或其一部分的FoxP3-6;和具有SEQ ID NO:8中列出的氨基酸序列或其一部分的FoxP3-7。
27.根据权利要求26所述的方法,其中所述FoxP3靶向剂包含抗原结合蛋白,所述抗原结合蛋白包含:
a.包含SEQ ID NO:16中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:17中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:18中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:19中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:20中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:21中列出的氨基酸序列的轻链可变区CDR3;
b.包含SEQ ID NO:22中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:23中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:24中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:25中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:26中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:27中列出的氨基酸序列的轻链可变区CDR3;
c.包含SEQ ID NO:28中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:29中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:30中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:31中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:32中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:33中列出的氨基酸序列的轻链可变区CDR3;
d.包含SEQ ID NO:34中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:35中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:36中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:37中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:38中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:39中列出的氨基酸序列的轻链可变区CDR3;
e.包含SEQ ID NO:40中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:41中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:42中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:43中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:44中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:45中列出的氨基酸序列的轻链可变区CDR3;
f.包含SEQ ID NO:46中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:47中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:48中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:49中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:50中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:51中列出的氨基酸序列的轻链可变区CDR3;
g.包含SEQ ID NO:52中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:53中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:54中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:55中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:56中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:57中列出的氨基酸序列的轻链可变区CDR3;或
h.包含SEQ ID NO:58中列出的氨基酸序列的重链可变区CDR1;包含SEQ ID NO:59中列出的氨基酸序列的重链可变区CDR2;包含SEQ ID NO:60中列出的氨基酸序列的重链可变区CDR3;包含SEQ ID NO:61中列出的氨基酸序列的轻链可变区CDR1;包含SEQ ID NO:62中列出的氨基酸序列的轻链可变区CDR2;和包含SEQ ID NO:63中列出的氨基酸序列的轻链可变区CDR3。
28.根据权利要求12-27中任一项所述的方法,其中在所述样品与所述FoxP3靶向剂接触之前至少12、24、36、48、60、72、84、96、108、120、132、或144小时进行所述样品与所述载体的接触;或者在所述样品与所述载体接触之前至少4、6、8、10、12、16、20、24、36、或48小时进行所述样品与所述FoxP3靶向剂的接触。
29.一种组合物,其包含:(a)工程化免疫细胞,其中所述工程化免疫细胞表达工程化受体;和(b)FoxP3靶向剂。
30.一种组合物,其包含:(a)编码工程化受体的载体;和(b)FoxP3靶向剂。
CN201980025471.9A 2018-02-15 2019-02-14 Foxp3靶向剂组合物以及用于过继细胞疗法的使用方法 Pending CN112041432A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862631465P 2018-02-15 2018-02-15
US62/631,465 2018-02-15
PCT/US2019/018112 WO2019161133A1 (en) 2018-02-15 2019-02-14 Foxp3 targeting agent compositions and methods of use for adoptive cell therapy

Publications (1)

Publication Number Publication Date
CN112041432A true CN112041432A (zh) 2020-12-04

Family

ID=67618784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980025471.9A Pending CN112041432A (zh) 2018-02-15 2019-02-14 Foxp3靶向剂组合物以及用于过继细胞疗法的使用方法

Country Status (8)

Country Link
US (1) US20220267420A1 (zh)
EP (1) EP3752601A4 (zh)
JP (1) JP2021514188A (zh)
CN (1) CN112041432A (zh)
CA (1) CA3091143A1 (zh)
IL (1) IL276672A (zh)
SG (1) SG11202007697VA (zh)
WO (1) WO2019161133A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021243695A1 (en) * 2020-06-05 2021-12-09 Guangdong Tcrcure Biopharma Technology Co., Ltd. Tcr-t cell therapy targeting epstein-barr virus
WO2024100170A1 (en) * 2022-11-11 2024-05-16 F. Hoffmann-La Roche Ag Antibodies binding to hla-a*02/foxp3

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016172583A1 (en) * 2015-04-23 2016-10-27 Novartis Ag Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
WO2017100428A1 (en) * 2015-12-09 2017-06-15 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of using same
WO2017124001A2 (en) * 2016-01-14 2017-07-20 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for foxp3-derived peptides
CN107106665A (zh) * 2014-06-06 2017-08-29 纪念斯隆-凯特琳癌症中心 靶向间皮素的嵌合抗原受体及其用途
WO2017149515A1 (en) * 2016-03-04 2017-09-08 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
WO2017222593A1 (en) * 2016-06-24 2017-12-28 Icell Gene Therapeutics Llc Chimeric antigen receptors (cars), compositions and methods thereof

