CN112019036B - 功率因数校正系统及方法 - Google Patents

功率因数校正系统及方法 Download PDF

Info

Publication number
CN112019036B
CN112019036B CN202010697561.7A CN202010697561A CN112019036B CN 112019036 B CN112019036 B CN 112019036B CN 202010697561 A CN202010697561 A CN 202010697561A CN 112019036 B CN112019036 B CN 112019036B
Authority
CN
China
Prior art keywords
current demand
module
voltage
current
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010697561.7A
Other languages
English (en)
Other versions
CN112019036A (zh
Inventor
查尔斯·E·格林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gulun LP
Original Assignee
Gulun LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/419,464 external-priority patent/US10277115B2/en
Priority claimed from US15/419,423 external-priority patent/US10763740B2/en
Priority claimed from US15/419,394 external-priority patent/US10305373B2/en
Application filed by Gulun LP filed Critical Gulun LP
Priority to CN202010697561.7A priority Critical patent/CN112019036B/zh
Publication of CN112019036A publication Critical patent/CN112019036A/zh
Application granted granted Critical
Publication of CN112019036B publication Critical patent/CN112019036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/153Arrangements in which a pulse is delivered at the instant when a predetermined characteristic of an input signal is present or at a fixed time interval after this instant
    • H03K5/1536Zero-crossing detectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

公开了一种功率因数校正(PFC)系统和方法。PFC系统包括基于期望的DC电压与测量的DC电压之间的差来确定第一电流需求的误差控制模块。滤波器模块将滤波器应用于第一电流需求以产生第二电流需求。加权模块(i)基于该差确定分别用于第一电流需求和第二电流需求的第一加权值和第二加权值,(ii)基于第一电流需求和第一加权值来确定第三电流需求,并且(iii)基于第二电流需求和第二加权值来确定第四电流需求。电流需求模块基于第三电流需求和第四电流需求来确定最终电流需求。电流控制模块基于最终电流需求来确定PFC装置的开关的切换。

