CN112011777B - 一种具有尖晶石结构的高温太阳能吸收涂层 - Google Patents

一种具有尖晶石结构的高温太阳能吸收涂层 Download PDF

Info

Publication number
CN112011777B
CN112011777B CN202010919577.8A CN202010919577A CN112011777B CN 112011777 B CN112011777 B CN 112011777B CN 202010919577 A CN202010919577 A CN 202010919577A CN 112011777 B CN112011777 B CN 112011777B
Authority
CN
China
Prior art keywords
layer
spinel structure
coating
antireflection layer
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010919577.8A
Other languages
English (en)
Other versions
CN112011777A (zh
Inventor
高祥虎
刘刚
何成玉
汪增强
赵士杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202010919577.8A priority Critical patent/CN112011777B/zh
Publication of CN112011777A publication Critical patent/CN112011777A/zh
Application granted granted Critical
Publication of CN112011777B publication Critical patent/CN112011777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明涉及一种具有尖晶石结构的高温太阳能吸收涂层,该涂层依次由吸热体基底、吸收层和减反射层组成。所述吸热体基底为镍基合金、哈氏合金、不锈钢、碳钢中的任意一种;所述减反射层为SiO2、Al2O3、AlN、SiN、ZrO2中的一种,其特征在于:所述吸收层是指采用等摩尔比且具有尖晶石结构的金属Cu、Fe、Cr、Mn、Ni中的至少两种金属合金的氧化物。本发明膜系结构简单、稳定,在空气中具有良好的高温抗氧化、耐腐蚀性及长期热稳定性能,可应用于塔式光热发电吸热器、槽式光热发电集热管、海水淡化、重质油开采等领域。

