CN112023903A - 一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法 - Google Patents

一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法 Download PDF

Info

Publication number
CN112023903A
CN112023903A CN202010991890.2A CN202010991890A CN112023903A CN 112023903 A CN112023903 A CN 112023903A CN 202010991890 A CN202010991890 A CN 202010991890A CN 112023903 A CN112023903 A CN 112023903A
Authority
CN
China
Prior art keywords
polydopamine
nano
cationic dye
microsphere
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010991890.2A
Other languages
English (en)
Inventor
吴光瑜
蔡张镇
卢然
冉杰
马丽
田丽婷
邢伟男
韩建刚
李萍萍
朱咏莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202010991890.2A priority Critical patent/CN112023903A/zh
Publication of CN112023903A publication Critical patent/CN112023903A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法,属于吸附材料的合成及其应用领域。该制备方法,包括以下步骤:将乙醇、氨水、多巴胺盐酸盐加入到去离子水中,搅拌一天,离心洗涤干燥后得到聚多巴胺纳米微球。调节pH值后,用高锰酸钾对空心球进行改性,离心干燥后得到聚多巴胺纳米微球‑MnO2。该制备方法简单快速,生产成本较低;所制备的无机纳米粒子修饰的聚多巴胺纳米微球具有尺寸小、比表面积大、物理化学性能出色等优点;能够快速吸附和快速分离阳离子染料,亲和能力强,吸附效果好。