Description

功率因数校正系统及方法
本申请为2017年4月14日提交的、国际申请号为PCT/US2017/027699、发明名称为“用于电压控制的方法及滤波系统”的、进入中国国家阶段的申请号为201780035647.X的中国专利申请的分案申请。
相关申请的交叉引用
本申请是2017年1月30日提交的美国申请第15/419,464号、2017年1月30日提交的美国申请第15/419,423号以及2017年1月30日提交的美国申请第15/419,394号的PCT国际申请。本申请要求于2016年4月15日提交的美国临时申请第62/323,517号、2016年4月15日提交的美国临时申请第62/323,538号、2016年4月15日提交的美国临时申请第62/323,527号以及2016年4月15日提交的美国临时申请第62/323,607号的最早的提交日期和优先权的权益。以上提及的申请的全部公开内容通过引用并入本文。
技术领域
本公开涉及一种电压转换器,更具体地,涉及控制电压转换器的切换的方法和滤波系统的电路。
背景技术
在此提供的背景描述是出于总体上呈现本公开内容的背景的目的。既不明确地也不隐含地认为目前署名的发明人在该背景部分中描述的范围内的工作以及在提交时不作为现有技术的描述的方面是针对本公开内容的现有技术。
电机用于各种各样的工业和住宅应用,包括但不限于供热通风与空气调节(HVAC)系统。仅作为示例,电机可以驱动HVAC系统中的压缩机。还可以在HVAC系统中实现一个或更多个附加电机。仅作为示例,HVAC系统可以包括驱动与压缩机相关联的风扇的另一电机。可以在HVAC系统中包括另一电机以驱动与蒸发器相关联的风扇。
发明内容
在一个特征中,描述了一种功率因数校正(PFC)系统。误差控制模块基于期望的直流(DC)电压与测量的DC电压之间的差来确定第一电流需求。滤波器模块将滤波器应用于第一电流需求以产生第二电流需求。加权模块(i)基于上述差来确定分别用于第一电流需求和第二电流需求的第一加权值和第二加权值,(ii)基于第一电流需求和第一加权值来确定第四电流需求,以及(iii)基于第二电流需求和第二加权值来确定第三电流需求。电流需求模块基于第三电流需求和第四电流需求来确定最终电流需求。电流控制模块基于最终电流需求来控制PFC装置的开关的切换。
在又一特征中,求和模块基于第三电流需求和第四电流需求的和来确定第五电流需求。电流需求模块将陷波滤波器应用于第五电流需求并且基于陷波滤波器的输出来确定最终电流需求。
在又一特征中,电流需求模块基于陷波滤波器的输出乘以正弦参考信号的值来设置最终电流需求,该正弦参考信号被生成为与输入交流(AC)电压在相位和频率上同步。
在又一特征中,滤波器系数模块基于输入交流(AC)电压的频率来设置陷波滤波器的滤波器系数。
在又一特征中,当上述差小于预定值时,加权模块将第四电流需求设置为零。
在又一特征中,当上述差小于预定值时,加权模块将第三电流需求进一步设置为等于第二电流需求。
在又一特征中,当上述差大于预定值时,加权模块增大第一加权值并且减小第二加权值。
在又一特征中,当上述差大于预定值时,加权模块随着上述差增大而增大第一加权值并且随着上述差增大而减小第二加权值。
在又一特征中,加权模块:基于第一电流需求乘以第一加权值来设置第四电流需求;并且基于第二电流需求乘以第二加权值来设置第三电流需求。
在又一特征中,滤波器模块将低通滤波器应用于第一电流需求以产生第二电流需求。
在一个特征中,一种功率因数校正(PFC)方法包括:基于期望的直流(DC)电压与测量的DC电压之间的差来确定第一电流需求;将滤波器应用于第一电流需求以产生第二电流需求;基于上述差确定分别用于第一电流需求和第二电流需求的第一加权值和第二加权值;基于第一电流需求和第一加权值来确定第四电流需求;基于基于第二电流需求和第二加权值来确定第三电流需求;基于第三电流需求和第四电流需求来确定最终电流需求;以及基于最终电流需求来控制PFC装置的开关的切换。
在又一特征中,PFC方法还包括:基于第三电流需求和第四电流需的和来确定第五电流需求;并且将陷波滤波器应用于第五电流需求,其中确定最终电流需求包括基于陷波滤波器的输出来确定最终电流需求。
在又一特征中,确定最终电流需求包括基于陷波滤波器的输出乘以正弦参考信号的值来设置最终电流需求,该正弦参考信号被生成为与输入交流(AC)电压在相位和频率上同步。
在又一特征中,PFC方法还包括基于输入交流(AC)电压的频率来设置陷波滤波器的滤波器系数。
在又一特征中,PFC方法还包括,当上述差小于预定值时,将第四电流需求设置成零。
在又一特征中,PFC方法还包括,当上述差小于预定值时,将第三电流需求设置成等于第二电流需求。
在又一特征中,PFC方法还包括,当上述差大于预定值时,增大第一加权值并且减小第二加权值。
在又一特征中,PFC方法还包括,当上述差大于预定值时,随着上述差增大而增大第一加权值并且随着上述差增大而减小第二加权值。
在又一特征中,PFC方法还包括:基于第一电流需求乘以第一加权值来设置第四电流需求;并且基于第二电流需求乘以第二加权值来设置第三电流需求。
在又一特征中,滤波器是低通滤波器。
在一个特征中,描述了一种功率因数校正(PFC)系统。期望关断时段模块基于至PFC电路的输入电压和PFC电路的输出电压来确定用于PFC电路的开关的期望关断时段。当通过PFC电路的电感器的测量电流大于通过电感器的需求电流时,开关控制模块将开关从接通状态转变至关断状态,并且在从接通状态转变至关断状态之后在期望关断时段内保持开关处于关断状态。
在又一特征中,期望关断时段模块使用如下中的一个来设置期望关断时段:(i)将输入电压和输出电压与期望关断时段相关联的等式;以及(ii)将输入电压和输出电压与期望关断时段相关联的查找表。
在又一特征中,期望关断时段模块使用等式:来设置期望关断时段,其中DOP是期望关断时段,tp是预定的切换周期,vI是输入电压,并且vO是输出电压。
在又一特征中,开关控制模块:响应于确定在(i)从接通状态转变至关断状态的时间与(ii)当前时间之间的时间段大于期望关断时段,将开关从关断状态转变至接通状态;并且保持开关处于接通状态直到通过PFC电路的电感器的测量电流大于通过电感器的需求电流。
在又一特征中,电流需求模块基于输出电压与输出电压的期望值之间的差来确定通过电感器的需求电流。
在又一特征中,期望关断时段模块还基于开关的切换周期来确定期望关断时段。
在又一特征中,期望接通时段模块确定用于开关的期望接通时段,期望接通时段是可变的,并且期望关断时段模块基于切换周期减去期望接通时段来设置期望关断时段。
在又一特征中,期望接通时段模块基于通过电感器的最大电流、通过电感器的需求电流和输入电压来设置用于开关的期望接通时段,并且期望关断时段模块基于切换周期减去期望接通时段来设置期望关断时段。
在又一特征中,期望接通时段模块基于通过电感器的最大电流、通过电感器的需求电流、输入电压和输出电压来设置用于开关的期望接通时段。期望关断时段模块基于切换周期减去期望接通时段来设置期望关断时段。
在又一特征中,不连续模式接通时段模块基于通过电感器的最大电流、通过电感器的需求电流和输入电压来确定用于不连续模式操作的第一预期接通时段;连续模式接通时段模块基于通过电感器的最大电流、通过电感器的需求电流、输入电压和输出电压来确定用于连续模式操作的第二预期接通时段;以及预期接通时段模块将用于开关的第三预期接通时段设置为第一预期接通时段和第二预期接通时段中的一个。期望关断时段模块基于切换周期减去第三预期接通时段来设置期望关断时段。
在一个特征中,功率因数校正(PFC)方法包括:基于至PFC电路的输入电压和PFC电路的输出电压来确定用于PFC电路的开关的期望关断时段;当通过PFC电路的电感器的测量的电流大于通过电感器的需求电流时,将开关从接通状态转变至关断状态;并且在从接通状态转变至关断状态之后在期望关断时段内保持开关处于关断状态。
在又一特征中,确定期望关断时段包括使用下面的一个来设置期望关断时段:(i)将输入电压和输出电压与期望关断时段相关联的等式;以及(ii)将输入电压和输出电压与期望关断时段相关联的查找表。
在又一特征中,确定期望关断时段包括使用等式:来设置期望关断时段,其中DOP是期望关断时段,tp是预定的切换周期,vI是输入电压,并且vO是输出电压。
在又一特征中,PFC方法还包括:响应于确定在(i)从接通状态转变至关断状态的时间与(ii)当前时间之间的时间段大于期望关断时段,将开关从关断状态转变至接通状态;并且保持开关处于接通状态直到通过PFC电路的电感器的测量的电流大于通过电感器的需求电流。。
在又一特征中,PFC方法还包括基于输出电压与输出电压的期望值之间的差来确定通过电感器的需求电流。
在又一特征中,确定期望关断时段包括进一步基于开关的切换周期来确定期望关断时段。
在又一特征中,PFC方法还包括确定开关的期望接通时段,其中期望接通时段是可变的。确定期望关断时段包括基于切换周期减去期望接通时段来设置期望关断时段。
在又一特征中,确定期望接通时段包括基于通过电感器的最大电流、通过电感器的需求电流和输入电压来设置用于开关的期望接通时段。期望关断时段模块基于切换周期减去期望接通时段来设置期望关断时段。
在又一特征中,PFC方法还包括基于通过电感器的最大电流、通过电感器的需求电流、输入电压和输出电压来设置用于开关的期望接通时段。确定期望关断时段包括基于切换周期减去期望接通时段来设置期望关断时段。
在又一特征中,PFC方法还包括:基于通过电感器的最大电流、通过电感器的需求电流和输入电压来确定用于不连续模式操作的第一预期接通时段;基于通过电感器的最大电流、通过电感器的需求电流、输入电压和输出电压来确定用于连续模式操作的第二预期接通时段;以及将用于开关的第三预期接通时段设置成第一预期接通时段和第二预期接通时段中的一个。确定期望关断时段包括基于切换周期减去第三预期接通时段来设置期望关断时段。
在一个特征中,描述了一种功率因数校正(PFC)系统。PFC电路接收交流(AC)输入电压并且基于AC输入电压使用开关来生成直流(DC)输出电压。第一过零点模块基于如下来确定AC输入电压的第一过零点:第一电压和当AC输入电压从小于第一预定电压转变至大于第一预定电压时的第一时间;以及第二电压和当AC输入电压从小于第二预定电压转变至大于第二预定电压时的第二时间。第一预定电压小于零,并且第二预定电压大于零。参考模块基于第一过零点生成至少在相位和频率上对应于AC输入电压的正弦参考信号。开关控制模块基于正弦参考信号来控制开关的切换。
在又一特征中,第二过零点模块基于如下来确定正弦参考信号的第二过零点:正弦参考信号的第一值和当正弦参考信号从大于第三预定电压转变至小于第三预定电压时的第三时间;以及正弦参考信号的第二值和当正弦参考信号从大于第四预定电压转变至小于第四预定电压时的第四时间。第四预定电压小于零,并且第三预定电压大于零。参考模块还基于第二过零点生成正弦参考信号。
在又一特征中,参考模块基于AC输入电压的第一过零点与正弦参考信号的第二过零点之间的差来生成正弦参考信号。
在又一特征中,第三预定电压等于第二预定电压,并且第四预定电压等于第一预定电压。
在又一特征中,参考模块还基于AC输入电压的第一过零点与正弦参考信号的第二过零点之间的一个周期差的一半来生成正弦参考信号。
在又一特征中,第一预定电压和第二预定电压在幅值上相等,并且第三预定电压和第四预定电压在幅值上相等。
在又一特征中,滤波器模块对使用电压传感器测量的AC输入电压的值进行滤波并且基于上述滤波产生第一电压和第二电压。
在又一特征中,滤波器校正模块基于AC输入电压的频率来确定对第一过零点的校正。参考模块基于上述校正来生成正弦参考信号。
在又一特征中,第一过零点模块基于第一电压、第一时间、第二电压和第二时间使用线性插值来确定AC输入电压的第一过零点。
在又一特征中,电流需求模块基于正弦参考信号来确定电流需求,并且当通过PFC电路的电感器的测量的电流大于需求电流时,开关控制模块将开关从接通状态转变至关断状态。
在一个特征中,功率因数校正(PFC)方法包括:通过PFC电路来接收交流(AC)输入电压,并且基于AC输入电压使用开关来生成直流(DC)输出电压;以及基于如下来确定AC输入电压的第一过零点:第一电压和当AC输入电压从小于第一预定电压转变至大于第一预定电压时的第一时间,以及第二电压和当AC输入电压从小于第二预定电压转变至大于第二预定电压时的第二时间。第一预定电压小于零,并且第二预定电压大于零。PFC方法还包括:基于第一过零点来生成至少在相位和频率上对应于AC输入电压的正弦参考信号;并且基于正弦参考信号来控制开关的切换。
在又一特征中,PFC方法还包括:基于如下来确定正弦参考信号的第二过零点:正弦参考信号的第一值和当正弦参考信号从大于第三预定电压转变至小于第三预定电压时的第三时间;以及正弦参考信号的第二值和当正弦参考信号从大于第四预定电压转变至小于第四预定电压时的第四时间。第四预定电压小于零,并且第三预定电压大于零。生成正弦参考信号包括还基于第二过零点来生成正弦参考信号。
在又一特征中,生成正弦参考信号包括基于AC输入电压的第一过零点与正弦参考信号的第二过零点之间的差来生成正弦参考信号。
在又一特征中,第三预定电压等于第二预定电压,并且其中第四预定电压等于第一预定电压。
在又一特征中,生成正弦参考信号包括进一步基于AC输入电压的第一过零点与正弦参考信号的第二过零点之间的一个周期差的一半来生成正弦参考信号。
在又一特征中,第一预定电压和第二预定电压在幅值上相等,并且第三预定电压和第四预定电压在幅值上相等。
在又一特征中,PFC方法还包括:对使用电压传感器测量的AC输入电压的值进行滤波;并且基于上述滤波来产生第一电压和第二电压。
在又一特征中,PFC方法还包括:基于AC输入电压的频率来确定用于第一过零点的校正。生成正弦参考信号包括进一步基于上述校正来生成正弦参考信号。
在又一特征中,确定第一过零点包括基于第一电压、第一时间、第二电压和第二时间使用线性插值来确定AC输入电压的第一过零点。
在又一特征中,PFC方法还包括基于正弦参考信号来确定电流需求。控制开关的切换包括当通过PFC电路的电感器的测量的电流大于需求电流时将开关从接通状态转变至关断状态。
根据详细说明、权利要求书和附图,本公开内容的其他应用领域将变得明显。详细描述和具体示例旨在仅出于说明的目的并且不旨在限制本公开内容的范围。
附图说明
根据详细描述和附图,将更加全面地理解本公开内容,其中:
图1是示例制冷系统的功能框图;
图2是图1的压缩机电机驱动的示例实现方式的框图;
图3A是图2的功率因数校正(PFC)电路的示例实现方式的框图;
图3B是图2的PFC电路的另一示例实现方式的框图;
图4A是图3A的PFC电路的示例实现方式的功能框图;
图4B是图3B的PFC电路的示例实现方式的功能框图;
图5是控制模块的示例实现方式的功能框图;
图6是电压控制模块的示例实现方式的功能框图;
图7至图8是电流与时间的示例图表;
图9是电流需求模块的示例实现的功能框图;
图10是电流与时间的示例图表;
图11是测量的DC总线电压与时间的示例图表;
图12和图13分别是轻负载条件和重负载条件的电流与时间的示例图表;
图14和图15分别是轻负载条件和重负载条件的电流与时间的示例图表;
图16是响应于重负载条件与轻负载条件之间的阶跃变化改变测量的DC总线电压与时间的示例图表;
图17是描绘确定最终电流需求的示例方法的流程图;
图18至图19是电流控制模块的示例实现的功能框图;
图20至图21是用于非周期性电流纹波的电流与时间的示例图表;
图22至图25包括在使用可变的期望关断时段产生的变化的输入电压、输出电压和负载条件下的电流与时间的示例图表;
图26是包括确定开关的期望关断时段和基于期望关断时段控制开关的示例方法的流程图;
图27A和图27B包括参考信号生成模块的示例实现方式的功能框图;
图27C和图27D包括参考信号生成模块的示例实现方式的功能框图;
图27E和图27F包括参考信号生成模块的示例实现方式的功能框图;
图28包括滤波后的AC输入电压与时间的示例图表;
图29包括滤波器校正与供给频率的示例图表;
图30包括参考信号的电压与时间的示例图表;
图31是描绘确定AC线路过零点的示例方法的流程图;
图32是描绘确定参考信号过零点的示例方法的流程图;
图33是描绘生成参考信号的示例方法的流程图。
在附图中,附图标记可以被重新使用以标识相似和/或相同的元件。
具体实施方式
图1是包括压缩机102、冷凝器104、膨胀阀106和蒸发器108的示例制冷系统100的功能框图。根据本公开内容的原理,制冷系统100可以包括附加和/或替选的部件,例如,换向阀或过滤器-干燥器。另外,本公开内容适用于其他类型的制冷系统,包括但不限于供热通风与空气调节(HVAC)系统,热泵系统,制冷系统以及冷却系统。
压缩机102接收蒸汽形式的制冷剂并且压缩制冷剂。压缩机102将加压的蒸汽形式的制冷剂提供至冷凝器104。压缩机102包括驱动泵的电机。仅作为示例,压缩机102的泵可以包括涡旋式压缩机和/或往复式压缩机。
加压的制冷剂的全部或一部分在冷凝器104内被转换成液体形式。冷凝器104将热量从制冷剂传递出去,由此使制冷剂冷却。当制冷剂蒸汽被冷却至比饱和温度低的温度时,制冷剂转变成液态(或液化)制冷剂。冷凝器104可以包括增大将热量传出制冷剂的速率的电风扇。
冷凝器104经由膨胀阀106将制冷剂提供至蒸发器108。膨胀阀106控制提供至蒸发器108的制冷剂的流量。膨胀阀106可以包括恒温膨胀阀或者可以由例如系统控制器130来电控制。由膨胀阀106导致的压降可以使一部分液化的制冷剂转变回蒸汽形式。如此,蒸发器108可以接收制冷剂蒸汽和液化的制冷剂的混合物。
制冷剂在蒸发器108中吸收热量。液态的制冷剂在被加热至比制冷剂的饱和温度高的温度时转变成蒸汽形式。蒸发器108可以包括增大将热量传递至制冷剂的速率的电风扇。
公用设施120将电力提供至制冷系统100。仅作为示例,公用设施120可以提供大约230伏-均方根(VRMS)的单相交流(AC)电力。在其他实现方式中,公用设施120可以以例如50Hz或60Hz的线路频率提供大约400VRMS、480VRMS或600VRMS的三相AC电力。当三相AC电力标称为600VRMS时,电力的实际可用电压可以为575VRMS
公用设施120可以经由包括两个或更多个导线的AC线路将AC电力提供至系统控制器130。AC电力还可以经由AC线路被提供至驱动132。系统控制器130控制制冷系统100。仅作为示例,系统控制器130可以基于用户输入和/或由各种传感器(未示出)测量的参数来控制制冷系统100。传感器可以包括压力传感器、温度传感器、电流传感器、电压传感器等。传感器还可以包括通过串行数据总线或其他适当的数据总线的来自驱动控制的反馈信息,例如,电机电流或扭矩。
用户接口134将用户输入提供至系统控制器130。用户接口134可以附加地或替选地将用户输入直接提供至驱动132。例如,用户输入可以包括期望的温度、与风扇操作相关的请求(例如,蒸发器风扇的连续操作的请求)和/或其他适当的输入。用户接口134可以采用温控器的形式,并且系统控制器的一些或全部功能(例如,包括启动热源)可以被并入温控器中。
系统控制器130可以控制冷凝器104的风扇、蒸发器108的风扇和膨胀阀106的操作。驱动132可以基于来自系统控制器130的命令来控制压缩机102。仅作为示例,系统控制器130可以指示驱动132以特定的速度操作压缩机102的电机或者以特定的容量操作压缩机102。在各种实现方式中,驱动132还可以控制冷凝器风扇。
热敏电阻140热耦合至从压缩机102出去的制冷剂管线,该制冷剂管线将制冷剂蒸汽输送至冷凝器104。因此,热敏电阻140的可变电阻随着压缩机102的排出管线温度(DLT)而变化。如更详细地描述的,驱动132监测热敏电阻140的电阻以确定离开压缩机102的制冷剂的温度。
例如,DLT可以用于通过改变压缩机102的容量来控制压缩机102,并且还可以用于检测故障。例如,如果DLT超过阈值,则驱动132可以使压缩机102断电,以防止压缩机102的损坏。
驱动
在图2中,驱动132的示例实现方式包括接收来自AC线路的电力的电磁干扰(EMI)滤波器和保护电路204。EMI滤波器和保护电路204减少可能以其他方式从驱动132注入回AC线路上的EMI。EMI滤波器和保护电路204还可以去除或减少来自AC线路的EMI。此外,例如,EMI滤波器和保护电路204防止可能由雷电引起的电涌和/或其他类型的电涌和电力骤升骤降。
充电电路208控制从EMI滤波器和保护电路204提供至功率因数校正(PFC)电路212的电力。例如,当驱动132初始上电时,充电电路208可以在EMI滤波器和保护电路204与PFC电路212之间设置串联电阻以减少电流涌入的量。这些电流或电力峰值可能使各种部件过早失效。
在完成初始充电之后,充电电路208可以闭合对限流电阻器进行旁路的继电器。例如,控制模块220可以将继电器控制信号提供至充电电路208内的继电器。在各种实现方式中,控制模块220可以在启动之后的预定时间段之后或者基于指示充电接近完成的闭合环路反馈来使继电器控制信号生效,以对限流电阻器进行旁路。
PFC电路212将输入的AC电力转换成DC电力。PFC电路212可以不限于PFC功能,例如,PFC电路212还可以执行电压转换功能,例如,用作升压电路和/或降压电路。在一些实现方式中,PFC电路212可以由非PFC电压转换器代替。DC电力可能具有电压纹波,通过滤波器电容224减少该电压纹波。滤波器电容224可以包括并联布置并且连接至DC总线的一个或更多个电容器。PFC电路212可以尝试以与输入的电压的正弦模式相匹配的正弦模式从AC线路汲取电流。当正弦曲线对齐时,功率因数接近1,这表示在AC线路上的最大效率和最小需求负载。
PFC电路212包括由控制模块220使用标记为电力切换控制的一个或更多个信号来控制的一个或更多个开关。控制模块220基于如下来确定电力切换控制信号:DC总线的测量电压,PFC电路212中的测量电流,AC线路电压,PFC电路212的一个温度或多个温度和PFC电路212中的电力开关的测量状态。虽然提供了使用测量值的示例,但是控制模块220可以基于如下来确定电力切换控制信号:DC总线的估计电压,PFC电路212中的估计电流,估计的AC线路电压,PFC电路212的一个估计温度或多个估计温度和/或PFC电路212中的电力开关的估计或预期状态。在各种实现方式中,在EMI滤波器和保护电路240之后但在充电电路208之前对AC线路电压进行测量或估计。
控制模块220由DC-DC电源228供电,该DC-DC电源228提供适合控制模块220的逻辑的电压,例如,3.3伏特、2.5伏特等。DC-DC电源228还可以提供DC电力用于操作PFC电路212和逆变器电源电路232的开关。仅作为示例,该电压可以是与数字逻辑相比更高的电压,其中一个示例为15伏特。
逆变器电源电路232还接收来自控制模块220的电力切换控制信号。响应于电力切换控制信号,逆变器电源电路232内的开关使电流流入压缩机102的电机236的相应的绕组。控制模块220可以接收电机236的每个绕组或逆变器电源电路232的每个支路的电机电流的测量值或估计值。控制模块220还可以接收来自逆变器电源电路232的温度指示。
仅作为示例,从逆变器电源电路232接收的温度和从PFC电路212接收的温度仅用于故障的目的。换句话说,一旦温度超过预定阈值,就报告故障并且驱动132断电或者以减少的容量操作。例如,驱动132可以以减少的容量操作并且如果温度没有以预定的速率降低,驱动132转变成关闭状态。
控制模块220还可以使用热敏电阻140接收来自压缩机102的排出管线温度的指示。隔离电路260可以将热敏电阻140的电阻的脉冲宽度调制表示提供至控制模块220。隔离电路260可以包括电隔离,使得在热敏电阻140与控制模块220之间不存在电连接。
隔离电路260还可以接收指示故障(例如,高压力切断或低压力切断,其中压力指的是制冷剂压力)的保护输入。如果任何保护输入指示故障,并且在一些实现方式中,如果任何保护输入变得与隔离电路260断开,隔离电路260停止将PWM温度信号发送至控制模块220。因此,控制模块220可以根据PWM信号的不存在来推测接收到了保护输入。作为响应,控制模块220可以关闭驱动132。
控制模块220控制集成显示器264,集成显示器264可以包括LED的网格和/或单个LED封装,其可以是三色LED。控制模块220可以使用集成显示器264来提供状态信息,例如,固件版本以及误差信息。控制模块220使用通信收发器268与外部装置(例如,图1中的系统控制器130)通信。仅作为示例,通信收发器268可以符合RS-485或RS-232串行总线标准或者符合控制器局域网络(CAN)总线标准。
PFC电路
在图3A中,PFC电路300是图2的PFC电路212的一个实现方式。PFC电路300包括将输入的AC转变成脉动DC的整流器304。在各种实现方式中,整流器304包括全波二极管桥。整流器304的DC输出在第一端子和第二端子两端。第一端子连接至电感器308,而第二端子连接至电流传感器312。电感器308的相对端连接至电感器308、二极管316的阳极和开关320的第一端子共同的节点。
PFC电路300生成DC总线,其中DC总线的第一端子连接至二极管316的阴极,而DC总线的第二端子经由电流传感器312连接至整流器304的第二输出端子。因此,电流传感器312可以感测开关320内的电流以及DC总线中的电流和电感器308中的电流。DC总线的第二端子还连接至开关320的第二端子。
驱动器324接收来自图2的控制模块220的电力切换控制信号并且快速地对开关320的控制端子进行充电或放电。例如,开关320可以是栅极端子作为控制端子的场效应晶体管。更具体地,开关320可以是功率金属氧化物半导体场效应晶体管(MOSFET),例如,来自STMicroelectronics的STW38N65M5功率MOSFET。响应于电力切换控制信号,驱动器324对场效应晶体管的栅极处的电容进行充电或放电。