Description

一种具有尖晶石结构的高温太阳能吸收涂层
技术领域
本发明涉及太阳能光热发电和真空镀膜技术领域,尤其涉及一种具有尖晶石结构的高温太阳能吸收涂层。
背景技术
能源安全是关系国家经济社会发展的全局性、战略性问题。当今传统能源日益消耗,生态环境破坏严重,是人类生存与发展所面临的重大挑战。因此清洁能源的开发研究,成为全球能源发展的重点与趋势所向。聚光式太阳能热发电(Concentrated Solar Power,CSP)技术是指将太阳能聚集后,通过蓄热介质转化为热能,再将热能传送到发电系统进行发电,是一种绿色清洁的可再生能源发电技术,是未来解决能源问题最理想的途径之一。高温太阳能光谱选择性吸收涂层是CSP系统中光热转换的核心材料,其性能(高的吸收率、低的发射率和良好的热稳定性能)对提高光热转换效率和电站收益起着至关重要的作用。
金属-电介电复合体系是高温太阳能吸收涂层的经典膜系,它由介电材料或陶瓷基体中掺杂细小的金属颗粒组成,或者由浸入金属的多孔氧化物组成。这种薄膜在红外区是透明的,而在太阳光谱区由于金属的带间跃迁和和小粒子共振而会产生强烈的光吸收。当这类涂层沉积在具有高反射的金属基底上时,就会形成具有高太阳吸收率和低热发射率的光谱选择性吸收涂层。如 Mo-SiO2、W-A12O3、Cr-Cr2O3、Ni-A12O3、Co-WC、W-Ni-A12O3、Ag-A12O3、Mo-Si3N4、Al-Ni-A12O3、W-Ni-YSZ等。然而,对于传统的金属-电介质复合体系,作为填充粒子的金属或金属合金在高温下易发生扩散、氧化、团聚等现象,由此导致吸收涂层光学性能的衰减和高温不稳定性。因此,开发具有优异抗氧化性能、耐高温性能和光学性能的太阳能吸收涂层是目前学术界和工业界研究的热点。
发明内容
本发明所要解决的技术问题是提供一种膜系结构简单、稳定、性能优异的具有尖晶石结构的高温太阳能吸收涂层。
为解决上述问题,本发明所述的一种具有尖晶石结构的高温太阳能吸收涂层,该涂层依次由吸热体基底、吸收层和减反射层组成;所述吸热体基底为镍基合金、哈氏合金、不锈钢、碳钢中的任意一种;所述减反射层为SiO2、Al2O3、AlN、SiN、ZrO2中的一种,其特征在于:所述吸收层是指采用等摩尔比且具有尖晶石结构的金属Cu、Fe、Cr、Mn、Ni中的至少两种金属合金的氧化物。
所述吸收层的厚度为50~150 nm。
所述吸收层具有尖晶石结构。
所述减反射层的厚度为80~230 nm。
所述吸收层采用直流反应磁控溅射方法制备,其中真空室预抽本底真空至3.5×10-6 ~7.0×10-6Torr;合金靶材的溅射功率密度为4~10 W/cm-2,溅射沉积时氩气的进气量为20~80 sccm,氧气的进气量为5~20 sccm。
所述减反射层采用射频磁控溅射方法制备,其中溅射功率密度在4~10 W/cm-2,溅射沉积时氩气的进气量为20~80 sccm。
沉积时吸热体基底温度为150~350℃。
本发明与现有技术相比具有以下优点:
1、具有尖晶石结构的过渡金属氧化物由于其展现出了良好的化学稳定性、耐磨损性、抗氧化、热抗震性、优异的光学性能及催化性能,使得它们被广泛地应用在光学、电学、磁学、催化、能量的存储和转化领域。但传统的尖晶石材料是通过化学法合成如水热法、溶液凝胶法、固相合成制备。本发明利用磁控溅射方法制备了具有尖晶石结构的过渡金属氧化物,并将其作为吸收层,从而避免了高温下的元素扩散和氧化等现象发生,确保了涂层在空气中优异的抗氧化性能和光学性能,不但拓展了尖晶石的制备方法,而且丰富了太阳能吸收涂层的膜系结构。
2、相比于金属掺杂电介质体系和多层膜体系(过渡金属氮化物和氮氧化物),本发明膜系结构简单、稳定,有效简化了制备工艺,提高了生产效率。
3、本发明中吸收层采用具有尖晶石结构的氧化物,因此,在空气中具有优异的抗高温氧化性能、光学性能和耐腐蚀性能,从而在塔式光热发电吸热器、槽式光热发电集热管、海水淡化、重质油开采等领域具有重要应用价值。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明中吸收涂层膜系结构图。
图2为本发明实施例1吸收涂层的反射谱图
图3为本发明实施例2吸收涂层的反射谱图。
具体实施方式
实施例1 一种具有尖晶石结构的高温太阳能吸收涂层,该涂层依次由吸热体基底、吸收层和减反射层组成(如图1所示)。吸热体基底为镍基合金;减反射层为SiO2,厚度为80nm;吸收层是指采用等摩尔比且具有尖晶石结构的CuCrMnO4,厚度为50 nm。
该涂层的制备方法,包括以下步骤:
⑴吸热体基底的处理:
将吸热体基底镍基合金去除表面附着的杂质后,分别在丙酮和乙醇中分别超声清洗10分钟,氮气吹干,真空保存;
⑵吸收层的制备:
吸收层采用反应直流磁控溅射方法制备,制备时采用等摩尔比的Cu、Cr、Mn三种金属形成的CuCrMn金属合金作为磁控溅射靶材;真空室预抽本底真空至3.5×10-6Torr;合金靶材的溅射功率密度为4 W/cm-2,溅射沉积时氩气的进气量为20 sccm,氧气的进气量为5sccm,吸收层沉积厚度为50 nm。溅射沉积吸收层时,吸热体基底温度为150℃。
⑶减反射层的制备:
吸收层制备完毕后,以纯度为99.99%的SiO2作为磁控溅射靶材,采用射频磁控溅射方法,控制靶材的溅射功率密度在4 W/cm-2,溅射沉积时氩气的进气量为20sccm,在吸收层上射频溅射制备减反射层,厚度为80 nm。溅射沉积减反射层时,吸热体基底温度为150℃。
该太阳能吸收涂层的光学性能如下:在大气质量因子AM1.5条件下,涂层吸收率为0.94,发射率为0.10,在空气中具有良好的长期高温热稳定性能。
图2为该吸收涂层反射谱图。从谱图中可以看出,涂层在0.3~2.5微米区域具有低的反射率,而在2.5~25微米区域具有高的反射率,从而保证该涂层具有良好的光谱选择特性,即高的吸收率和低的发射率。
实施例2 一种具有尖晶石结构的高温太阳能吸收涂层,该涂层依次由吸热体基底、吸收层和减反射层组成。吸热体基底为哈氏合金;减反射层为Al2O3,厚度为230nm;吸收层是指采用等摩尔比且具有尖晶石结构的FeMnCuO4,厚度为150 nm。
该涂层的制备方法,包括以下步骤:
⑴吸热体基底的处理:
将吸热体基底哈氏合金去除表面附着的杂质后,分别在丙酮和乙醇中分别超声清洗20分钟,氮气吹干,真空保存;
⑵吸收层的制备:
吸收层采用反应直流磁控溅射方法制备,制备时采用等摩尔比的Fe、Mn、Cu三种金属形成的FeMnCu金属合金作为磁控溅射靶材;真空室预抽本底真空至7.0×10-6Torr;合金靶材的溅射功率密度为10 W/cm-2,溅射沉积时氩气的进气量为80 sccm,氧气的进气量为20sccm,吸收层沉积厚度为150 nm。溅射沉积吸收层时,吸热体基底温度为350℃。
⑶减反射层的制备:
吸收层制备完毕后,以纯度为99.99%的Al2O3作为磁控溅射靶材,采用射频磁控溅射方法,控制靶材的溅射功率密度在10 W/cm-2,溅射沉积时氩气的进气量为80sccm,在吸收层上射频溅射制备减反射层,厚度为230 nm。溅射沉积减反射层时,吸热体基底温度为350℃。
该太阳能吸收涂层的光学性能如下:在大气质量因子AM1.5条件下,涂层吸收率为0.94,发射率为0.10,在空气中具有良好的长期高温热稳定性能。
图3为该吸收涂层反射谱图。从谱图中可以看出,涂层在0.3~2.5微米区域具有低的反射率,而在2.5~25微米区域具有高的反射率,从而保证该涂层具有良好的光谱选择特性,即高的吸收率和低的发射率。
实施例3 一种具有尖晶石结构的高温太阳能吸收涂层,该涂层依次由吸热体基底、吸收层和减反射层组成。吸热体基底为碳钢;减反射层为SiN,厚度为130nm;吸收层是指采用等摩尔比且具有尖晶石结构的Cu1.5Mn1.5O4,厚度为80 nm。
该涂层的制备方法,包括以下步骤:
⑴吸热体基底的处理:
将吸热体基底碳钢去除表面附着的杂质后,分别在丙酮和乙醇中分别超声清洗15分钟,氮气吹干,真空保存;
⑵吸收层的制备:
吸收层采用反应直流磁控溅射方法制备,制备时采用等摩尔比的Cu、Mn两种金属形成的CuMn金属合金作为磁控溅射靶材;真空室预抽本底真空至4.0×10-6Torr;合金靶材的溅射功率密度为8 W/cm-2,溅射沉积时氩气的进气量为50 sccm,氧气的进气量为15sccm,吸收层沉积厚度为80 nm。溅射沉积吸收层时,吸热体基底温度为250℃。
⑶减反射层的制备:
吸收层制备完毕后,以纯度为99.99%的SiN作为磁控溅射靶材,采用射频磁控溅射方法,控制靶材的溅射功率密度在10 W/cm-2,溅射沉积时氩气的进气量为80sccm,在吸收层上射频溅射制备减反射层,厚度为130 nm。溅射沉积减反射层时,吸热体基底温度为250℃。
该太阳能吸收涂层的光学性能如下:在大气质量因子AM1.5条件下,涂层吸收率为0.95,发射率为0.10,在空气中具有良好的长期高温热稳定性能。
实施例4 一种具有尖晶石结构的高温太阳能吸收涂层,该涂层依次由吸热体基底、吸收层和减反射层组成。吸热体基底为不锈钢;减反射层为AlN,厚度为160nm;吸收层是指采用等摩尔比且具有尖晶石结构的CuCrNiO4,厚度为90 nm。
该涂层的制备方法,包括以下步骤:
⑴吸热体基底的处理:
将吸热体基底不锈钢去除表面附着的杂质后,分别在丙酮和乙醇中分别超声清洗20分钟,氮气吹干,真空保存;
⑵吸收层的制备:
吸收层采用反应直流磁控溅射方法制备,制备时采用等摩尔比的Cu、Cr、Ni三种金属形成的CuCrNi金属合金作为磁控溅射靶材;真空室预抽本底真空至4.0×10-6Torr;合金靶材的溅射功率密度为7 W/cm-2,溅射沉积时氩气的进气量为60 sccm,氧气的进气量为17sccm,吸收层沉积厚度为90 nm。溅射沉积吸收层时,吸热体基底温度为300℃。
⑶减反射层的制备:
吸收层制备完毕后,以纯度为99.99%的AlN作为磁控溅射靶材,采用射频磁控溅射方法,控制靶材的溅射功率密度在6 W/cm-2,溅射沉积时氩气的进气量为70sccm,在吸收层上射频溅射制备减反射层,厚度为160 nm。溅射沉积减反射层时,吸热体基底温度为300℃。
该太阳能吸收涂层的光学性能如下:在大气质量因子AM1.5条件下,涂层吸收率为0.96,发射率为0.10,在空气中具有良好的长期高温热稳定性能。
上述实施例1~4中的减反射层还可以为ZrO2