Description

一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺 纳米微球及其制备方法
技术领域
本发明属于吸附材料的合成及其应用领域,具体涉及一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法。
背景技术
印染工业废水具有成分复杂、色度高、可生化性差等特点,如何有效地解决其对环境的危害,一直以来都是污水处理中的难题。据报道,印染行业中由于不完善的处理和清洗技术,大概有10%-20%的染料从生产的剩余液体中排出。高色度是这种废水一大特点,它严重影响了水质并且抑制阳光进入水体从而降低了水中生物的光合作用,许多染料是有毒的,其中一部分具有致癌和致突变性,而且很难生物降解,不仅会对动植物造成损害,同时严重威胁着人类自身的健康。
微米-纳米聚合物材料因其结合了微米-纳米材料和聚合物材料的优点,具有极高的研究价值。微米-纳米材料具有尺寸小、比表面积大、光学和力学性能出色等特点,聚合物材料分子量大,具有耐酸碱、密度小、韧性高等优点。微米-纳米聚合物材料则具有比表面积大、耐酸碱、物理化学性能出色等特点。大量研究证实了微米-纳米聚合物材料具有优于原组成材料的性能。在众多微米-纳米聚合物材料中,聚多巴胺微球以其比表面积大、表面含有量活性官能团和低毒性等特点,引起了广泛的研究热潮。
发明内容
针对现有技术存在的上述问题,本发明所要解决的第一技术问题是提供一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球;本发明所要解决的第二技术问题是提供无机纳米粒子修饰的聚多巴胺纳米微球的制备方法;本发明所要解决的第三技术问题是提供聚多巴胺纳米微球和无机纳米粒子修饰的聚多巴胺纳米微球在吸附阳离子染料污染物中的应用。
为了解决上述技术问题,本发明所采用的技术方案如下:
一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法,包括以下步骤:
1)将乙醇、氢氧化铵、去离子水按体积比20~50∶1~10∶10~100配置成混合液,室温下搅拌0.5~3h;
2)称取多巴胺盐酸盐,用去离子水溶解,添加至步骤1)的混合液中,继续搅拌1天,离心得到黑色沉淀,超声去离子水洗涤,鼓风干燥得到聚多巴胺纳米微球;
3)将聚多巴胺纳米微球用去离子水溶解配置成溶液,用盐酸将pH调整至1~2,随后超声10~50min,得到超声后的聚多巴胺纳米微球溶液;
4)将5~15mL的0.05~2mo1·L-1高锰酸钾KMnO4溶液加入到超声后的聚多巴胺纳米微球溶液中,磁力搅拌器下反应2~5h,离心得到黑色沉淀,放入鼓风干燥箱中干燥20~25h,得到聚多巴胺纳米微球-MnO2
进一步的,步骤1)中,乙醇、氢氧化铵、去离子水的体积比为40∶2∶90。进一步的,步骤2)中,多巴胺盐酸盐用量以去离子水体积计为50g/L;超声去离子水洗涤3次。
进一步的,步骤3)中,聚多巴胺纳米微球用去离子水体积计为2.9g/L,超声时间为15min。
进一步的,步骤4)中,高锰酸钾KMnO4的体积为12.5mL,浓度为0.05mol·L-1;磁力搅拌器下反应4h;干燥时间为24h。
上述制备方法制得的吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球。
无机纳米粒子修饰的聚多巴胺纳米微球在吸附阳离子染料污染物中的应用。
进一步的,阳离子染料污染物为罗丹明B,按照聚多巴胺纳米微球与罗丹明B的质量比为20∶1进行添加,暗室条件下,吸附罗丹明B(RhB)效率高达87.2%。有益效果:相比于现有技术,本发明的优点为:
1)本发明制备方法简单快速,生产成本较低;
2)本发明所制备的聚多巴胺-MnO2纳米微球具有尺寸小、比表面积大、物理化学性能出色等优点;
3)本发明所制备的聚多巴胺纳米-MnO2微球可快速吸附和快速分离阳离子染料,亲和能力强,吸附效果好。
附图说明
图1是加入本发明合成的聚多巴胺纳米微球在暗室条件下对阳离子染料罗丹明B(RhB)吸附去除后的溶液的紫外吸收光谱图;
图2是加入本发明合成的聚多巴胺-MnO2纳米微球在暗室条件下对阳离子染料罗丹明B(RhB)吸附去除后的溶液的紫外吸收光谱图;