开关监测电路328测量开关是接通还是关断。该闭合环路控制使控制模块220能够确定开关320是否已经对由电力切换控制信号提供的指令作出反应并且还可以用于确定开关320对上述控制信号作出响应需要花费多长时间。测量的开关状态从开关监测电路328输出回控制模块220。控制模块220可以更新其对电力切换控制信号的控制以补偿接通和/或关断开关320的延迟。
在图3A中,电感器、开关320和二极管316被布置成升压配置。简而言之,开关320闭合,使得通过电感器308的电流增大。然后,开关320断开,但通过电感器308的电流因为电感器两端的电压与电流的导数成比例而不能立即改变。电感器308两端的电压变成负的,意味着电感器308的连接至二极管316的阳极的一端经历增大成高于从整流器304输出的电压的电压。
一旦二极管316的阳极处的电压增大成高于二极管316的导通电压,通过电感器308的电流可以通过二极管316被馈送至DC总线。通过电感器308的电流减小并且然后开关320再次闭合,使电流和电感器308增加。
在各种实现方式中,可以开关320接通,直到电流传感器312确定已经超过电流的预定阈值。此时,开关320关断特定的时间段。该特定的时间段可以是自适应的,随着DC总线的电压以及AC输入的电压的改变而改变。然而,关断时间(当开关断开时)是特定值。一旦等于特定值的时间已经过去,开关320再一次回到接通并且过程重复。关断时间可以为固定的或可变的。在关断时间为可变的情况下,关断时间可以被限制成至少预定的最小关断时间。
为了降低PFC电路300的物理尺寸和部件成本,可以降低电感器308(其可能是PFC电路300的物理尺寸的最大的贡献者)的电感。然而,在较低的电感的情况下,电感器308将更快地饱和。因此,开关320必须更快地操作。然而更快和更小是相对项,目前电力切换控制在10千赫兹至20千赫兹切换频率的范围内操作。在本申请中,开关320的切换频率可以增加至大于50千赫兹,大于100千赫兹或者大于200千赫兹。例如,开关的切换频率可以控制成大约200千赫兹。
因此,开关320被选择成允许更快的切换以及具有很低的切换损耗。伴随更快的切换,电感器308的电感可以更小。另外,二极管316可能需要更快。碳化硅二极管可以具有很快的响应时间。例如,二极管316可以是来自STMicroelectronics的STPSC2006CW碳化硅双二极管封装。
为了在更高速度下操作时精确地驱动开关320,必须类似地加速控制策略。仅作为示例,控制模块220可以包括多个装置,例如,被配置成执行更多相关计算的微控制器和被配置成近实时地监测和响应输入的FPGA(现场可编程门阵列)或PLD(可编程逻辑器件)。在上下文中,近实时意味着,响应于FPGA或PLD的输入的测量的时间分辨率和时间延迟与关注的物理时间尺度相比可以忽略。对于较快的切换速度,FPGA/PLD的近实时响应可能引入不可忽略的延迟。在这种情况下,FPGA/PLD和驱动电路系统的延迟可以被测量并补偿。例如,如果开关的关断由于延迟晚于所需要的而发生,可以更早地指示关断以补偿延迟。
旁路整流器340在AC线路输入处与整流器304并联地连接。旁路整流器340的第二输出端子连接至整流器304的第二端子。然而,旁路整流器340的第一输出端子连接至二极管316的阴极。
结果,当PFC电路300没有操作以升高DC总线电压时,当AC输入的线间电压超过DC总线两端的电压时,旁路整流器340将处于激活状态。在这种情况下,旁路整流器340使电流转移而不通过二极管316。因为电感器308很小,并且开关320快速地切换,二极管316还被选择成呈现很快的切换时间。因此,二极管316较不能耐受高电流,因此通过旁路整流器340使电流选择性地绕过二极管316分流。
另外,通过整流器304和二极管316的电流路径经历三个二极管压降或两个二极管压降和开关压降,而通过旁路整流器340的路径仅经历两个二极管压降。虽然图3A中的单相AC输入与升压转换器拓扑相关联,本公开内容还包括降压转换器拓扑或降压-升压转换器拓扑。
在图3B中,降压转换器拓扑被示出为具有三相AC输入信号。注意,本公开内容的原理还适用于使用三相AC输入的升压转换器或降压-升压转换器拓扑。PFC电路350表示图2的PFC电路212的另一实现方式。
三相整流器354接收三相AC并且在第一端子和第二端子两端生成脉动DC。开关358连接在三相整流器354的第一端子与公共节点之间。公共节点连接至电感器366和功率二极管370的阴极。
功率二极管370的阳极连接至三相整流器354的第二端子。电感器366的相对端子成为DC总线的一个端子,而三相整流器354的第二输出成为DC总线的另一个端子。在图3B中所示的配置中,开关358、电感器366和二极管370被配置为降压拓扑。
电流传感器362串联地连接在二极管370的阳极与DC总线之间。在其他实现方式中,电流传感器362可以被放置为与电感器366串联。在其他实现方式中,电流传感器362可以被放置为与开关358串联。在其他实现方式中,电流传感器362可以被放置为串联在二极管370的阳极与三相整流器354的第二输出端之间。电流传感器362测量通过电感器366的电流以及通过DC总线的电流,并且提供指示电流的量的电流信号。
驱动器374基于来自图2中的控制模块220的电力切换控制信号来驱动开关358的控制端子。开关监测电路378检测开关358是断开还是闭合,并且将开关状态报告给控制模块220。利用电流传感器362的位置,当开关358断开时电流传感器362将测量到大约为零的电流。
图4A是图3A的PFC电路300和控制模块220的简化功能框图。整流器304对AC输入电压进行整流以产生DC电压。该DC电压由图4中的DC电压404表示。控制模块220控制开关320的切换以将DC电压404转换成大于DC电压404的DC总线电压。因此,PFC电路300包括图3A和图4的示例中的升压转换器。升压转换器将输入电压(例如,DC电压404)转换成更高的输出电压(例如,DC总线电压)。本申请适用于单相升压转换器和三相升压转换器。
图4B是图3B的PFC电路350的一个相和控制模块220的简化功能框图。三相整流器354对三相AC输入电压进行整流以产生三相DC电压。三相中的一相的DC电压由图4B中的DC电压504表示。控制模块220对相的开关的切换进行控制以将输入至三相的DC电压转换成小于输入电压的DC总线电压。因此,PFC电路350包括图3B和图4B的示例中的降压转换器。降压转换器将输入电压转换成更低的输出电压。本申请适用于单相降压转换器和三相降压转换器。一些转换器可以用作组合升压/降压转换器。
图5是控制模块220的示例实现方式的功能框图。以下描述的概念适用于升压转换器,例如图3A和图4A的示例。以下描述的概念还适用于降压转换器,例如图3B和图4B的示例。
期望电压模块604确定期望的DC总线电压。期望的DC总线电压可以是固定的预定值或可以是可变的。例如,期望电压模块604可以基于AC线路的峰值电压(VPEAK)和/或多个系统参数中的至少一个来确定期望的DC总线电压。
仅作为示例,多个系统参数可以包括但不限于实际和指示的压缩机速度、实际和估计的逆变器输出功率、实际和估计的驱动输出功率、输入和输出电流、驱动输入电压、逆变器输出电压、估计的电机转矩、各种温度和来自冷凝器104的要求。例如,各种温度可以包括PFC电路212、逆变器电源电路232、电路板、压缩机涡旋和电机236的温度。通过示例的方式,查找表可以包括与可能的AC峰值电压VPEAK和多个系统参数的不同组合中的每个组合对应的期望的DC总线电压VDES。期望电压模块604可以使用查找表来确定期望的DC总线电压。对于查找表的条目之间的值,期望电压模块604可以使用插值来确定期望的DC总线电压。在2016年4月15日提交的、代理人案卷第0315-000927-US-PS1号、标题名称为“Power FactorCorrection Circuits and Methods Including Partial Power Factor CorrectionOperation for Boost and Buck Power Converters”的美国临时申请中提供了关于设定期望的DC总线电压的进一步的示例讨论,其全部内容并入本文中。
电压控制模块608(也见图6)确定期望的DC总线电压与测量的DC总线电压之间的差,并且基于该差来确定第一电流需求。电压控制模块608将滤波器应用于第一电流需求,并且基于第一电流需求和滤波后的电流需求来确定初始电流需求。
电压控制模块608基于测量的DC总线电压与期望的DC总线电压之间的差的大小来将第一电流需求和滤波后的电流需求的贡献加权至初始电流需求。更具体地,当差的大小很小时,电压控制模块608将较大权重施加于滤波后的电流需求。随着差增加,电压控制模块608增加第一电流需求的权重并且减小滤波后的电流需求的权重。
电流需求模块612(见例如图9)可以将滤波器(例如,陷波器)应用于初始电流需求。电流需求模块612还可以执行一个或更多个信号处理功能以降低初始电流需求中的噪声。电流需求模块612将(滤波后的)初始电流需求与参考信号相乘以产生最终电流需求。虽然提供了对初始电流需求进行滤波的电流需求模块612的示例,但是在其他示例中,电流需求模块612可以不对初始化电流需求进行滤波。在这种情况下,可以将初始电流需求与参考信号相乘以产生最终电流需求。
参考生成模块616(见例如图27A和图27B)确定AC线路的过零点和参考信号。基于过零点,参考生成模块616生成参考信号以在相位和频率上跟踪AC输入电压。因此,例如,最终电流需求跟随AC输入电压,以使功率因数最大化。
电流控制模块620(见例如图18和图19)控制开关320的切换。更具体地,当测量的电流大于电流需求时,电流控制模块620将开关320转变为关断。然后,电流控制模块620在期望关断时段内保持开关320关断。期望关断时段是可变的,并且例如,电流控制模块620基于AC输入电压和/或测量的DC总线电压来确定期望关断时段。
图6是电压控制模块608的示例实现方式的功能框图。如上述,电压控制模块608基于期望的DC总线电压和测量的DC总线电压来生成初始电流需求。初始电流需求与用于测量电流的目标值相对应。测量的DC总线电压使用电压传感器来测量。期望的DC总线电压通过期望电压模块604来确定。
电压控制模块608包括接收期望的DC总线电压和测量的DC总线电压的误差控制模块704。误差控制模块704生成第一电流需求以使期望的DC总线电压与测量的DC总线电压之间的差最小化。
例如,减法模块708从期望的DC总线电压中减去测量的DC总线电压以确定DC电压误差。比例模块712将DC电压误差乘以比例常数。积分器模块716将DC电压误差与积分器模块716的先前输出组合。积分器模块716首先将DC电压误差乘以积分常数。积分器模块716还可以将上限和/或下限应用于其输出。在各种实现方式中,积分器模块716可以将其输出偏置以朝向跟踪输入(例如,第二电流需求)进行调整。
求和模块720将比例模块712的输出与积分器模块716的输出相加。来自求和模块720的和作为第一电流需求从误差控制模块704输出。尽管出于说明的目的,误差控制模块704被示出为比例积分(PI)控制器,但是可以使用另一适当类型的闭环控制器。另外,还可以与反馈分量(例如,和)相加实现前馈分量以生成第一电流需求。
滤波器模块724将滤波器应用于第一电流需求以产生第二电流需求。例如,滤波器可以是低通滤波器(LPF)或另一适当类型的滤波器。例如,滤波器的截止频率可以被校准以使可以归因于误差控制模块704的循环波纹平滑。滤波器模块724可以降低带宽并且可以使由尝试将测量的DC总线电压朝向期望的DC总线电压调整的误差控制模块704产生的循环波纹平滑/衰减。仅作为示例,图7包括基于正弦输入电压使用PI控制器产生的电流的示例图表。图8包括使用PI控制器的输出的低通滤波产生的电流的示例图表。
回来参考图6,电压控制模块608还包括加权模块,加权模块对第一电流需求和第二电流需求对初始电流需求的贡献进行加权。随着DC电压误差增大,加权模块减少第二电流需求的使用并且增加第一电流需求的使用。这可以使谐波最小化并且使对负载改变的响应时间最小化。
绝对值模块728确定并且输出DC电压误差的绝对值(即,幅值)。偏置模块732将偏置应用于DC电压误差的绝对值以在减少第二电流需求的贡献并且包括第一电流需求的贡献之前要求DC电压误差大于预定偏置值。例如,偏置模块732可以基于从DC电压误差的绝对值中减去的预定偏置值(例如,10V)来设置其输出或将其输出设置为等于从DC电压误差的绝对值中减去的预定偏置值(例如,10V)。当DC电压误差的绝对值小于预定偏置值时,初始电流需求可以由于偏置被设置为等于第二电流需求。偏置与以下进一步讨论的饱和模块(740)相关联。
增益模块736将预定增益值应用于偏置模块732的输出。例如,增益模块736基于偏置模块732的乘以预定增益值的输出来设置其输出或将其输出设置成等于偏置模块732的乘以预定增益值的输出。例如,预定增益值可以为约0.2或另一适当的值。
饱和模块740可以对增益模块736的输出施加限制。如本文中使用的,饱和模块可以强加下限、上限、上限和下限两者,或者不强加任何限制。上限和下限可以的预定的和/或可以基于各种参数来更新。例如,在饱和模块740的情况下,下限可以是零,以重新执行由偏置模块732施加的偏置。饱和模块740的上限可以是1,以将加权值限制在0与1之间,包括0和1。饱和模块740的输出是用于对第一电流需求的贡献进行加权的第一加权值。
减法模块744从预定值(例如,1)减去饱和模块740的输出。减法模块744的输出是用于对第二电流需求的贡献进行加权的第二加权值。乘法模块748将由滤波器模块724输出的第二电流需求与由减法模块744输出的第二加权值相乘以产生第三电流需求。乘法模块752将由误差控制模块704输出的第一电流需求与由饱和模块740输出的第一加权值相乘以产生第四电流需求。模块728、732、736、740、744、748和752可以统称为加权模块。求和模块756将第三电流需求与第四电流需求相加以产生初始电流需求。
如下进一步讨论的,初始电流需求与AC输入电压同步生成的正弦参考信号相乘。因为负载可以吸收更多的正弦电流和功率,所以这可以提供更好的功率因数并且使AC输入电流的谐波最小化。以下还讨论参考信号的生成。
图9包括电流需求模块612的示例实现方式的功能框图。饱和模块804可以在初始电流需求输入至陷波滤波器模块808之前将一个或更多个限制应用于初始电流需求。陷波滤波器模块808将陷波滤波器应用于初始电流需求,并且饱和模块812可以将一个或更多个限制应用于由陷波滤波器模块808输出的初始电流需求。虽然示出和讨论使用饱和模块804和812的示例,但是饱和模块804和812中的一个或两个可以省略和/或由其他适当类型的信号处理代替。陷波滤波器的应用减少了谐波,同时使得能够对负载改变快速响应。
例如,陷波滤波器可以是一阶或二阶多项式陷波滤波器。仅作为示例,陷波滤波器可以由下面的二阶传递函数表示。
其中b0、b1、b2、a0、a1、a2是滤波器系数,并且z是输入至陷波滤波器模块808的初始电流需求。一个或更多个滤波器系数可以是固定的预定值。例如,滤波器系数b0、b2、a0和a2可以是固定的预定值。在各种实现方式中,滤波器系数a0可以是1(一)。在各种实现方式中,滤波器系数b0、b2、a0和/或a2可以是可变值。
滤波器系数模块816基于AC输入电压的频率来确定用于陷波滤波器的一个或更多个滤波器系数(例如,a1和b1)。由于参考信号被生成为与AC输入电压同步,AC输入电压的频率可以由参考信号的频率来表示。参考信号的频率可以用作供给频率。替选地,AC输入电压的频率可以测量并且用作供给频率。例如,陷波可以是供给频率的约两倍。
滤波器系数模块816可以使用将供给频率与滤波器系数关联的一个或更多个查找表和/或函数来确定滤波器系数。对于查找表的条目之间的值,滤波器系数模块816可以使用插值来确定滤波器系数。在各种实现方式中,滤波器系数a1和b1可以是相同的值或者可以使用相同的查找表或函数来确定。这样函数的示例包括使用预定系数的二阶多项等式,其用于根据供给频率确定滤波器系数(例如,a1和b1)。
如上述的,饱和模块812可以将一个或更多个限制施加至由陷波滤波器模块808输出的初始电流需求。乘法模块820将饱和模块812的输出与参考信号相乘。绝对值模块824确定并且输出乘法模块820的输出的绝对值(例如,幅值)以产生最终电流需求。替选地,可以省略绝对值模块824,并且参考信号的绝对值可以输入至乘法模块820。绝对值的使用使得最终电流需求与整流后电流对应。如以下进一步讨论的,最终电流需求用于基于与测量电流的比较来控制开关320的切换。
图10是通过根据基于图6和图9生成的最终电流需求来控制切换而产生的电流的示例图表。如图10中示出的,电流具有相对正弦的形状。图11是响应于重负载条件与轻负载条件之间的阶跃变化通过根据基于图6和图9生成的最终电流需求来控制切换而产生的测量的DC总线电压的示例图表。
与图10相对,图12和图13分别是通过基于由误差控制模块704输出的第二电流需求来控制切换而产生的电流的轻负载条件和重负载条件的示例图表。如图12和图13中示出的,与图10的电流相比,电流具有不太正弦(并且可能更方形)的形状。
将由误差控制模块704输出的第二电流需求与参考信号相乘可以产生更正弦的电流。例如,图14和图15分别是通过基于将参考信号与由滤波器模块724输出的第二电流需求相乘来控制切换而产生的电流的轻负载条件和重负载条件的示例图表。如图14和图15中所示的,与图10的电流相比,电流具有不太正弦(并且可能更三角形)的形状。
图16是响应于重负载条件与轻负载条件之间的阶跃变化通过基于将参考信号与由误差控制模块704输出的第二电流需求相乘来控制切换而产生的测量DC总线电压的示例图表。与图11的示例相比,这样的控制倾向于产生更慢的响应时间、更多的过冲和/或更多的下冲。
图17是描绘确定最终电流需求的示例方法的流程图。控制开始于904,在904处,误差控制模块704基于期望的DC总线电压与测量的DC总线电压之间的差来确定DC电压误差。在908处,误差控制模块704使用例如如上所讨论的PI控制基于电压总线误差来确定第一电流需求。
在912处,绝对值模块728确定DC电压误差的绝对值,并且偏置模块732将偏置应用于DC电压误差的绝对值。例如,偏置模块732可以基于从DC电压误差的绝对值中减去预定偏置值(例如,10V)来设定其输出或将其输出设置成等于从DC电压误差的绝对值中减去预定偏置值(例如,10V)。增益模块736将预定增益值应用于偏置模块732的输出,并且饱和模块740可以将限制应用于增益模块736的输出。饱和模块740的输出与用于对第一电流需求的贡献进行加权的第一加权值对应。
还在912处,减法模块744确定用于对第二电流需求的贡献进行加权的第二加权值。例如,减法模块744可以基于1减去第一加权值来设置第二加权值或将第二加权值设置为等于1减去第一加权值。通常地,由于偏置,当DC电压误差小于预定偏置值时,第一加权值可以是零或约为零(使得第二加权值可以是一或约为一)。随着DC电压误差增大超过预定偏置值,第二加权值可以朝向零减小并且第一加权值可以朝向一增大。虽然示例使用第一加权值和第二加权值以及第一电流需求和第二电流需求,但是可以应用一个或更多个附加滤波器以从第一电流需求来确定第二电流需求。在这样的示例中,可以使用更多的加权值,或者可以将第一加权值和第二加权值应用于电流需求的不同组合。
在916处,滤波器模块724将滤波器应用于第一电流需求以产生第二电流需求。在920处,乘法模块752将第一电流需求乘以第一加权值以产生第三电流需求,并且乘法模块748将第二电流需求乘以第二加权值以产生第四电流需求。还在920处,求和模块756基于第三电流需求与第四电流需求的和来设置初始电流需求或将初始电流需求设置成等于第三电流需求与第四电流需求的和。
在924处,饱和模块804可以将上限和/或下限应用于初始电流需求。在各种实现方式中,上限和/或下限的应用可以被省略或者用一个或更多个其他类型的信号处理来代替。在928处,滤波器系数模块816确定用于陷波滤波器的滤波器系数。滤波器系数模块816基于供给功率来确定滤波器系数。
在932处,陷波滤波器模块808将使用滤波器系数的陷波滤波器应用于初始电流需求。在936处,饱和模块812可以将上限和/或下限应用于由陷波滤波器模块808输出的初始电流需求。在各种实现方式中,上限和/或下限的应用可以被省略或者用一个或更多个其他类型的信号处理来代替。
在940处,乘法模块820基于乘以参考信号的初始电流需求(例如,饱和模块812的输出)来设置最终电流需求或者将最终电流需求设置成等于乘以参考信号的初始电流需求(例如,饱和模块812的输出)。在944处,绝对值模块824可以确定最终电流需求的绝对值。在948处,电流控制模块620基于最终电流需求和测量的电流来控制开关320的切换。如下进一步讨论的,当测量的电流变成大于最终电流需求时,电流控制模块620将开关320从接通(ON)转变成关断(OFF)。电流控制模块620在(可变的)期望关断时段内保持开关320关断,并且当期望关断时段已经过去时,将开关320从关断转变成接通。虽然下面进一步讨论这个示例,当测量的电流变成小于最终电流需求时,电流控制模块620可以替选地将开关320从关断转变成接通,在(可变的)期望接通时段内保持开关320接通,并且一旦已经经过期望接通时段,将开关320从接通转变成关断。可以与下面讨论的期望关断时段类似地确定期望接通时段。
图18是电流控制模块620的示例实现的功能框图。电流控制模块620基于最终电流需求与测量的电流的比较来控制开关320的切换。测量的电流可以使用电流传感器312来测量。
当测量的电流小于最终电流需求时,比较模块1004将比较信号设置成第一状态。当测量的电流大于最终电流需求时,比较模块1004将比较信号设置成第二状态。
开关控制模块1008基于测量的电流与最终电流需求之间的比较来控制开关320的切换。例如,当比较信号从第一状态转变至第二状态时,开关控制模块1008将开关320转变至关断(不导通)。然后,开关控制模块1008在期望关断时段内保持开关320关断。更具体地,开关控制模块1008保持开关320关断直到关断时段大于期望关断时段。关断时段与自测量的电流上一次变得大于最终电流需求起的时间段相对应。
当比较信号处于第二状态时,定时器模块1012增加关断时段。更具体地,当开关320处于关断时,定时器模块1012增加关断时段。如此,关断时段跟踪从开关控制模块1008上一次将开关320从接通转变至关断(即,测量的电流变得大于最终电流需求)起经过的时间段。开关控制模块1008将开关320从关断转变至接通时,定时器模块1012重置关断时段。
当关断时段大于(或等于)期望关断时段时,开关控制模块1008可以将开关320转变为接通(导通),并且保持开关320接通直到比较信号下一次处于第二状态。在各种实现方式中,开关控制模块1008可以等待或确保在生成输出信号以接通开关320之前测量的电流小于最终电流需求。在相对稳定的状态的负载条件下,开关320的接通可以大约在下一个预定切换周期的开始处发生。
预定的切换周期(tp)与预定的切换频率对应。例如,预定的切换频率可以是大约200千赫兹(kHz)或者另一适当的切换频率。预定的切换周期与1除以预定的切换频率相对应。开关控制模块1008可以针对每个预定的切换周期的不同部分将开关320控制为接通(导通)和关断(不导通)。在各种实现方式中,例如,频率模块(未示出)可以根据随机数发生器的输出随机地改变预定的切换频率或者预定的切换周期。
期望关断时段模块1016确定期望关断时段。通常认为,对于升压转换器,期望关断时段模块1016可以基于输入电压、输出电压和预定的切换周期来确定期望关断时段。输入电压可以与输入至PFC电路300的电压对应。例如,绝对值模块1020确定并且输出由AC输入电压传感器测量的AC输入电压的绝对值(即,幅值)。绝对值模块1020的输出可以用作输入电压。输出电压可以是测量的DC总线电压。虽然已经描述了正弦AC输入的示例,但本申请还适用于包括从AC输入的整流产生的整流的输入的其他类型的输入。
期望关断时段模块1016可以使用函数和查找表中的一个来确定期望关断时段,该函数和查找表将输入电压和输出电压与给定预定的切换周期的情况下的期望关断时段相关联。对于查找表的条目之间的值,期望关断时段模块1016可以使用插值来确定期望关断时段。作为示例,对于升压转换器(例如,图4A的升压转换器),期望关断时段模块1016可以基于如下来设置期望关断时段或将期望关断时段设置成等于如下:
其中tp是预定的切换周期,vI是输入电压,并且vO是输出电压。
开关控制模块1008还补偿开关320的接通延迟时间和开关320的关断延迟时间。当接通延迟时间和关断延迟时间可忽略时,可以省略该补偿。接通延迟时间与开关控制模块1008生成输出信号以接通开关320的第一时间和开关320进行响应实际上达到接通(导通)状态的第二时间之间的时段相对应。关断延迟时间与开关控制模块1008生成输出信号以关断开关320的第一时间和开关320进行响应实际上达到关断(不导通)的第二时间之间的时段相对应。
考虑到接通延迟时间,在关断时段达到期望关断时段之前,开关控制模块1008应假设地生成输出信号以接通开关320。由于关断延迟时间,在电流变得大于最终电流需求之前,开关控制模块1008也应假设地生成输出信号以接通开关320。
开关控制模块1008可以基于接通延迟时间和关断延迟时间来调整期望关断时段。例如,开关控制模块1008可以相对于期望关断时段加上关断延迟时间以及减去接通延迟时间。将该(经调整的)期望关断时段与来自定时器模块1012的关断时段比较以确定何时接通开关320。
该补偿的其他替选方案也是可行的。例如,开关控制模块1008可以在测量的电流大于比最终电流需求小的电流阈值时生成输出信号以关断开关320。开关控制模块1008可以在以接通延迟时间早于关断时段达到期望关断时段的情况下生成输出信号以接通开关320。