Claims (2)

1.一种具有尖晶石结构的高温太阳能吸收涂层,该涂层依次由吸热体基底、吸收层和减反射层组成;所述吸热体基底为镍基合金、不锈钢、碳钢中的任意一种;所述减反射层为SiO2、Al2O3、AlN、SiN、ZrO2中的一种,其特征在于:所述吸收层是指采用等摩尔比且具有尖晶石结构的金属Cu、Fe、Cr、Mn、Ni中的至少两种金属合金的氧化物;所述吸收层的厚度为50~150 nm;所述吸收层具有尖晶石结构;所述吸收层采用直流反应磁控溅射方法制备,其中真空室预抽本底真空至3.5×10-6 ~7.0×10-6Torr;合金靶材的溅射功率密度为4~10 W/cm-2,溅射沉积时氩气的进气量为20~80 sccm,氧气的进气量为5~20 sccm;沉积时吸热体基底温度为150~350℃;所述减反射层的厚度为80~230 nm。
2.如权利要求1所述的一种具有尖晶石结构的高温太阳能吸收涂层,其特征在于:所述减反射层采用射频磁控溅射方法制备,其中溅射功率密度在4~10 W/cm-2,溅射沉积时氩气的进气量为20~80 sccm。
CN202010919577.8A 2020-09-04 2020-09-04 一种具有尖晶石结构的高温太阳能吸收涂层 Active CN112011777B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010919577.8A CN112011777B (zh) 2020-09-04 2020-09-04 一种具有尖晶石结构的高温太阳能吸收涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010919577.8A CN112011777B (zh) 2020-09-04 2020-09-04 一种具有尖晶石结构的高温太阳能吸收涂层

Publications (2)

Publication Number Publication Date
CN112011777A CN112011777A (zh) 2020-12-01
CN112011777B true CN112011777B (zh) 2021-10-15

Family

ID=73515325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010919577.8A Active CN112011777B (zh) 2020-09-04 2020-09-04 一种具有尖晶石结构的高温太阳能吸收涂层

Country Status (1)