图3是本发明制备的聚多巴胺纳米微球的扫描电子显微镜照片图;
图4是本发明制备的聚多巴胺-MnO2纳米微球的扫描电子显微镜照片图。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。这些实施例仅用于说明本发明而不用于限制本发明的范围,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1
1、吸附剂聚多巴胺纳米微球的制备
将40mL的乙醇(C2H5OH)溶液中加入2mL的氢氧化铵(NH4OH)溶液,用90mL去离子水配置成混合物,在室温下搅拌0.5h。称取0.5g多巴胺盐酸盐,用10mL去离子水溶解配制成溶液添加至上述混合液中,随后将溶液搅拌1天。将反应后溶液离心得到黑色沉淀,超声去离子水洗涤三次,放入鼓风干燥箱中干燥24h得到聚多巴胺纳米微球。
2、吸附剂聚多巴胺纳米微球-MnO2的制备
称取0.13g的聚多巴胺纳米微球,用45mL去离子水溶解配置成溶液,用盐酸将pH调整至1,随后超声15min。将12.5mL的0.05mol·L-1高锰酸钾(KMnO4)溶液加入至聚多巴胺纳米微球溶液中,磁力搅拌器下反应4h,离心得到黑色沉淀,放入鼓风干燥箱中干燥24h。
实施例2
1、吸附剂聚多巴胺纳米微球的制备
将20mL的乙醇(C2H5OH)溶液中加入1mL的氢氧化铵(NH4OH)溶液,用10mL去离子水配置成混合物,在室温下搅拌0.5h。称取0.5g多巴胺盐酸盐,用5mL去离子水溶解配制成溶液添加至上述混合液中,随后将溶液搅拌1天。将反应后溶液离心得到黑色沉淀,超声去离子水洗涤三次,放入鼓风干燥箱中干燥24h得到聚多巴胺纳米微球。
2、吸附剂聚多巴胺纳米微球-MnO2的制备
称取0.1g的聚多巴胺纳米微球,用20mL去离子水溶解配置成溶液,用盐酸将pH调整至1,随后超声10min。将5mL的0.05mol·L-1高锰酸钾(KMnO4)溶液加入至聚多巴胺纳米微球溶液中,磁力搅拌器下反应2h,离心得到黑色沉淀,放入鼓风干燥箱中干燥20h。
实施例3
1、吸附剂聚多巴胺纳米微球的制备
将50mL的乙醇(C2H5OH)溶液中加入10mL的氢氧化铵(NH4OH)溶液,用100mL去离子水配置成混合物,在室温下搅拌3h。称取2g多巴胺盐酸盐,用40mL去离子水溶解配制成溶液添加至上述混合液中,随后将溶液搅拌1天。将反应后溶液离心得到黑色沉淀,超声去离子水洗涤三次,放入鼓风干燥箱中干燥25h得到聚多巴胺纳米微球。
2、吸附剂聚多巴胺纳米微球-MnO2的制备
称取0.5g的聚多巴胺纳米微球,用50mL去离子水溶解配置成溶液,用盐酸将pH调整至2,随后超声50min。将15mL的2mol·L-1高锰酸钾(KMnO4)溶液加入至聚多巴胺纳米微球溶液中,磁力搅拌器下反应5h,离心得到黑色沉淀,放入鼓风干燥箱中干燥25h。
实施例4
对实施例1合成的聚多巴胺纳米微球、聚多巴胺纳米微球-MnO2分别进行暗室条件下对水溶液中的染料分子罗丹明B(RhB)吸附去除,并分别以水溶液中的罗丹明B染料分子的吸附去除后溶液对紫外光的特性吸收作为判断罗丹明B分子的存在依据,用于确定在暗室条件下吸附剂聚多巴胺纳米微球、聚多巴胺纳米微球-MnO2对罗丹明B染料的吸附去除能力。
具体步骤如下:
将10mg的吸附剂聚多巴胺纳米微球、聚多巴胺纳米微球-MnO2分别加入50mL浓度为10.0mg/L的罗丹明B(RhB)水溶液中作为实验组,并取同样体积同浓度的罗丹明B(RhB)水溶液组为对照组。在暗室中,搅拌实验组的罗丹明B(RhB)水溶液的到悬浮物,选择不同的时间取出5mL溶液进行离心分离,得到澄清上层溶液进行UV测试。实验组罗丹明B(RhB)水溶液在暗室中分别经过15min、30min、45min、60min、120min的搅拌反应后,如图1所示,罗丹明B(RhB)的特征吸收明显降低,表明大部分染料分子罗丹明B(RhB)已经被吸附剂吸附去除。其中,240min吸附剂聚多巴胺纳米微球对罗丹明B(RhB)的吸附去除率是67.2%,吸附剂聚多巴胺纳米微球-MnO2的吸附去除率为91.7%(图2)。不加入任何吸附剂的对照组的罗丹明B(RhB)水溶液在暗室条件下搅拌反应48h后,罗丹明B(RhB)降解率非常低,表明罗丹明B(RhB)仅仅通过暗室条件下不加入任何吸附剂时实现降解去除是不可能实现的。

Claims (10)

1.一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法,其特征在于,包括以下步骤:
1)将乙醇、氢氧化铵、去离子水按体积比20~50∶1~10∶10~100配置成混合液,室温下搅拌0.5~3h;
2)称取多巴胺盐酸盐,用去离子水溶解,添加至步骤1)所述混合液中,继续搅拌1天,离心得到黑色沉淀,超声去离子水洗涤,鼓风干燥得到聚多巴胺纳米微球;
3)将聚多巴胺纳米微球用去离子水溶解配置成溶液,用盐酸将pH调整至1~2,随后超声10~50min,得到超声后的聚多巴胺纳米微球溶液;
4)将5~15mL的0.05~2mol·L-1高锰酸钾KMnO4溶液加入到超声后的聚多巴胺纳米微球溶液中,磁力搅拌器下反应2~5h,离心得到黑色沉淀,放入鼓风干燥箱中干燥20~25h,得到聚多巴胺纳米微球-MnO2
2.根据权利要求1所述的吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球的制备方法,其特征在于,步骤1)中,乙醇、氢氧化铵、去离子水的体积比为40∶2∶90。
3.根据权利要求1所述的吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球的制备方法,其特征在于,步骤2)中,多巴胺盐酸盐用量以去离子水体积计为50g/L。
4.根据权利要求1所述的吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球的制备方法,其特征在于,步骤2)中,超声去离子水洗涤3次。
5.根据权利要求1所述的吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球的制备方法,其特征在于,步骤3)中,所述聚多巴胺纳米微球用去离子水体积计为2.9g/L,超声时间为15min。
6.根据权利要求1所述的吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球的制备方法,其特征在于,步骤4)中,高锰酸钾KMnO4的体积为12.5mL,浓度为0.05mol·L-1;磁力搅拌器下反应4h;干燥时间为24h。
7.权利要求1至6任一项所述制备方法制得的吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球。
8.权利要求7所述的无机纳米粒子修饰的聚多巴胺纳米微球在吸附阳离子染料污染物中的应用。
9.根据权利要求8所述的无机纳米粒子修饰的聚多巴胺纳米微球在吸附阳离子染料污染物中的应用,其特征在于,所述阳离子染料污染物为罗丹明B。
10.根据权利要求9所述的无机纳米粒子修饰的聚多巴胺纳米微球在吸附阳离子染料污染物中的应用,其特征在于,聚多巴胺纳米微球与罗丹明B的质量比为20∶1。
CN202010991890.2A 2020-09-18 2020-09-18 一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法 Pending CN112023903A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010991890.2A CN112023903A (zh) 2020-09-18 2020-09-18 一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010991890.2A CN112023903A (zh) 2020-09-18 2020-09-18 一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法

Publications (1)

Publication Number Publication Date
CN112023903A true CN112023903A (zh) 2020-12-04

Family

ID=73574359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010991890.2A Pending CN112023903A (zh) 2020-09-18 2020-09-18 一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法

Country Status (1)

Country Link
CN (1) CN112023903A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113289013A (zh) * 2021-04-08 2021-08-24 南京林业大学 PDA-MnO2薄膜及其制备方法和应用
CN113332425A (zh) * 2021-04-06 2021-09-03 南京林业大学 聚多巴胺-二氧化锰纳米微球在制备抗菌药物中的应用
CN114570339A (zh) * 2022-01-28 2022-06-03 江苏大学 一步法制备水杨醛肟/聚多巴胺中空纳米吸附剂的方法及其除铀应用
CN117123197A (zh) * 2023-09-25 2023-11-28 中南大学 一种具备高效净水能力的吸附剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206065A (zh) * 2016-09-14 2016-12-07 安徽师范大学 一种超级电容器电极材料MnO2@PDA纳米复合材料的制备方法
CN107661512A (zh) * 2017-10-25 2018-02-06 华东师范大学 一种MnO2包裹聚多巴胺的纳米颗粒及制备方法和应用
CN110142035A (zh) * 2019-05-24 2019-08-20 云南大学 一种聚多巴胺修饰的磁性纳米颗粒的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206065A (zh) * 2016-09-14 2016-12-07 安徽师范大学 一种超级电容器电极材料MnO2@PDA纳米复合材料的制备方法
CN107661512A (zh) * 2017-10-25 2018-02-06 华东师范大学 一种MnO2包裹聚多巴胺的纳米颗粒及制备方法和应用
CN110142035A (zh) * 2019-05-24 2019-08-20 云南大学 一种聚多巴胺修饰的磁性纳米颗粒的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIHAO PAN等: "Fenton-like catalyst Fe3O4@polydopamine-MnO2 for enhancing removal of methylene blue in wastewater", 《COLLOIDS AND SURFACES B: BIOINTERFACES》, 21 May 2019 (2019-05-21), pages 226 - 233 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332425A (zh) * 2021-04-06 2021-09-03 南京林业大学 聚多巴胺-二氧化锰纳米微球在制备抗菌药物中的应用
CN113289013A (zh) * 2021-04-08 2021-08-24 南京林业大学 PDA-MnO2薄膜及其制备方法和应用
CN113289013B (zh) * 2021-04-08 2023-01-17 南京林业大学 PDA-MnO2薄膜及其制备方法和应用
CN114570339A (zh) * 2022-01-28 2022-06-03 江苏大学 一步法制备水杨醛肟/聚多巴胺中空纳米吸附剂的方法及其除铀应用
CN114570339B (zh) * 2022-01-28 2023-12-05 上海纳鸿微球科技有限公司 一步法制备水杨醛肟/聚多巴胺中空纳米吸附剂的方法及其除铀应用
CN117123197A (zh) * 2023-09-25 2023-11-28 中南大学 一种具备高效净水能力的吸附剂及其制备方法和应用
CN117123197B (zh) * 2023-09-25 2024-04-02 中南大学 一种具备高效净水能力的吸附剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN112023903A (zh) 一种吸附阳离子染料污染物的无机纳米粒子修饰的聚多巴胺纳米微球及其制备方法
Li et al. Current trends in the detection and removal of heavy metal ions using functional materials
Putri et al. Novel cellulose-based biosorbent from lemongrass leaf combined with cellulose acetate for adsorption of crystal violet
Fan et al. Porous self-floating 3D Ag2O/g-C3N4 hydrogel and photocatalytic inactivation of Microcystis aeruginosa under visible light
CN113019332B (zh) 一种壳聚糖/zif-8复合材料及其制备方法与应用
Jiang et al. A novel crosslinked β-cyclodextrin-based polymer for removing methylene blue from water with high efficiency
Soares et al. Hybrid nanoadsorbents for the magnetically assisted removal of metoprolol from water
Yu et al. Photocatalytic anti-biofouling coatings with dynamic surfaces of hybrid metal-organic framework nanofibrous mats for uranium (VI) separation from seawater
CN109248680B (zh) 一种低能耗化学场驱动的有机污染物降解催化剂及其应用
Cho et al. Facile preparation of amino-functionalized polymeric microcapsules as efficient adsorbent for heavy metal ions removal
Dutta et al. Polythiophenes: An emerging class of promising water purifying materials
CN109569527A (zh) 一种基于纤维素基的多功能吸附材料及其制备方法及其应用
Sun et al. Hybrid amino-functionalized TiO2/sodium lignosulfonate surface molecularly imprinted polymer for effective scavenging of methylene blue from wastewater
CN112023904B (zh) 一种快速合成的吸附剂PACP-MnO2纳米微球及其制备方法和应用
Abubshait et al. Co-doped zinc oxide nanoparticles embedded in Polyvinylalcohol Hydrogel as solar light derived photocatalyst disinfection and removal of coloured pollutants
Cheah et al. Synthesis and evaluation of Fe-doped zinc oxide photocatalyst for methylene blue and congo red removal
CN111944162A (zh) 一种超支化聚酯改性负载银离子硅藻土的制备方法
Jing et al. Effective adsorption and sensitive detection of Cr6+ by degradable collagen-based porous fluorescent aerogel
Mallakpour et al. Comparative study for removal of cationic and anionic dyes using alginate-based hydrogels filled with citric acid-sawdust/UiO-66-NH2 hybrid
Tie et al. Adsorptive Removal of a Reactive Azo Dye Using Polyaniline-Intercalated Bentonite.
Zhang et al. Chitosan/carbon dots modified cellulose nanofibrils/ZIF-8 gel bead: An effective and easily separable photocatalytic adsorbent for Cr (VI) removal
CN116550299A (zh) 中空玻璃微球吸附剂制备方法及吸附净化废水的应用
CN107262128B (zh) 可见光响应型多孔氮化硼基复合光催化材料及制备方法
CN115090135A (zh) 基于改性聚醚砜树脂的污水处理膜
CN114163663A (zh) 一种功能化聚乙烯醇-聚乙二醇双网络水凝胶和合成工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201204

RJ01 Rejection of invention patent application after publication