延迟确定模块1024确定接通延迟时间和关断延迟时间。监测模块1028基于电压监测来自开关监测电路328的开关状态信号并且生成接通/关断信号。例如,监测模块1028可以基于开关状态信号来设置指示开关320是接通还是关断的接通/关断信号。替选地,可以直接使用开关状态信号。在各种实现方式中,例如,可以基于与开关320的接通延迟时间和关断延迟时间有关的数据表信息来设置接通延迟时间和关断延迟时间。在2016年4月15日提交的、代理人案卷第0315-000926-US-PS1号、题为“Switch Actuation MeasurementCircuit for Voltage Converter”的美国临时申请中提供了有关开关320两端的电压的进一步的示例讨论,其申请的全部内容被并入本文。虽然监测模块1028被示出为在电流控制模块620内实现,但监测模块1028可以在电流控制模块620外部实现,并且可以在控制模块220外部实现。
延迟确定模块1024可以基于开关控制模块1008生成输出信号以接通开关320的第一时间与接通/关断信号响应于输出信号而转变至接通的第二时间之间的时段来设置接通延迟时间或将截图延迟时间设置为等于该时段。延迟确定模块1024可以基于开关控制模块1008生成输出信号以关断开关320的第一时间与接通/关断信号响应于输出信号而转变至关断的第二时间之间的时段来设置关断延迟时间或将关断延迟时间设置成等于该时段。
虽然给出了当测量的电流变成大于最终电流需求时关断开关320并且此后在期望关断时段内保持开关320关断的示例,开关控制模块1008可以替选地在期望接通时段内接通开关320。更具体地,当测量的电流降至低于最终电流需求时,开关控制模块1008可以接通开关320,在期望接通时段内保持开关320接通,并且当在开关320接通之后经过期望接通时段时关断开关320。期望接通时段模块(未示出)确定期望接通时段。通常认为,对于升压转换器,期望接通时段模块可以基于输入电压、输出电压和预定的切换周期来确定期望接通时段。期望接通时段模块可以使用函数和查找表中的一个来确定期望接通时段,该函数和查找表将输入电压和输出电压与在给定预定的切换周期的情况下的期望接通时段相关联。对于查找表的记录之间的值,期望接通时段模块可以使用插值来确定期望接通时段。
图19包括电流控制模块620的另一示例实现的功能框图。图19可以用于容纳在不连续模式下的可能的操作。因为不连续模式操作可能由于开关的接通时段可能比所预期的短而引起切换频率的增加,因此可以考虑在不连续模式下的可能的操作。不连续模式操作可以指代测量的电流在预定的切换周期期间达到零。在连续模式操作期间,测量的电流不会达到零。例如,随着输入和/或输出电压改变,操作可以在连续模式操作与不连续模式操作之间变化。仅作为示例,不连续模式操作可以在过零点附近出现。
代替基于输入电压、输出电压和预定的切换周期来确定期望关断时段(如图18的示例中的),期望关断时段模块1016可以基于预定的切换周期和预期接通时段来确定期望关断时段。期望关断时段模块1016可以使用将预定的切换周期和预期接通时段与期望关断时段相关联的函数或查找表来确定期望关断时段。对于查找表的条目之间的值,期望关断时段模块1016可以使用插值来确定期望关断时段。例如,期望关断时段模块1016可以基于如下来设置期望关断时段或将期望关断时段设置成等于如下:
tp-tON_EXP,
其中tp是预定的切换周期,并且tON_EXP是预期接通时段。
预期接通时段模块1104可以基于或等于预期的不连续模式接通时段和预期的连续模式接通时段中的更小的一个来设置预期接通时段或将预期接通时段设置成等于所述更小的一个。换句话说,当预期的不连续模式接通时段小于预期的连续模式接通时段时,预期接通时段模块1104可以基于预期的不连续模式接通时段来设置预期接通时段或将预期接通时段设置成等于预期的不连续模式接通时段。当预期的连续模式接通时段小于或等于预期的不连续模式接通时段时,预期接通时段模块1104可以基于预期的连续模式接通时段来设置预期接通时段,或将预期接通时段设置成等于预期的连续模式接通时段。
不连续模式接通时段模块1108基于最终电流需求、电感器308的电感(L)和输入电压来确定预期的不连续模式接通时段。不连续模式接通时段模块1108使用将最终电流需求、电感和输入电压与预期的不连续模式接通时段相关联的函数或查找表来确定预期的不连续模式接通时段。对于查找表的条目之间的值,不连续模式接通时段模块1108可以使用插值来确定预期的不连续模式接通时段。例如,不连续模式接通时段模块1108可以基于如下来设置预期的不连续模式接通时段或将预期的不连续模式接通时段设置成等于如下:
其中vI是输入电压,IDem是最终电流需求,并且L是电感器308的电感。
连续模式接通时段模块1102基于预定的切换周期、输出电压和输入电压来确定预期的连续模式接通时段。连续模式接通时段模块1102使用将预定的切换周期、输出电压和输入电压与预期的连续模式接通时段相关联的函数或查找表来确定预期的连续模式接通时段。对于查找表的条目之间的值,连续模式接通时段模块1102可以使用插值来确定预期的连续模式接通时段。例如,连续模式接通时段模块1102可以基于如下来设置期望的连续模式接通时段或将期望的连续模式接通时段设置成等于如下:
其中tp是预定的切换周期,vO是输出电压,并且vI是输入电压。
现在将描述用于确定预期接通时段的另一替选方案。最大值模块1116确定最大电流(I Max)。最大电流与在给定最终电流需求的情况下使用预期的连续模式接通时段并且从零电流开始预期的最大的测量的电流对应。最大值模块1116基于预期的连续模式接通时段、输入电压和电感器308的电感来确定最大电流。最大值模块1116使用将预期的连续模式接通时段、输入电压和电感与最大电流相关联的函数或查找表来确定最大电流。对于查找表的条目之间的值,最大模块1116可以使用插值来确定最大电流。例如,最大模块1116可以基于如下来设置最大电流时段或将最大电流时段设置成等于如下:
其中tON_Cont是预期的连续模式接通时段,vI是输入电压,并且L是电感器308的电感。
当最终电流需求小于最大电流时,出现不连续模式操作,并且预期接通时段模块1104可以基于如下来设置预期接通时段或将预期接通时段设置成等于如下:
其中tON_Cont是预期的连续模式接通时段,IDem是最终电流需求,并且Imax是最大电流。替选地,当出现不连续模式操作时(即,当最终电流需求小于最大电流时),预期接通时段模块1104可以基于如下来设定预期接通时段或将预期接通时段设置成等于如下:
其中IDem是最终电流需求,L是电感器308的电感,vO是输出电压,并且vI是输入电压。当最终电流需求大于或等于最大电流时,预期接通时段模块1104可以基于或等于预期的连续模式接通时段(tON_Cont)来设置预期接通时段或将预期接通时段设置成等于预期的连续模式接通时段(tON_Cont)。
虽然已经针对升压转换器的示例描述了图18和图19,但是可变的关断时段概念也适用于降压转换器。例如,对于降压转换器(例如,图3B和图4B的降压转换器),期望关断时段模块1016可以基于如下来设置期望关断时段或将期望关断时段设置成等于如下:
其中tp是预定的切换周期,vI是输入电压,并且vO是输出电压。对于不连续电流,对于关于图19描述的那些类似校正可以适用于降压转换器的示例。
在每个预定的切换周期期间接通开关320持续预定的固定接通时段或者在每个预定的切换周期期间关断开关320持续预定的固定关断时段可能导致不太期望的电流纹波,例如,当输入电压与输出电压的比率低时。例如,电流纹波的幅值可以增达和/或使电流纹波的频率不同于预定的切换频率。此外,基于测量的电流与最终电流需求的比较并使用固定的预定切换周期的切换可能产生非周期性电流纹波。图20和图21包括电流与时间的示例图表并且示出示例的非周期性电流纹波。
确定期望关断时段并且在期望关断时段内保持开关320关断提供了具有大约预定的切换频率的更周期性的电流纹波。图22、图23和图24包括在由基于图18的示例确定期望关断时段而产生的改变的输入电压、输出电压和负载条件下电流与时间的示例图表。图25包括由基于图19的示例确定期望关断时段而产生的时间与电流的示例图表。这可以提供比使用预定的固定接通或关断时段更稳定的操作并且提供比使用预定的切换周期更稳定的操作。
图26包括描绘确定开关320的期望关断时段和基于期望关断时段控制开关320的示例方法的流程图。控制开始于1204,在1204处,开关控制模块1008确定开关320是否关断(非导通)。如果1204为真,则控制转移至下面进一步讨论的1228。如果1204为假,则控制在1208继续。
在1208处,期望关断时段模块1016确定期望关断时段。期望关断时段模块1016可以如以上相对于图20和图21的示例所描述的那样确定期望关断时段。在1212处,开关控制模块1008可以基于接通延迟时间和关断延迟时间来调整期望关断时段。例如,开关控制模块1008可以将期望关断时段与接通延迟时间相加并且减去关断延迟时间。
在1216处,比较模块1004可以确定测量的电流是否大于最终电流需求。在上面讨论了最终电流需求的确定。如果1216为假,则定时器模块1012重置关断时段,并且在1220处开关控制模块1008保持开关320关断,并且控制结束。如果1216为真,则控制在1224继续。
当测量的电流大于最终电流需求时,在1224处开关控制模块1008生成输出信号以关断开关320。在1228处,开关控制模块1008可以确定开关320的关断时段是否大于期望关断时段。如果1228为假,则在1232处开关控制模块1008保持开关320关断,并且控制结束。如果1228为真,则在1236处开关控制模块1008可以生成输出信号以接通开关320,并且控制结束。在各种实现方式中,开关控制模块1008可以等待或确保在1236处生成输出信号以接通开关320之前测量的电流小于最终电流需求。当控制被示出为结束时,图26的示例示出了一个控制环路并且控制可以返回1204用于下一个控制环路。
图27A和图27B一起包括示例参考信号生成模块616的功能框图。现参照图27A,滤波器模块1304将滤波器应用于使用AC线路电压传感器测量的AC输入电压以产生滤波后的AC输入电压。仅作为示例,滤波器模块1304可以应用一阶低通滤波器或二阶低通滤波器或者另一适当类型的滤波器。
比较模块1308将滤波后的AC输入电压与小于0(零)V的第一预定电压进行比较。当滤波后的AC输入电压从小于第一预定电压转变至大于第一预定电压时,比较模块1308将存储信号从第二状态转变至第一状态。仅作为示例,第一预定电压可以是大约-50V或者小于零的另一适当电压。
当存储信号从第二状态转变至第一状态时,存储模块1312存储滤波后的AC输入电压和当前时间。存储的滤波后的AC输入电压和存储时间用于确定AC输入电压的过零点。例如,当前时间可以由时钟跟踪。
比较模块1308还将滤波后的AC输入电压与大于0V的第二预定电压进行比较。当滤波后的AC输入电压从小于第二预定电压转变至大于第二预定电压时,比较模块1308将插值信号从第二状态转变至第一状态。仅作为示例,第二预定电压可以是+50V或者大于0V的另一适当电压。虽然第一预定电压和第二预定电压的示例关于0V对称(例如,+/-50V),但是可以使用非对称的第一预定电压和第二预定电压,或者第一预定电压和第二预定电压可以关于除了0V之外的电压对称。
当插值信号从第二状态转变至第一状态时,过零点模块1316基于在那个(当前)时间处的滤波后的AC输入电压、当前时间、存储的时间和存储的滤波后的AC输入电压来确定AC线路过零点(例如,时间)。存储的时间和存储的滤波后的AC输入电压由存储模块1312提供。例如,过零点模块1316可以基于滤波后的AC输入电压、当前时间、存储的时间和存储的滤波后的AC输入电压使用线性插值来确定AC线路过零点。AC线路过零点与滤波后的AC输入电压随着其从第一预定电压增加至第二预定电压而过零的时间对应。可以针对AC电压跨零的每个上升来确定AC线路过零点。
图28包括滤波后的AC输入电压与时间的示例图表。在这个示例中,为了说明的目的,输入AC电压(并且然后滤波后的AC输入电压)不是纯正弦的。第一电压、第一电压的时间(第一时间)、第二电压和第二电压的时间(第二时间)可以用于经由线性插值来确定过零点。
回来参考图27A,频率模块1320确定供给频率。如上所讨论的,滤波器系数模块816使用供给频率来确定陷波滤波器的滤波器系数。供给频率与AC输入电压的频率对应。例如,频率模块1320可以基于滤波后的AC输入电压中的两个或更多个值来确定供给频率。例如,频率模块1320可以基于滤波后的AC输入电压的两个连续的峰或两个连续的过零点之间的时段来确定供给频率。替选地,频率模块1320可以基于参考信号来确定供给频率。
通过滤波器模块1304来执行的滤波使滤波后的AC输入电压相对于AC输入电压延迟。滤波器校正模块1324基于供给频率来确定用于该延迟的滤波器校正。例如,滤波器校正模块1324可以使用将供给频率与滤波器校正相关联的函数或查找表来确定滤波器校正。对于查找表的条目之间的值,滤波器校正模块1324可以使用插值来确定滤波器校正。图29包括滤波器校正与供给频率的示例图表。
误差模块1328基于AC线路过零点与参考信号过零点之间的差来确定误差。误差模块1328还可以调整滤波器校正的误差。例如,误差模块1328可以基于AC线路过零点加上滤波器校正减去参考信号过零点来设置误差或将误差设置成等于AC线路过零点加上滤波器校正减去参考信号过零点。在各种实现方式中,AC线路过零点可以基于滤波器校正来调整(例如,与滤波器校正求和),并且误差模块1328可以基于(调整过的)AC线路过零点减去参考信号过零点来设置误差或将误差设置成等于(调整过的)AC线路过零点减去参考信号过零点。
相位调整模块1332基于误差来确定用于生成参考信号的正弦波的相位调整。例如,相位调整模块1332可以使用将误差与相位调整相关联的函数和查找表之一来确定相位调整。对于查找表的条目之间的值,相位调整模块1332可以使用插值来确定相位调整。当误差大于预定周期,例如,大约供给频率的1个周期时,相位调整模块1332可以将误差看作零并且使相位调整保持不变。
RMS(均方根)模块1336基于供给频率和AC输入电压来确定AC输入电压的RMS电压。例如,RMS模块1336可以使用将AC输入电压和供给频率与RMS电压相关联的函数之一来确定RMS电压。作为示例,RMS模块1336可以通过确定在一个周期(如由供给频率指示的)内获得的AC输入电压的平方的平均值来确定RMS电压并且基于平均值的平方根来设置RMS电压。RMS模块1336还可以将RMS电压乘以2的平方根以获得峰值电压。虽然提供了基于AC输入电压来确定RMS电压的示例,但是可以使用滤波后的AC电压代替AC输入电压。如以下进一步讨论的,RMS电压(或峰值电压)可以用于缩放参考信号,使得参考信号的电压与AC输入电压对应。
现参照图27B,正弦发生器模块1350生成正弦参考信号。正弦发生器模块1350可以生成正弦参考信号以形成正弦波,该正弦波随着时间在+1与-1之间变化并且具有等于AC输入电压的频率的频率。然而,正弦发生器模块1350基于相位调整来调节正弦参考信号,使得参考信号的过零点与AC输入电压的过零点对准。例如,如下面结合图27D的1368、1370和1372描述的,正弦发生器模块1350可以生成正弦参考信号。
参考模块1354基于正弦参考信号和RMS电压来生成参考信号。例如,参考模块1354可以基于乘以RMS电压的峰值电压的正弦参考信号(的值)来设置参考信号或将参考信号设置成等于乘以RMS电压的峰值电压的正弦参考信号(的值)。因此,参考信号随着时间变化,具有与对应于AC输入电压的电压,并且具有等于AC输入电压的频率。
比较模块1358将参考信号与大于0(零)V的第三预定电压进行比较。当参考信号从大于第三预定电压转变至小于第三预定电压时,比较模块1358将存储信号从第二状态转变至第一状态。仅作为示例,第三预定电压可以为大约+50V或大于0V的另一适当电压。第三预定电压可以与第二预定电压相同。
当存储信号从第二状态转变至第一状态时,存储模块1362存储参考信号(的电压)和当前时间。存储的参考信号的电压和存储的时间用于确定参考信号的过零点。
比较模块1358还将参考信号与小于0V的第四预定电压相比较。当参考信号从大于第四预定电压转变至小于第四预定电压时,比较模块1358将插值信号从第二状态转变至第一状态。仅作为示例,第四预定电压可以是大约-50V或小于0V的另一适当电压。虽然第三预定电压和第四预定电压的示例关于0V对称(例如,+/-50V),但是可以使用非对称的第三预定电压和第四预定电压。第四预定电压可以与第一预定电压相同。
当插值信号从第二状态转变至第一状态时,过零点模块1366基于在那个(当前)时间处的参考信号(的电压)、当前时间、存储的时间和存储的参考信号的电压来确定参考信号过零点(例如,时间)。存储的时间和存储的参考信号的电压由存储模块1362来提供。例如,过零点模块1366可以基于参考信号的电压、当前时间、存储的时间和存储的参考信号的电压使用线性插值来确定参考信号过零点。参考信号过零点与参考信号随着其从第三预定电压减少至第四预定电压而跨过零V(伏)的时间对应。可以针对参考信号跨过零的每个下降来确定参考信号过零点。
图30包括参考信号的电压与时间的示例图表。参考信号的第一电压、第一电压的时间(第一时间)、参考信号的第二电压和第二电压的时间(第二时间)可以用于经由线性插值来确定参考信号的过零点。虽然讨论了使用参考信号来确定参考信号过零点的示例,但是同样地可以使用正弦参考信号。
如上所讨论的,参考信号过零点与AC线路过零点一起使用以确定相位校正。由于基于AC输入电压的上升部分来确定AC线路过零点以及基于参考信号的下降部分来确定参考信号过零点,每个参考信号过零点应与在参考信号过零点之前和之后出现的AC线路过零点在相位上相差大约180度(1/2周期)。
相位调整模块1332可以在生成相位调整时考虑该相位差。仅作为示例,每个AC线路过零点可以在通过被误差模块1328使用之前基于对应于供给频率的1/2的周期的时间段被调整。例如,对应于供给频率的1/2的周期的的时间段可以在每个AC线路过零点被误差模块1328使用之前与之相加。
在2012年9月11日公布的、共同转让的美国专利第8,264,860号中描述了生成参考信号的另一方式,其全部内容被并入本文中。然而,如本文中所述的生成参考信号可以更慢地执行,并且消耗更少的计算资源。当AC输入电压失真时,如本文中所述的生成参考信号还可以呈现更好的参考信号。通过滤波器模块1304提供的滤波提供附加的鲁棒性。如上所述的,滤波引起延迟,但是通过滤波器模块1324来补偿该延迟。
图27C和图27D一起包括示例参考信号生成模块616的功能框图。图27C包括与图27A的元件相似的元件。然而,不同地确定输入至误差模块1328的参考信号过零点。
现在参照图27D,基础模块1368基于供给频率来确定基础参考(信号)角度。基础参考角度对应于参考信号的角度(例如,在0度与360度之间,其与参考信号的1周期对应)。例如,基础模块1368可以在数学上对每个控制环路的供给频率进行积分。数学上的积分产生基础参考角度的变化。基础模块1368可以通过将针对那个控制环路确定的变化与来自上一次的控制环路的基础参考角度相加来更新每个控制环路的基础参考角度。在各种实现方式中,基础模块1368可以将基础参考角度限制在0与预定的最大值(例如,360度)之间,当基础参考角度变成大于预定的最大值时,其回退至0。例如,这可以使用模函数来执行。
参考角度模块1370基于相位调整和基础参考角度来确定参考信号角度。例如,参考角度模块1370可以基于相位调整加上基础参考角度来设置参考信号角度或将参考信号角度设置成等于相位调整加上基础参考角度。
正弦模块1372将正弦参考信号角度确定为正弦(函数)的参考信号角度。例如,正弦参考信号角度基于参考信号角度在+1与-1之间变化。参考模块1374基于正弦参考信号角度和RMS电压来生成参考信号。例如,参考模块1374可以基于乘以RMS电压的峰值电压的正弦参考信号角度(的值)来设置参考信号或将参考信号设置成等于乘以RMS电压的峰值电压的正弦参考信号角度(的值)。因此,参考信号随着时间变化,具有与对应于AC输入电压的电压,并且具有等于AC输入电压的频率。
比较模块1376将参考信号与第一预定角度进行比较。当参考信号角度从小于第一预定角度转变至大于第一预定角度时,比较模块1376将存储信号从第二状态转变至第一状态。仅作为示例,第一预定角度可以是大约150度或在参考信号的预期的过零点之前的另一适当的角度(例如,180度)。
当存储信号从第二状态转变至第一状态时,存储模块1378存储参考信号角度和当前时间。存储的参考角度和存储的时间用于确定参考信号的过零点。
比较模块1376还将参考角度与第二预定角度进行比较。当参考角度从小于第二预定角度转变至大于第二预定角度时,比较模块1376将插值信号从第二状态转变至第一状态。仅作为示例,第二预定角度可以是大约210度或在参考信号的预期的过零点之后的另一适当的角度(例如,180度)。虽然提供了关于180度对称的第一预定角度和第二预定角度的示例,但是可以使用其他非对称的预定角度和其他预定角度。
当插值信号从第二状态转变至第一状态时,过零点模块1380基于在当前时间处的参考信号角度、当前时间、存储的时间和存储的参考信号角度来确定参考信号过零点(例如,时间)。存储的时间和存储的参考信号角度通过存储模块1378来提供。例如,过零点模块1380可以基于参考信号角度、当前时间、存储的时间和存储的参考信号角度使用线性插值来确定参考信号过零点。参考信号过零点对应于参考信号随着其降低而跨过零V(伏)的时间。可以针对参考信号跨过零的每个下降来确定参考信号过零点。
图27E和图27F一起包括示例参考信号生成模块616的功能框图。在图27E和图27F的示例中,AC线路过零点用于确定预期的参考角度。在图27E和图27F的示例中,不确定参考信号过零点。
参照图27F,预期模块1386确定预期的参考信号角度。给定时间处的预期的参考信号角度对应于此时参考信号角度的预期值。预期模块1386基于AC线路过零点和供给频率来确定预期的参考信号角度。例如,预期模块1386可以在每个AC线路过零点处将预期的参考信号角度设置成零。预期模块1386可以在数学上对每个控制环路的供给频率进行积分。数学的积分产生预期的参考信号角度的变化。预期模块1386可以通过将针对该控制环路确定的变化与来自上一次控制环路的预期的参考信号角度相加来更新每个控制环路的预期的参考信号角度。在各种实现方式中,预期模块1386可以将预期的参考信号角度限制在0与预定的最大值(例如,360度)之间,当预期的参考信号角度变成大于预定的最大值时,其回退至0。例如,这可以使用模函数来执行。以下进一步讨论预期的参考信号角度。
参考角度模块1388基于经调整的供给频率来确定基础参考(信号)角度。以下相对于图27E进一步讨论经调整的供给频率的生成。例如,参考角度模块1388可以基于基础参考信号角度的连续的确定之间的时间段和经调整的供给频率来确定参考信号角度的变化。例如,参考角度模块1388可以在数学上对每个控制环路的经调整的供给频率进行积分。数学上的积分产生基础参考角度的变化。参考角度模块1388可以通过将针对该控制环路确定的变化与来自上一次的控制环路的基础参考角度相加来更新每个控制环路的基础参考角度。在各种实现方式中,参考角度模块1388可以将基础参考角度限制在0与预定的最大值(例如,360度)之间,当基础参考角度变成大于预定的最大值时,其回退至0。例如,这可以使用模函数来执行。以上讨论了正弦模块1372和参考模块1374,并且使用正弦模块1372和参考模块1374生成参考信号。
参照图27E,误差模块1390基于滤波器校正(来自滤波器校正模块1324)、预期的参考信号角度(通过预期模块1386确定)和参考角度(通过参考角度模块1388确定)来确定角度误差。仅作为示例,误差模块1390可以基于预期的参考角度减去参考角度并加上滤波器校正来设置角度误差或将角度误差设置成等于预期的参考角度减去参考角度并加上滤波器校正。
频率调整模块1392基于误差来确定频率调整。例如,频率调整模块1392可以随着误差增加来增加频率调整并且随着误差降低来降低频率调整。调整模块1394基于频率调整来调整供给频率以确定经调整的供给频率。例如,调整模块1394可以基于供给频率加上频率调整来设置经调整的供给频率或将经调整的供给频率调整成等于供给频率加上频率调整。基于以上,参考信号将被调整成在频率和相位上对应于AC线路电压。
图31是描绘例如基于图27A至图27B的示例来确定AC线路过零点的示例方法的流程图。控制开始于1404,在1404处,滤波器模块1304对AC输入电压进行滤波以产生经滤波的AC输入电压。仅作为示例,滤波器模块1304可以应用低通滤波器。在1408处,比较模块1308确定经滤波的AC输入电压是否已经从小于第一预定电压(例如,-50V)转变至大于第一预定电压。如果1408为真,则在1412处存储模块1312存储经滤波的AC输入电压和当前时间,并且控制结束。如果1408为假,则控制转移至1416。
在1416处,比较模块1308确定经滤波的AC输入电压是否已经从小于第二预定电压(例如,+50V)转变至大于第二预定电压。如果1416为真,则在1420处过零点模块1316基于存储的经滤波的AC输入电压、当前经滤波的AC输入电压、存储的时间和当前时间使用线性插值来确定AC线路过零点(由于经滤波的AC输入电压从第一预定电压朝向第二预定电压增加)。然后,控制结束。如果1416为假,则控制结束。虽然控制被示出为结束,但是图31的示例示出了一个控制环路,并且控制可以返回至1404以用于下一个控制环路。此外,虽然已经描述了一旦当经滤波的AC电压转变至大于第二预定电压时的插值的示例,但过零点模块1316可以基于每个控制环路的当前的经滤波的AC电压来执行插值,并且基于经滤波的AC输入电压已经转变至大于第二预定电压的时间处的插值来确定AC线路过零点。
图32是描绘例如基于图27A至图27B的示例来确定参考信号过零点的示例方法的流程图。控制开始于1504,在1504处,参考模块1354基于RMS电压与正弦参考信号(值)相乘来生成参考信号(电压)。在1508处,比较模块1358确定参考信号的电压是否已经从大于第三预定电压(例如,+50V)转变至小于第三预定电压。如果1508为真,则在1512处存储模块1362存储参考信号电压和当前时间,并且控制结束。如果1508为假,控制转移至1516。
在1516处,比较模块1358确定参考信号的电压是否已经从大于第四预定电压(例如,-50V)转变至小于第四预定电压。如果1516为真,则在1520处过零点模块1366基于存储的参考信号电压、参考信号的当前电压、存储的时间和当前时间使用线性插值来确定参考信号过零点(由于参考信号从第三预定电压朝向第四预定电压降低)。然后,控制结束。如果1516为假,则控制结束。虽然控制被示出为结束,图32的示例示出了一个控制环路,并且控制可以返回至1504以用于下一个控制环路。图32的示例可以与图31的示例一起并行执行。此外,虽然已经描述了一旦当参考信号的电压转变至小于第四预定电压时进行插值的示例,过零点模块1366可以基于每个控制环路的参考信号的当前电压来执行插值,并且基于当前电压已经转变至小于第四预定电压的时间处的插值来确定参考信号过零点。
图33是描绘例如基于图27A至图27B的示例来生成参考信号的示例方法的流程图。控制开始于1604,在1604处,正弦发生器模块1350可以确定过零点模块1366是否刚好已经确定参考信号过零点。例如,过零点模块1366可以将这样的确定用信号发送至正弦发生器模块1350,或者正弦发生器模块1350可以在参考信号过零点改变时确定过零点模块1366以确定了参考信号过零点。如果1604为假,则控制可以转移至以下进一步讨论的1628。如果1604为真,则控制可以以1612继续。
在1612处,控制可以作出一个或更多个调整以应对AC线路过零点与参考信号过零点之间的一个周期(例如,1/供给频率)差的大约1/2。例如,过零点模块1316可以将AC输入电压的一个周期的1/2与AC线路过零点相加,或者过零点模块1366可以从参考信号过零点中减去AC输入电压的一个周期的1/2。在1616处,滤波器校正模块1324基于供给频率来确定滤波器校正。滤波器校正对应于由过滤波器模块1304强加的延迟时间。
在1620处,误差模块1328确定(上一次确定的)AC线路过零点与(刚刚确定的)参考信号过零点之间的误差。例如,误差模块1328可以基于AC线路过零点加上滤波器校正并减去参考信号过零点来设置误差或将误差设置成等于AC线路过零点加上滤波器校正并减去参考信号过零点。在1624处,相位调整模块1332基于误差来更新相位调整。例如,相位调整模块1332可以使用将误差与相位调整相关联的函数或查找表来确定相位调整。
在1628处,正弦发生器模块1350基于相位调整来生成正弦参考信号的下一个值,其用于生成下一个周期的正弦波。在1632处,参考模块1354基于正弦参考信号和(AC线路的)RMS电压来生成参考信号的下一个电压。例如,参考模块1354可以基于正弦参考信号的值与RMS电压的峰值相乘来设置参考信号的电压或将参考信号的电压设置成等于正弦参考信号的值与RMS电压的峰值相乘。例如,在1628处,RMS模块1336基于AC输入电压来确定RMS电压。RMS模块1336可以基于乘以2的平方根的RMS电压来设置峰值电压或将峰值电压设置成成等于乘以2的平方根的RMS电压。
虽然控制被示出为结束,但是图33的示例示出了一个控制环路,并且控制可以返回1604以用于下一个控制环路。图33的示例可以与图31和图32的示例一起并行地执行。此外,虽然示例是当参考信号过零点被确定时更新相位调整,但当AC线路过零点被确定时,可以使用该AC线路过零点和上一次的参考信号过零点(从较早的一个周期的大约1/2)来附加地或替选地更新相位调整。虽然结合图27A至图27B的示例讨论了图31至图33,但相似的概念适用于图27C至图27D和图27E至图27F的示例。
本申请提供了如下方案:
1.一种功率因数校正(PFC)系统,包括:
误差控制模块,其基于期望的直流(DC)电压与测量的DC电压之间的差来确定第一电流需求;
滤波器模块,其将滤波器应用于所述第一电流需求以产生第二电流需求;
加权模块,其(i)基于所述差来确定分别用于所述第一电流需求和所述第二电流需求的第一加权值和第二加权值,(ii)基于所述第一电流需求和所述第一加权值来确定第四电流需求,以及(iii)基于所述第二电流需求和所述第二加权值来确定第三电流需求;
电流需求模块,其基于所述第三电流需求和所述第四电流需求来确定最终电流需求;以及
电流控制模块,其基于所述最终电流需求来控制PFC装置的开关的切换。
2.根据方案1所述的PFC系统,其中,还包括:基于所述第三电流需求和所述第四电流需求的和来确定第五电流需求的求和模块,
其中,所述电流需求模块将陷波滤波器应用于所述第五电流需求,并且基于所述陷波滤波器的输出来确定所述最终电流需求。
3.根据方案2所述的PFC系统,其中,所述电流需求模块基于所述陷波滤波器的输出与正弦参考信号的值相乘来设置所述最终电流需求,所述正弦参考信号被生成为与输入交流(AC)电压在相位和频率上同步。
4.根据方案2所述的PFC系统,还包括滤波器系数模块,其基于输入交流(AC)电压的频率来设置所述陷波滤波器的滤波器系数。
5.根据方案1所述的PFC系统,其中,当所述差小于预定值时,所述加权模块将所述第四电流需求设置为零。
6.根据方案5所述的PFC系统,其中,当所述差小于所述预定值时,所述加权模块还将所述第三电流需求设置为等于所述第二电流需求。
7.根据方案5所述的PFC系统,其中,当所述差大于所述预定值时,所述加权模块增大所述第一加权值并且减小所述第二加权值。
8.根据方案5所述的PFC系统,其中,当所述差大于所述预定值时,所述加权模块随着所述差增大而增大所述第一加权值,并且随着所述差增大而减小所述第二加权值。
9.根据方案1所述的PFC系统,其中,所述加权模块:
基于所述第一电流需求与所述第一加权值相乘来设置所述第四电流需求;以及
基于所述第二电流需求与所述第二加权值相乘来设置所述第三电流需求。
10.根据方案1所述的PFC系统,其中,所述滤波器模块将低通滤波器应用于所述第一电流需求以产生所述第二电流需求。
11.一种功率因数校正(PFC)方法,包括:
基于期望的直流(DC)电压与测量的DC电压之间的差来确定第一电流需求;
将滤波器应用于所述第一电流需求以产生第二电流需求;
基于所述差确定分别用于所述第一电流需求和所述第二电流需求的第一加权值和第二加权值;
基于所述第一电流需求和所述第一加权值来确定第四电流需求;
基于所述第二电流需求和所述第二加权值来确定第三电流需求;
基于所述第三电流需求和所述第四电流需求来确定最终电流需求;以及
基于所述最终电流需求来控制PFC装置的开关的切换。
12.根据方案11所述的PFC方法,还包括:
基于所述第三电流需求和所述第四电流需求的和来确定第五电流需求;以及
将陷波滤波器应用于所述第五电流需求,
其中,确定所述最终电流需求包括:基于所述陷波滤波器的输出来确定所述最终电流需求。
13.根据方案12所述的PFC方法,其中,确定所述最终电流需求包括:基于所述陷波滤波器的输出与正弦参考信号的值相乘来设置所述最终电流需求,所述正弦参考信号被生成为与输入交流(AC)电压在相位和频率上同步。
14.根据方案12所述的PFC方法,还包括:基于输入交流(AC)电压的频率来设置所述陷波滤波器的滤波器系数。
15.根据方案11所述的PFC方法,还包括:当所述差小于预定值时,将所述第四电流需求设置为零。
16.根据方案15所述的PFC方法,还包括:当所述差小于所述预定值时,还将所述第三电流需求设置为等于所述第二电流需求。
17.根据方案15所述的PFC方法,还包括:当所述差大于所述预定值时,增大所述第一加权值并且减小所述第二加权值。
18.根据方案15所述的PFC方法,还包括:当所述差大于所述预定值时,随着所述差增大而增大所述第一加权值,并且随着所述差增大而减小所述第二加权值。
19.根据方案11所述的PFC方法,还包括:
基于所述第一电流需求与所述第一加权值相乘来设置所述第四电流需求;以及
基于所述第二电流需求与所述第二加权值相乘来设置所述第三电流需求。
20.根据方案11所述的PFC方法,其中,所述滤波器是低通滤波器。
21.一种功率因数校正(PFC)系统,包括:
期望关断时段模块,其基于至PFC电路的输入电压和所述PFC电路的输出电压来确定用于所述PFC电路的开关的期望关断时段;以及
开关控制模块,当通过所述PFC电路的电感器的测量的电流大于通过所述电感器的需求电流时,所述开关控制模块将所述开关从接通状态转变至关断状态,并且在从接通状态转变至关断状态之后在所述期望关断时段内保持所述开关处于关断状态。
22.根据方案21所述的PFC系统,其中,所述期望关断时段模块使用下面的一个来设置所述期望关断时段:
(i)将输入电压和输出电压与所述期望关断时段相关联的等式;以及
(ii)将输入电压和输出电压与所述期望关断时段相关联的查找表。
23.根据方案21所述的PFC系统,其中,所述期望关断时段模块使用下式来设置所述期望关断时段:
其中,DOP是所述期望关断时段,tp是预定的切换周期,vI是所述输入电压,以及vO是所述输出电压。
24.根据方案21所述的PFC系统,其中,所述开关控制模块:
响应于确定(i)从所述接通状态转变至所述关断状态的时间与(ii)当前时间之间的时段大于所述期望关断时段,将所述开关从关断状态转变至接通状态;以及
保持所述开关处于接通状态,直到通过所述PFC电路的电感器的所述测量的电流大于通过所述电感器的所述需求电流为止。
25.根据方案24所述的PFC系统,还包括电流需求模块,其基于所述输出电压与所述输出电压的期望值之间的差来确定通过所述电感器的所述需求电流。
26.根据方案21所述的PFC系统,其中,所述期望关断时段模块还基于所述开关的切换周期来确定所述期望关断时段。
27.根据方案26所述的PFC系统,还包括期望接通时段模块,其确定用于所述开关的期望接通时段,其中,所述期望接通时段是可变的,
其中,所述期望关断时段模块基于所述切换周期减去所述期望接通时段来设置所述期望关断时段。
28.根据方案26所述的PFC系统,还包括期望接通时段模块,其基于通过所述电感器的最大电流、通过所述电感器的所述需求电流和所述输入电压来设置用于所述开关的期望接通时段,
其中,所述期望关断时段模块基于所述切换周期减去所述期望接通时段来设置所述期望关断时段。
29.根据方案26所述的PFC系统,还包括期望接通时段模块,其基于通过所述电感器的最大电流、通过所述电感器的所述需求电流、所述输入电压和所述输出电压来设置用于所述开关的期望接通时段,
其中,所述期望关断时段模块基于所述切换周期减去所述期望接通时段来设置所述期望关断时段。
30.根据方案26所述的PFC系统,还包括:
不连续模式接通时段模块,其基于通过所述电感器的最大电流、通过所述电感器的所述需求电流和所述输入电压来确定用于不连续模式操作的第一预期接通时段;
连续模式接通时段模块,其基于通过所述电感器的最大电流、通过所述电感器的所述需求电流、所述输入电压和所述输出电压来确定用于连续模式操作的第二预期接通时段;以及
预期接通时段模块,其将用于所述开关的第三预期接通时段设置成所述第一预期接通时段和所述第二预期接通时段中的一个,
其中,所述期望关断时段模块基于所述切换周期减去所述第三预期接通时段来设置所述期望关断时段。
31.一种功率因数校正(PFC)方法,包括:
基于至PFC电路的输入电压和所述PFC电路的输出电压来确定用于所述PFC电路的开关的期望关断时段;
当通过所述PFC电路的电感器的测量的电流大于通过所述电感器的需求电流时,将所述开关从接通状态转变至关断状态;以及
在从接通状态转变至关断状态之后,在所述期望关断时段内保持所述开关处于关断状态。
32.根据方案31所述的PFC方法,其中,确定所述期望关断时段包括:使用下面的一个来设置所述期望关断时段:
(i)将输入电压和输出电压与所述期望关断时段相关联的等式;以及
(ii)将输入电压和输出电压与所述期望关断时段相关联的查找表。
33.根据方案31所述的PFC方法,其中,确定所述期望关断时段包括:使用下式来设置所述期望关断时段:
其中,DOP是所述期望关断时段,tp是预定的切换周期,vI是所述输入电压,以及vO是所述输出电压。
34.根据方案31所述的PFC方法,还包括:
响应于确定(i)从接通状态转变至关断状态的时间与(ii)当前时间之间的时段大于所述期望关断时段,将所述开关从关断状态转变至接通状态;以及
保持所述开关处于接通状态,直到通过所述PFC电路的电感器的所述测量的电流大于通过所述电感器的所述需求电流为止。
35.根据方案34所述的PFC方法,还包括:基于所述输出电压与所述输出电压的期望值之间的差来确定通过所述电感器的所述需求电流。
36.根据方案31所述的PFC方法,其中,确定所述期望关断时段包括:还基于所述开关的切换周期来确定所述期望关断时段。
37.根据方案36所述的PFC方法,还包括:
确定所述开关的期望接通时段,其中,所述期望接通时段是可变的,
其中,确定所述期望关断时段包括:基于所述切换周期减去所述期望接通时段来设置所述期望关断时段。
38.根据方案36所述的PFC方法,其中,确定所述期望接通时段包括:基于通过所述电感器的最大电流、通过所述电感器的所述需求电流和所述输入电压来设置用于所述开关的期望接通时段,
其中,所述期望关断时段模块基于所述切换周期减去所述期望接通时段来设置所述期望关断时段。
39.根据方案36所述的PFC方法,还包括:基于通过所述电感器的最大电流、通过所述电感器的所述需求电流、所述输入电压和所述输出电压来设置用于所述开关的期望接通时段,
其中,确定所述期望关断时段包括:基于所述切换周期减去所述期望接通时段来设置所述期望关断时段。
40.根据方案36所述的PFC方法,还包括:
基于通过所述电感器的最大电流、通过所述电感器的所述需求电流和所述输入电压来确定用于不连续模式操作的第一预期接通时段;
基于通过所述电感器的最大电流、通过所述电感器的所述需求电流、所述输入电压和所述输出电压来确定用于连续模式操作的第二预期接通时段;以及
将所述开关的第三预期接通时段设置成所述第一预期接通时段和所述第二预期接通时段中的一个,
其中,确定所述期望关断时段包括:基于所述切换周期减去所述第三预期接通时段来设置所述期望关断时段。
41.一种功率因数校正(PFC)系统,包括:
PFC电路,其接收交流(AC)输入电压,并且使用开关从所述AC输入电压生成直流(DC)输出电压;
第一过零点模块,其基于如下来确定所述AC输入电压的第一过零点:
第一电压和当所述AC输入电压从小于第一预定电压转变至大于所述第一预定电压时的第一时间;以及
第二电压和当所述AC输入电压从小于第二预定电压转变至大于所述第二预定电压时的第二时间,
其中,所述第一预定电压小于零,并且
其中,所述第二预定电压大于零;
参考模块,其基于所述第一过零点生成至少在相位和频率上对应于所述AC输入电压的正弦参考信号;以及
开关控制模块,其基于所述正弦参考信号来控制所述开关的切换。
42.根据方案41所述的PFC系统,还包括:
第二过零点模块,其基于如下来确定所述正弦参考信号的第二过零点:
所述正弦参考信号的第一值和当所述正弦参考信号从大于第三预定电压转变至小于所述第三预定电压时的第三时间;以及
所述正弦参考信号的第二值和当所述正弦参考信号从大于第四预定电压转变至小于所述第四预定电压时的第四时间,
其中,所述第四预定电压小于零,并且
其中,所述第三预定电压大于零,
其中,所述参考模块还基于所述第二过零点生成所述正弦参考信号。
43.根据方案42所述的PFC系统,其中,所述参考模块基于所述AC输入电压的所述第一过零点与所述正弦参考信号的所述第二过零点之间的差来生成所述正弦参考信号。
44.根据方案42所述的PFC系统,其中,所述第三预定电压等于所述第二预定电压,以及
其中,所述第四预定电压等于所述第一预定电压。
45.根据方案44所述的PFC系统,其中,所述参考模块还基于所述AC输入电压的所述第一过零点与所述正弦参考信号的所述第二过零点之间的一个周期差的一半来生成所述正弦参考信号。
46.根据方案42所述的PFC系统,其中:
所述第一预定电压和所述第二预定电压在幅值上相等,以及
所述第三预定电压和所述第四预定电压在幅值上相等。
47.根据方案41所述的PFC系统,还包括滤波器模块,其对使用电压传感器测量的所述AC输入电压的值进行滤波,并且基于所述滤波来产生所述第一电压和所述第二电压。
48.根据方案47所述的PFC系统,还包括:
滤波器校正模块,其基于所述AC输入电压的频率来确定对所述第一过零点的校正,
其中,所述参考模块还基于所述校正来生成所述正弦参考信号。
49.根据方案41所述的PFC系统,其中,所述第一过零点模块基于所述第一电压、所述第一时间、所述第二电压和所述第二时间使用线性插值来确定所述AC输入电压的所述第一过零点。
50.根据方案41所述的PFC系统,还包括:基于所述正弦参考信号来确定电流需求的电流需求模块,
其中,当通过所述PFC电路的电感器的测量的电流大于所述需求电流时,所述开关控制模块将所述开关从接通状态转变至关断状态。
51.一种功率因数校正(PFC)方法,包括:
通过PFC电路来接收交流(AC)输入电压,并且使用开关来从所述AC输入电压生成直流(DC)输出电压;
基于如下来确定所述AC输入电压的第一过零点:
第一电压和当所述AC输入电压从小于第一预定电压转变至大于所述第一预定电压时的第一时间;以及
第二电压和当所述AC输入电压从小于第二预定电压转变至大于所述第二预定电压时的第二时间,
其中,所述第一预定电压小于零,并且
所述第二预定电压大于零;
基于所述第一过零点来生成至少在相位和频率上对应于所述AC输入电压的正弦参考信号;以及
基于所述正弦参考信号来控制所述开关的切换。
52.根据方案51所述的PFC方法,还包括:
基于如下来确定所述正弦参考信号的第二过零点:
所述正弦参考信号的第一值和当所述正弦参考信号从大于第三预定电压转变至小于所述第三预定电压时的第三时间;以及
所述正弦参考信号的第二值和当所述正弦参考信号从大于第四预定电压转变至小于所述第四预定电压时的第四时间,
其中,所述第四预定电压小于零,并且
其中,所述第三预定电压大于零,
其中,生成所述正弦参考信号包括:还基于所述第二过零点来生成所述正弦参考信号。
53.根据方案52所述的PFC方法,其中,生成所述正弦参考信号包括:基于所述AC输入电压的所述第一过零点与所述正弦参考信号的所述第二过零点之间的差来生成所述正弦参考信号。
54.根据方案52所述的PFC方法,其中,所述第三预定电压等于所述第二预定电压,以及
其中,所述第四预定电压等于所述第一预定电压。
55.根据方案54所述的PFC方法,其中,生成所述正弦参考信号包括:还基于所述AC输入电压的所述第一过零点与所述正弦参考信号的所述第二过零点之间的一个周期差的一半来生成所述正弦参考信号。
56.根据方案52所述的PFC方法,其中:
所述第一预定电压和所述第二预定电压在幅值上相等,以及
所述第三预定电压和所述第四预定电压在幅值上相等。
57.根据方案51所述的PFC方法,还包括:
对使用电压传感器测量的所述AC输入电压的值进行滤波;以及
基于所述滤波来产生所述第一电压和所述第二电压。
58.根据方案57所述的PFC方法,还包括:
基于所述AC输入电压的频率来确定用于所述第一过零点的校正,
其中,生成所述正弦参考信号包括:还基于所述校正来生成所述正弦参考信号。
59.根据方案51所述的PFC方法,其中,确定所述第一过零点包括:基于所述第一电压、所述第一时间、所述第二电压和所述第二时间使用线性插值来确定所述AC输入电压的所述第一过零点。
60.根据方案51所述的PFC方法,还包括:基于所述正弦参考信号来确定电流需求,
其中,控制所述开关的切换包括:当通过所述PFC电路的电感器的测量的电流大于所述需求电流时,将所述开关从接通状态转变至关断状态。
前面的描述本质上仅是说明性的并且绝不旨在限制本公开、其应用或用途。本公开内容的广泛教导可以以各种形式实现。因此,虽然本公开内容包括特定的示例,但本公开内容的真正范围不应受此限制,因为在研究附图、说明书和以下权利要求时,其他修改将变得明显。应理解的是,在不改变本公开的原理的情况下,方法中的一个或更多个步骤可以以不同的顺序(或并行)执行。此外,尽管每个实施方式中在上面被描述为具有特定特征,但相对于本公开内容的任何实施方式描述的这些特征中的任何一个或更多个可以以其他实施方式的任何特征来实现和/或与其他实施方式的任何特征组合,尽管该组合没有明确描述。换句话说,描述的实施方式不是互相排斥的,并且一个或更多个实施方式的彼此排列组合仍然在本公开内容的范围内。
使用各种术语包括“连接”、“结合”、“耦接”、“相邻”、“紧挨”、“在…上部”、“在…之上”、“在…之下”和“布置”来描述元件之间(例如,模块、电路元件、半导体层等之间)的空间和功能关系。除非明确描述为“直接”的,当在以上的公开中描述第一元件与第二元件之间的关系时,该关系可以是在第一元件与第二元件之间不存在其他中间元件的直接关系,但也可以是在第一元件与第二元件之间(空间上或功能上)存在一个或更多个中间元件的间接关系。如在本文中使用的,短语A,B和C中的至少一个应被理解成意味着使用非排他逻辑“或”(OR)的逻辑(A或B或C),并且不应被理解成意味“至少一个A,至少一个B和至少一个C”。
在附图中,如通过箭头指示的,箭头的方向通常表示对说明有意义的信息(例如,数据或指令)流。例如,当元件A和元件B交换各种信息且从元件A将信息传输至元件B与图示相关时,箭头可以从元件A指向元件B。该单向箭头并不暗示没有其他信息从元件B传输至元件A。此外,对于从元件A发送至元件B的信息,元件B可以向元件A发送对信息的请求或者向元件A发送信息的接收确认。
在本申请中,包括以下的定义,术语“模块”或术语“控制器”可以被术语“电路”替换。术语“模块”可以指代是以下一部分,或者可以包括以下:专用集成电路(ASIC);数字、模拟或混合模拟/数字分立电路;数字、模拟或混合模拟/数字集成电路;组合逻辑电路;现场可编程门阵列(FPGA);执行代码的处理器电路(共享,专用或组);存储通过处理器电路执行的代码的存储器电路(共享,专用或组);提供所描述的功能的其他适当的硬件部件;或者上面的一些或全部部件的组合,例如,在片上系统中。
模块包括一个或更多个接口电路。在一些示例中,接口电路可以包括连接至局域网(LAN)、因特网、广域网(WAN)或其组合的有线或无线接口。本公开内容的任何给定模块的功能可以分布在经由接口电路连接的多个模块中。例如,多个模块可以允许负载平衡。在又一示例中,服务器(也称为远程或云)模块可以代表客户端模块完成某些功能。
可以使用用于硬件描述的语言,例如IEEE标准1364-2005(通称“Verilog”)和IEEE标准1076-2008(通称“VHDL”)来定义模块的一些或全部特征。可以使用硬件描述语言来制造和/或编程硬件电路。在一些实现方式中,可以通过包括如下所述的代码和硬件描述的语言,例如IEEE1666-2005(通称“系统C”)来定义模块的一些或全部特征。
如上使用的术语代码可以包括软件、固件和/或微代码,并且可以指代程序、例程、函数、类、数据结构和/或对象。术语共享处理器电路包括执行来自多个模块的一些或全部代码的单个处理器电路。术语组处理器电路包括与附加的处理器电路组合的、执行来自一个或更多个模块的一些或全部代码的处理器电路。多个处理器电路的参考包括分立管芯上的多个处理器电路、单个管芯上的多个处理器电路、单个处理器电路的多个核、单个处理器电路的多个线程或者以上的组合。术语共享存储器电路包括存储来自多个模块的一些或全部代码的单个存储器电路。术语组存储器电路包括与附加的存储器组合的、存储来自一个或更多个模块的一些或全部代码的存储器电路。
术语存储器电路是术语计算机可读介质的子集。如本文中使用的术语计算机可读介质不包括通过介质(例如,在载波上)传播的瞬时电信号或电磁信号;因此,术语计算机可读介质可以被认为是有形的和非暂态的。非暂态的计算机可读介质的非限制性示例是非易失性存储电路(例如,闪存电路、可擦除可编程只读存储器电路或掩模只读存储器电路),易失性存储器电路(例如,静态随机存取存储器电路或动态随机存取存储器电路),磁存储介质(例如,模拟或数字磁带或者硬盘驱动)和光存储介质(例如,CD、DVD或蓝光光盘)。
本申请中所描述的设备和方法可以通过专用计算机来部分地或全部地实现,该专用计算机通过将通用计算机配置成执行在计算机程序中包含的一个或更多个特定函数来创建。上述的功能块和流程图元素用做软件规范,该软件规范可以通过熟练的技术人员或程序员的日常工作被转换成计算机程序。
计算机程序包括存储在至少一个非暂态计算机可读介质上的处理器可执行指令。计算机程序还可以包括或依赖存储的数据。计算机程序可以包括与专用计算机的硬件交互的基本输入/输出系统(BIOS)、与专用计算机的特定装置交互的装置驱动器,一个或更多个操作系统,用户应用程序,后台服务,后台应用等。
计算机程序可以包括:(i)要解析的描述性文本,例如,HTML(超文本标记语言)、XML(可扩展标记语言)或JSON(JavaScript对象简谱)(ii)汇编代码,(iii)通过编译器从源代码生成目标代码,(iv)通过解释器执行的源代码,(v)通过即时编译器编译和执行源代码等。仅作为示例,源代码可以使用语言语法编写,该语言包括C、C++、C#、Objective-C、Swift、Haskell、Go、SQL、R、Lisp、Fortran、Perl、Pascal、Curl、OCaml、HTML5(超文本标记语言第5版)、Ada、ASP(动态服务器页面)、PHP(PHP:超文本预处理器)、Scala、Eiffel、Smalltalk、Erlang、Ruby、/>Lua、MATLAB、SIMULINK和/>
除非元件使用短语“用于…的方法”明确列出,或者在使用短语“用于…的操作”或“用于…的步骤”的方法权利要求的情况下,权利要求中列出的元件不旨在成为在35U.S.C.§112(f)的意义内的功能性限定元件。

Claims (20)

1.一种功率因数校正PFC系统,包括:
误差控制模块,其基于期望的直流DC电压与测量的DC电压之间的差来确定第一电流需求;
滤波器模块,其将滤波器应用于所述第一电流需求以产生第二电流需求;
加权模块,其(i)基于所述差来确定分别用于所述第一电流需求和所述第二电流需求的第一加权值和第二加权值,(ii)基于所述第一电流需求和所述第一加权值来确定第四电流需求,以及(iii)基于所述第二电流需求和所述第二加权值来确定第三电流需求;
电流需求模块,其基于所述第三电流需求和所述第四电流需求来确定最终电流需求;以及
电流控制模块,其基于所述最终电流需求来控制PFC装置的开关的切换。
2.根据权利要求1所述的PFC系统,其中,还包括:基于所述第三电流需求和所述第四电流需求的和来确定第五电流需求的求和模块,
其中,所述电流需求模块将陷波滤波器应用于所述第五电流需求,并且基于所述陷波滤波器的输出来确定所述最终电流需求。
3.根据权利要求2所述的PFC系统,其中,所述电流需求模块基于所述陷波滤波器的输出与正弦参考信号的值相乘来设置所述最终电流需求,所述正弦参考信号被生成为与输入交流AC电压在相位和频率上同步。
4.根据权利要求2所述的PFC系统,还包括滤波器系数模块,其基于输入交流AC电压的频率来设置所述陷波滤波器的滤波器系数。
5.根据权利要求1所述的PFC系统,其中,当所述差小于预定值时,所述加权模块将所述第四电流需求设置为零。
6.根据权利要求5所述的PFC系统,其中,当所述差小于所述预定值时,所述加权模块还将所述第三电流需求设置为等于所述第二电流需求。
7.根据权利要求5所述的PFC系统,其中,当所述差大于所述预定值时,所述加权模块增大所述第一加权值并且减小所述第二加权值。
8.根据权利要求5所述的PFC系统,其中,当所述差大于所述预定值时,所述加权模块随着所述差增大而增大所述第一加权值,并且随着所述差增大而减小所述第二加权值。
9.根据权利要求1所述的PFC系统,其中,所述加权模块:
基于所述第一电流需求与所述第一加权值相乘来设置所述第四电流需求;以及
基于所述第二电流需求与所述第二加权值相乘来设置所述第三电流需求。
10.根据权利要求1所述的PFC系统,其中,所述滤波器模块将低通滤波器应用于所述第一电流需求以产生所述第二电流需求。
11.一种功率因数校正PFC方法,包括:
基于期望的直流DC电压与测量的DC电压之间的差来确定第一电流需求;
将滤波器应用于所述第一电流需求以产生第二电流需求;
基于所述差确定分别用于所述第一电流需求和所述第二电流需求的第一加权值和第二加权值;
基于所述第一电流需求和所述第一加权值来确定第四电流需求;
基于所述第二电流需求和所述第二加权值来确定第三电流需求;
基于所述第三电流需求和所述第四电流需求来确定最终电流需求;以及
基于所述最终电流需求来控制PFC装置的开关的切换。
12.根据权利要求11所述的PFC方法,还包括:
基于所述第三电流需求和所述第四电流需求的和来确定第五电流需求;以及
将陷波滤波器应用于所述第五电流需求,
其中,确定所述最终电流需求包括:基于所述陷波滤波器的输出来确定所述最终电流需求。
13.根据权利要求12所述的PFC方法,其中,确定所述最终电流需求包括:基于所述陷波滤波器的输出与正弦参考信号的值相乘来设置所述最终电流需求,所述正弦参考信号被生成为与输入交流AC电压在相位和频率上同步。
14.根据权利要求12所述的PFC方法,还包括:基于输入交流AC电压的频率来设置所述陷波滤波器的滤波器系数。
15.根据权利要求11所述的PFC方法,还包括:当所述差小于预定值时,将所述第四电流需求设置为零。
16.根据权利要求15所述的PFC方法,还包括:当所述差小于所述预定值时,还将所述第三电流需求设置为等于所述第二电流需求。
17.根据权利要求15所述的PFC方法,还包括:当所述差大于所述预定值时,增大所述第一加权值并且减小所述第二加权值。
18.根据权利要求15所述的PFC方法,还包括:当所述差大于所述预定值时,随着所述差增大而增大所述第一加权值,并且随着所述差增大而减小所述第二加权值。
19.根据权利要求11所述的PFC方法,还包括:
基于所述第一电流需求与所述第一加权值相乘来设置所述第四电流需求;以及
基于所述第二电流需求与所述第二加权值相乘来设置所述第三电流需求。
20.根据权利要求11所述的PFC方法,其中,所述滤波器是低通滤波器。
CN202010697561.7A 2016-04-15 2017-04-14 功率因数校正系统及方法 Active CN112019036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010697561.7A CN112019036B (zh) 2016-04-15 2017-04-14 功率因数校正系统及方法

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
US201662323607P 2016-04-15 2016-04-15
US201662323527P 2016-04-15 2016-04-15
US201662323538P 2016-04-15 2016-04-15
US201662323517P 2016-04-15 2016-04-15
US62/323,538 2016-04-15
US62/323,527 2016-04-15
US62/323,607 2016-04-15
US62/323,517 2016-04-15
US15/419,394 2017-01-30
US15/419,464 US10277115B2 (en) 2016-04-15 2017-01-30 Filtering systems and methods for voltage control
US15/419,423 US10763740B2 (en) 2016-04-15 2017-01-30 Switch off time control systems and methods
US15/419,394 US10305373B2 (en) 2016-04-15 2017-01-30 Input reference signal generation systems and methods
US15/419,464 2017-01-30
US15/419,423 2017-01-30
CN201780035647.XA CN109362240A (zh) 2016-04-15 2017-04-14 用于电压控制的方法及滤波系统
PCT/US2017/027699 WO2017181063A1 (en) 2016-04-15 2017-04-14 Filtering systems and methods for voltage control
CN202010697561.7A CN112019036B (zh) 2016-04-15 2017-04-14 功率因数校正系统及方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780035647.XA Division CN109362240A (zh) 2016-04-15 2017-04-14 用于电压控制的方法及滤波系统

Publications (2)

Publication Number Publication Date
CN112019036A CN112019036A (zh) 2020-12-01
CN112019036B true CN112019036B (zh) 2024-03-19

Family

ID=60042286

Family Applications (4)

Application Number Title Priority Date Filing Date
CN202010697551.3A Active CN112019035B (zh) 2016-04-15 2017-04-14 功率因数校正系统及方法
CN202210383556.8A Pending CN114696592A (zh) 2016-04-15 2017-04-14 功率因数校正系统和方法
CN202010697561.7A Active CN112019036B (zh) 2016-04-15 2017-04-14 功率因数校正系统及方法
CN201780035647.XA Pending CN109362240A (zh) 2016-04-15 2017-04-14 用于电压控制的方法及滤波系统

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202010697551.3A Active CN112019035B (zh) 2016-04-15 2017-04-14 功率因数校正系统及方法
CN202210383556.8A Pending CN114696592A (zh) 2016-04-15 2017-04-14 功率因数校正系统和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201780035647.XA Pending CN109362240A (zh) 2016-04-15 2017-04-14 用于电压控制的方法及滤波系统

Country Status (4)

Country Link
EP (2) EP3443654B1 (zh)
CN (4) CN112019035B (zh)
MX (1) MX2018012628A (zh)
WO (1) WO2017181063A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3116939C (en) 2018-10-26 2023-08-15 Mate. Llc Inrush current limited ac/dc power converter apparatus and method
CN114050574B (zh) * 2021-11-29 2022-08-16 国网江苏省电力有限公司扬州市江都区供电分公司 一种智能低压切换系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812234A (zh) * 2005-01-26 2006-08-02 中兴通讯股份有限公司 一种功率因数校正电路的控制方法
CN102549900A (zh) * 2009-08-10 2012-07-04 艾默生环境优化技术有限公司 用于抑制在功率因数校正系统中的dc电流的系统和方法
CN102843024A (zh) * 2011-06-20 2012-12-26 中兴通讯股份有限公司 并联交错pfc电路控制方法及装置
CA2806870A1 (en) * 2012-10-09 2014-04-09 Delta-Q Technologies Corp. Digital controller based detection methods for adaptive mixed conduction mode power factor correction circuit
CN105226932A (zh) * 2015-10-21 2016-01-06 上海大学 高效率功率因数校正电路拓扑结构及其控制方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855722A (en) * 1986-08-01 1989-08-08 Intersil, Inc. Alternating current power loss detector
JPS6374212A (ja) * 1986-09-17 1988-04-04 Sanyo Electric Co Ltd ゼロクロス検出回路
JPS63240121A (ja) * 1987-03-27 1988-10-05 Toshiba Corp ゼロクロス検出回路
US4959606A (en) 1989-01-06 1990-09-25 Uniphase Corporation Current mode switching regulator with programmed offtime
US6107767A (en) * 1998-03-20 2000-08-22 Trw Inc. Electric assist steering system having an improved motor current controller with notch filter
KR20010010415A (ko) * 1999-07-20 2001-02-15 구자홍 인버터의 역률보정장치 및 방법
US7157886B2 (en) * 2002-10-21 2007-01-02 Microsemi Corp. —Power Products Group Power converter method and apparatus having high input power factor and low harmonic distortion
TWI253554B (en) * 2005-01-14 2006-04-21 Tsai-Fu Wu Power factor corrector control device for accommodating mains voltage distortion and achieving high power factor and low harmonic current
US7447279B2 (en) * 2005-01-31 2008-11-04 Freescale Semiconductor, Inc. Method and system for indicating zero-crossings of a signal in the presence of noise
US7466112B2 (en) 2005-02-08 2008-12-16 Linear Technology Corporation Variable frequency current-mode control for switched step up-step down regulators
US8130522B2 (en) * 2007-06-15 2012-03-06 The Regents Of The University Of Colorado, A Body Corporate Digital power factor correction
US7647125B2 (en) 2007-09-28 2010-01-12 Cirrus Logic, Inc. Time-based control of a system having integration response
US20100207536A1 (en) * 2007-10-26 2010-08-19 Lighting Science Group Corporation High efficiency light source with integrated ballast
US9162310B2 (en) * 2008-07-08 2015-10-20 Illinois Tool Works Inc. Enhanced power factor correction for welding and cutting power supplies
US8493014B2 (en) * 2009-08-10 2013-07-23 Emerson Climate Technologies, Inc. Controller and method for estimating, managing, and diagnosing motor parameters
US8264860B2 (en) 2009-08-10 2012-09-11 Emerson Climate Technologies, Inc. System and method for power factor correction frequency tracking and reference generation
TW201125271A (en) * 2010-01-14 2011-07-16 Novatek Microelectronics Corp Power factor correction device
CN102412712A (zh) * 2011-11-29 2012-04-11 杭州矽力杰半导体技术有限公司 一种直流变换器的补偿控制电路及方法
US20130258725A1 (en) * 2012-03-29 2013-10-03 General Electric Company Systems and Methods for Balancing UPS Source Currents During Unbalanced Load Transient Conditions
CN103001463B (zh) * 2012-12-25 2016-05-25 杭州士兰微电子股份有限公司 开关电源控制器及包含该开关电源控制器的开关电源
CN103078475B (zh) * 2013-01-08 2015-11-25 西南交通大学 开关变换器双缘恒定关断时间调制电压型控制方法及其装置
EP2770621A3 (en) * 2013-02-24 2016-08-24 Richard Landry Gray Device for improving power efficiency for power factor corrections
JP5741736B1 (ja) * 2014-03-07 2015-07-01 株式会社豊田自動織機 周期的変移電圧の周期及び位相検出装置及び方法
CN203775025U (zh) * 2014-04-22 2014-08-13 成都芯源系统有限公司 一种功率因数校正电路及其控制电路
US9502990B2 (en) * 2014-05-12 2016-11-22 Chicony Power Technology Co., Ltd. Electric power feedback apparatus with main power output-feedback and standby power output-feedback

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812234A (zh) * 2005-01-26 2006-08-02 中兴通讯股份有限公司 一种功率因数校正电路的控制方法
CN102549900A (zh) * 2009-08-10 2012-07-04 艾默生环境优化技术有限公司 用于抑制在功率因数校正系统中的dc电流的系统和方法
CN102843024A (zh) * 2011-06-20 2012-12-26 中兴通讯股份有限公司 并联交错pfc电路控制方法及装置
CA2806870A1 (en) * 2012-10-09 2014-04-09 Delta-Q Technologies Corp. Digital controller based detection methods for adaptive mixed conduction mode power factor correction circuit
CN105226932A (zh) * 2015-10-21 2016-01-06 上海大学 高效率功率因数校正电路拓扑结构及其控制方法

Also Published As

Publication number Publication date
EP3443654B1 (en) 2022-11-16
EP3443654A4 (en) 2019-12-25
EP3443654A1 (en) 2019-02-20
MX2018012628A (es) 2019-08-05
CN114696592A (zh) 2022-07-01
CN112019035A (zh) 2020-12-01
CN109362240A (zh) 2019-02-19
EP4138294A1 (en) 2023-02-22
CN112019036A (zh) 2020-12-01
CN112019035B (zh) 2023-12-22
WO2017181063A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
US10763740B2 (en) Switch off time control systems and methods
US20220320997A1 (en) Buck-Converter-Based Drive Circuits For Driving Motors Of Compressors And Condenser Fans
US10305373B2 (en) Input reference signal generation systems and methods
CN109247026B (zh) 用于电压转换器的开关致动测量电路
US10277115B2 (en) Filtering systems and methods for voltage control
US10075065B2 (en) Choke and EMI filter circuits for power factor correction circuits
EP2465190B1 (en) System and method for reducing line current distortion
EP2465187B1 (en) System and method for power factor correction
CN111033992B (zh) 用于恒定交叉频率的开关边界模式pfc功率转换器的数字控制
US11362582B2 (en) Multi-phase converter control system and method for interleaving multi-phase converters
US10656026B2 (en) Temperature sensing circuit for transmitting data across isolation barrier
WO2011019705A2 (en) System and method for current balancing
CN112019036B (zh) 功率因数校正系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Country or region after: U.S.A.

Address after: Ohio, USA

Applicant after: Gulun L.P.

Address before: Ohio, USA

Applicant before: Emerson Climate Technologies, Inc.

Country or region before: U.S.A.

GR01 Patent grant
GR01 Patent grant