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5132405A (en) 1987-05-21 1992-07-21 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
JPS6412935A (en) 1987-07-02 1989-01-17 Mitsubishi Electric Corp Constant-speed travel device for vehicle
US5399346A (en) 1989-06-14 1995-03-21 The United States Of America As Represented By The Department Of Health And Human Services Gene therapy
US20020018783A1 (en) 1997-03-20 2002-02-14 Michel Sadelain Fusion proteins of a single chain antibody and cd28 and uses thereof
US6436703B1 (en) 2000-03-31 2002-08-20 Hyseq, Inc. Nucleic acids and polypeptides
US8106255B2 (en) 2002-01-23 2012-01-31 Dana Carroll Targeted chromosomal mutagenasis using zinc finger nucleases
US20030232410A1 (en) 2002-03-21 2003-12-18 Monika Liljedahl Methods and compositions for using zinc finger endonucleases to enhance homologous recombination
US7446190B2 (en) 2002-05-28 2008-11-04 Sloan-Kettering Institute For Cancer Research Nucleic acids encoding chimeric T cell receptors
US9447434B2 (en) 2002-09-05 2016-09-20 California Institute Of Technology Use of chimeric nucleases to stimulate gene targeting
EP1549748B1 (en) 2002-10-09 2014-10-01 Immunocore Ltd. Single chain recombinant t cell receptors
US7888121B2 (en) 2003-08-08 2011-02-15 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
US8409861B2 (en) 2003-08-08 2013-04-02 Sangamo Biosciences, Inc. Targeted deletion of cellular DNA sequences
US7972854B2 (en) 2004-02-05 2011-07-05 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
CA2579677A1 (en) 2004-09-16 2006-03-30 Sangamo Biosciences, Inc. Compositions and methods for protein production
EP2765195A1 (en) 2006-05-25 2014-08-13 Sangamo BioSciences, Inc. Methods and compositions for gene inactivation
CA2651494C (en) 2006-05-25 2015-09-29 Sangamo Biosciences, Inc. Engineered cleavage half-domains
CA2967847C (en) 2007-03-30 2023-08-01 Memorial Sloan-Kettering Cancer Center Constitutive expression of costimulatory ligands on adoptively transferred t lymphocytes
DE602008003684D1 (de) 2007-04-26 2011-01-05 Sangamo Biosciences Inc Gezielte integration in die ppp1r12c-position
AU2009322964B2 (en) 2008-12-04 2014-10-09 Sangamo Therapeutics, Inc. Genome editing in rats using zinc-finger nucleases
JP5952263B2 (ja) 2010-04-26 2016-07-13 サンガモ バイオサイエンシーズ, インコーポレイテッド ジンクフィンガーヌクレアーゼを使ったrosa遺伝子座のゲノム編集
EP2571512B1 (en) 2010-05-17 2017-08-23 Sangamo BioSciences, Inc. Novel dna-binding proteins and uses thereof
AP2013007142A0 (en) 2011-04-01 2013-09-30 Sloan Kettering Inst Cancer T cell receptor-like antibodies specific for a WT1peptide presented by HLA-A2
SG10201811736QA (en) 2011-09-21 2019-02-27 Sangamo Therapeutics Inc Methods and compositions for regulation of transgene expression
CA2852955C (en) 2011-10-27 2021-02-16 Sangamo Biosciences, Inc. Methods and compositions for modification of the hprt locus
ES2743738T3 (es) 2012-10-02 2020-02-20 Memorial Sloan Kettering Cancer Center Composiciones y métodos para inmunoterapia
AU2013329186B2 (en) 2012-10-10 2019-02-14 Sangamo Therapeutics, Inc. T cell modifying compounds and uses thereof
JP6346266B2 (ja) 2013-03-21 2018-06-20 サンガモ セラピューティクス, インコーポレイテッド 操作されたジンクフィンガータンパク質ヌクレアーゼを使用するt細胞受容体遺伝子の標的化された破壊
GB201313377D0 (en) 2013-07-26 2013-09-11 Adaptimmune Ltd T cell receptors
JP6553069B2 (ja) 2013-11-07 2019-07-31 メモリアル スローン ケタリング キャンサー センター 抗wt1/hla二重特異性抗体
DK3194443T3 (da) 2014-09-17 2021-09-27 Novartis Ag Målretning af cytotoksiske celler med kimære receptorer i forbindelse med adoptiv immunterapi
WO2016142768A1 (en) 2015-03-10 2016-09-15 Eureka Therapeutics, Inc. Ror2 antibody
CA2979732A1 (en) 2015-04-03 2016-10-06 Eureka Therapeutics, Inc. Constructs targeting afp peptide/mhc complexes and uses thereof
CN104793542A (zh) 2015-04-17 2015-07-22 深圳市优必选科技有限公司 一种基于手机控制的机器人系统
EP3297673A4 (en) 2015-05-22 2019-05-08 Memorial Sloan-Kettering Cancer Center FOR A PRAME-PEPTIDE SPECIFIC T-CELL RECEPTOR-SIMILAR ANTIBODIES
WO2016201124A2 (en) 2015-06-09 2016-12-15 Memorial Sloan Kettering Cancer Center T cell receptor-like antibody agents specific for ebv latent membrane protein 2a peptide presented by human hla
CN108337890B (zh) 2015-06-23 2021-10-15 纪念斯隆-凯特琳癌症中心 新型pd-1免疫调节剂
EP3328994A4 (en) 2015-07-31 2019-04-17 Memorial Sloan-Kettering Cancer Center CD56 TARGETING ANTIGEN BINDING PROTEINS AND USES THEREOF
JP2018522907A (ja) * 2015-08-11 2018-08-16 セレクティスCellectis Cd38抗原を標的とするためおよびcd38遺伝子を不活化するために操作された、免疫療法用の細胞
KR20180083859A (ko) 2015-10-13 2018-07-23 유레카 쎄라퓨틱스, 인코포레이티드 인간 cd19에 특이적인 항체 작용제 및 그의 용도
RU2022103665A (ru) 2015-10-23 2022-03-05 Еурека Терапьютикс, Инк. Химерные конструкции антитело/t-клеточный рецептор и их применения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106665A (zh) * 2014-06-06 2017-08-29 纪念斯隆-凯特琳癌症中心 靶向间皮素的嵌合抗原受体及其用途
WO2016172583A1 (en) * 2015-04-23 2016-10-27 Novartis Ag Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
WO2017100428A1 (en) * 2015-12-09 2017-06-15 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of using same
WO2017124001A2 (en) * 2016-01-14 2017-07-20 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for foxp3-derived peptides
WO2017149515A1 (en) * 2016-03-04 2017-09-08 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
WO2017222593A1 (en) * 2016-06-24 2017-12-28 Icell Gene Therapeutics Llc Chimeric antigen receptors (cars), compositions and methods thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G RONCADOR等: "FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma", LEUKEMIA, pages 2247 - 2253 *
韩少荣等: "双特异性抗体与T淋巴细胞抗肿瘤免疫", 国外医学肿瘤学分册, vol. 25, no. 5, pages 268 - 271 *

Also Published As

Publication number Publication date
EP3752601A4 (en) 2022-03-23
EP3752601A1 (en) 2020-12-23
IL276672A (en) 2020-09-30
WO2019161133A1 (en) 2019-08-22
CA3091143A1 (en) 2019-08-22
SG11202007697VA (en) 2020-09-29
US20220267420A1 (en) 2022-08-25
JP2021514188A (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
TWI840351B (zh) T細胞受體及表現其之工程化細胞
US11866725B2 (en) Optimized lentiviral transfer vectors and uses thereof
US12060394B2 (en) Nucleic acid constructs for co-expression of chimeric antigen receptor and transcription factor, cells containing and therapeutic use thereof
JP2023085479A (ja) 合成免疫受容体およびその使用方法
CN109072199B (zh) 靶向Fc受体样5的嵌合抗原受体及其用途
CN110914295B (zh) 抗人乳头瘤病毒(hpv)抗原结合蛋白及其使用方法
US20190375815A1 (en) Treatment of cancer using chimeric t cell receptor proteins having multiple specificities
JP2021525509A (ja) 細胞療法のための多様な抗原結合ドメイン、新規プラットフォームおよびその他の強化
CN111629734A (zh) 用于共刺激的新型平台、新型car设计以及过继性细胞疗法的其他增强
CN109715808A (zh) 用于选择性蛋白质表达的组合物和方法
CN109476722A (zh) 用于改善免疫细胞的功效和扩张的方法
US20210393692A1 (en) Compositions and methods for adoptive cell therapy for cancer
JP2022530542A (ja) キメラ受容体及びその使用方法
KR20230153529A (ko) 다양한 면역세포를 위한 단일사슬 및 다중사슬 합성 항원 수용체
KR20220070449A (ko) 림프구의 변형 및 전달을 위한 방법 및 조성물
WO2021232200A1 (en) Il-12 armored immune cell therapy and uses thereof
WO2021155830A1 (en) Anti-hpv t cell receptors and engineered cells
CN112041432A (zh) Foxp3靶向剂组合物以及用于过继细胞疗法的使用方法
CN117321417A (zh) 确定治疗性细胞组合物的效力的方法
WO2024206166A1 (en) Microenvironment actuated t-cells and uses thereof
CA3225252A1 (en) Engineered t cell receptors fused to binding domains from antibodies
CN117202921A (zh) 用于多种免疫细胞的单链和多链合成抗原受体
CN118978585A (zh) 抗人乳头瘤病毒(hpv)抗原结合蛋白及其使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201204