Country Link
CN (1) CN112011777B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701130A (zh) * 2009-07-03 2010-05-05 长春华日涂料有限公司 一种水性单组份太阳能吸收涂料
CN102286243A (zh) * 2011-09-05 2011-12-21 中国科学院兰州化学物理研究所 以尖晶石型颜料为吸光剂制备太阳能选择性吸热涂料的方法
CN102514280A (zh) * 2011-12-12 2012-06-27 武汉理工大学 一种太阳能选择性吸收涂层及其制备方法
WO2015138990A1 (en) * 2014-03-13 2015-09-17 The Regents Of The University Of California Solar energy absorbing coatings and methods of fabrication
CN107367080A (zh) * 2017-06-26 2017-11-21 湖北工业大学 一种FeMnCuO4太阳能选择性吸收涂层的制备方法
CN109943864A (zh) * 2018-09-12 2019-06-28 西南石油大学 一种Cu-Co复合氧化物及其制备方法和应用
CN111500190A (zh) * 2020-05-26 2020-08-07 中国科学院兰州化学物理研究所 一种聚能型防覆冰涂料及其制备方法和应用
CN111519153A (zh) * 2020-05-15 2020-08-11 广州珈鹏科技有限公司 Ni掺杂CuCoMnOx尖晶石结构太阳能选择吸收涂层及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027268A1 (en) * 2014-08-18 2016-02-25 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University Coatings for solar applications
CN108441822B (zh) * 2018-04-18 2019-12-06 东北大学 一种磁控溅射法制备(Cu,Fe)3O4尖晶石涂层的方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701130A (zh) * 2009-07-03 2010-05-05 长春华日涂料有限公司 一种水性单组份太阳能吸收涂料
CN102286243A (zh) * 2011-09-05 2011-12-21 中国科学院兰州化学物理研究所 以尖晶石型颜料为吸光剂制备太阳能选择性吸热涂料的方法
CN102514280A (zh) * 2011-12-12 2012-06-27 武汉理工大学 一种太阳能选择性吸收涂层及其制备方法
WO2015138990A1 (en) * 2014-03-13 2015-09-17 The Regents Of The University Of California Solar energy absorbing coatings and methods of fabrication
CN107367080A (zh) * 2017-06-26 2017-11-21 湖北工业大学 一种FeMnCuO4太阳能选择性吸收涂层的制备方法
CN109943864A (zh) * 2018-09-12 2019-06-28 西南石油大学 一种Cu-Co复合氧化物及其制备方法和应用
CN111519153A (zh) * 2020-05-15 2020-08-11 广州珈鹏科技有限公司 Ni掺杂CuCoMnOx尖晶石结构太阳能选择吸收涂层及制备方法
CN111500190A (zh) * 2020-05-26 2020-08-07 中国科学院兰州化学物理研究所 一种聚能型防覆冰涂料及其制备方法和应用

Also Published As

Publication number Publication date
CN112011777A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN112442668B (zh) 一种高熵合金基光谱选择性太阳能吸收涂层及其制备方法
CN110595084B (zh) 一种金属渐变性高温太阳能吸收涂层及其制备方法
CN103032978A (zh) 一种菲涅尔式太阳能热发电用选择性吸收涂层及其制备方法
CN105970175B (zh) 一种碳化钛-碳化锆高温太阳能选择性吸收涂层及其制备方法
JP2013529251A (ja) 熱吸収材を提供する方法
CN110701803A (zh) 一种彩色太阳能吸收涂层及其制备方法
CN103029374A (zh) 一种中高温太阳能光热选择性吸收涂层
CN110592533B (zh) 具有防扩散和抗氧化性能的太阳能吸收涂层及其制备方法
CN109338297B (zh) 一种二硼化铪-二硼化锆基高温太阳能吸收涂层及其制备方法
CN106500374B (zh) 一种双相纳米复合太阳能吸收涂层及制造方法
CN105970177B (zh) 一种碳化钛基高温太阳能选择性吸收涂层及其制备方法
CN110643942B (zh) 一种光谱选择性高温太阳能吸收涂层及其制备方法
CN110699642B (zh) 一种高熵合金基高温太阳能吸收涂层及其制备方法
CN112011777B (zh) 一种具有尖晶石结构的高温太阳能吸收涂层
CN102615878A (zh) 一种中高温太阳能选择性吸收涂层及其制备方法
CN105970176A (zh) 一种含稀土钇高温太阳能选择性吸收涂层及其制备方法
CN102305484A (zh) 具有陷光结构的太阳能集热管
CN109338295B (zh) 一种二硼化铪-二氧化铪基高温太阳能吸收涂层及其制备方法
CN110542223A (zh) 一种高温空气中稳定的用于太阳能选择性涂层的金属陶瓷材料及其制备方法
CN102734961A (zh) 一种太阳能中高温选择性吸收涂层
CN116123741A (zh) 一种用于槽式热发电高温真空集热管的太阳光谱选择性吸收涂层及其制备方法
CN102954611B (zh) 中高温光谱选择性吸收涂层
US10866013B2 (en) Solar selective coating
CN203004438U (zh) 一种中高温太阳能选择性吸收涂层
CN110527970B (zh) 一种全陶瓷基高温太阳能吸收涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant