CN112002510A - 基于富钬稀土永磁液相合金的高矫顽力永磁体及制备方法 - Google Patents

基于富钬稀土永磁液相合金的高矫顽力永磁体及制备方法 Download PDF

Info

Publication number
CN112002510A
CN112002510A CN202010863158.7A CN202010863158A CN112002510A CN 112002510 A CN112002510 A CN 112002510A CN 202010863158 A CN202010863158 A CN 202010863158A CN 112002510 A CN112002510 A CN 112002510A
Authority
CN
China
Prior art keywords
permanent magnet
rare earth
liquid phase
equal
holmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010863158.7A
Other languages
English (en)
Inventor
何进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui One Magnet Electronic Co ltd
Original Assignee
Anhui One Magnet Electronic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui One Magnet Electronic Co ltd filed Critical Anhui One Magnet Electronic Co ltd
Priority to CN202010863158.7A priority Critical patent/CN112002510A/zh
Publication of CN112002510A publication Critical patent/CN112002510A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种基于富钬稀土永磁液相合金的高矫顽力永磁体及制备方法,液相合金的化学式为:(Hox,(Pr0.25,Nd0.75)1‑x)y‑Mz‑Fe100‑y‑z,其中,0.1≤x≤0.9,30≤y≤60,0≤z≤20,通过合理的主、辅相成分和结构调控,完全不添加重稀土镝、铽,利用富钬液相合金,制备出内禀矫顽力大于21kOe的烧结钕铁硼永磁体,大幅降低了材料成本。本发明不用过于苛刻要求细化粉料粒径,减少了制程中对气流磨设备和工艺的过度依赖,实现较为简单、可行,降低了制造成本。在成分相同的条件下,采用本发明方法制备磁体的磁性能高于传统方法制备磁体的磁性能。

Description

基于富钬稀土永磁液相合金的高矫顽力永磁体及制备方法
技术领域
本发明涉及稀土永磁材料技术领域,具体涉及一种基于富钬稀土永磁液相合金的高矫顽力永磁体及制备方法。
背景技术
烧结钕铁硼作为第三代稀土永磁材料,具有较高的综合磁性能,被广泛应用于机电、通信、医疗、航空航天等高技术领域。但烧结钕铁硼永磁材料的温度稳定性较差,随着温度的升高,保磁能力下降。为了降低这种温度敏感性,研究人员需要不断提升永磁体的矫顽力。
通过提高磁晶各向异性场可以提高永磁体的矫顽力。在常温下,Nd2Fe14B1的磁晶各向异性场为6.7T,Ho2Fe14B1为7.5T,Dy2Fe14B1为15T,Dy2Fe14B1为22T。在现有单合金工艺及常规制粉工艺下(粉料平均粒径为3um左右),不添加稀土钬、镝及铽时,烧结钕铁硼永磁体的内禀矫顽力可以达到17kOe左右。由于Ho2Fe14B1的磁晶各向异性场的比Nd2Fe14B1的大,通过合理调控主、辅双合金相结构,仅通过添加稀土钬来提高永磁体的内禀矫顽力,使其大于20kOe有一定的可行性。
但是,现有技术中SH档永磁体(内禀矫顽力Hcj≥20kOe),在进行成分设计时,几乎全部添加了重稀土镝、铽元素。重稀土镝、铽在自然界中的丰度极低,价格十分昂贵,重稀土镝的单价大约是稀土钬的5~7倍,重稀土铽的单价大约是稀土钬的12~15倍。用稀土钬取代镝、铽,添加制备SH档牌号的磁体有十分可观的经济价值。
公开号为CN100559519C的中国专利文献公开了一种用钬替代镝的烧结钕铁硼材料,其使用的是传统单合金工艺方法,且内禀矫顽力总体较低,仅大于12kOe,远达不到高矫顽力的要求。值得一提的是,通过细化晶粒也可以有效提高材料的内禀矫顽力,Sepehri-Amin等人在“Microstructure of fine-grained Nd–Fe–B sintered magnets with highcoercivity”一文中,利用氦气进行气流磨,制备出晶粒尺寸约为1um的无镝烧结钕铁硼磁体,矫顽力约为19kOe。但氦气气流磨制备细粉的工艺,其量产实现的难度很高,特别是粉末平均粒径为1um左右时,制粉环节极易发生燃烧,生产成本也比氮气气流磨高很多。
发明内容
针对以上问题,本发明目的之一是提供了一种富钬稀土永磁液相合金,为富钬液相合金的应用打开了思路。
本发明的目的之二是提供了一种基于富钬稀土永磁液相合金的高矫顽力永磁体的制备方法,通过合理调控主、辅相成分和结构,在完全不添加重稀土镝、铽,通过添加稀土钬,成功批量化制备出高矫顽力烧结钕铁硼永磁体,内禀矫顽力大于21kOe。在本发明主、辅合金制粉工艺环节中,要求的粉末粒度均大于2um,工艺实现较为简单、可行。
本发明的目的可以通过以下技术方案实现:
一种富钬稀土永磁液相合金,其化学式为(质量百分比):(Hox,(Pr0.25,Nd0.75)1-x)y-Mz-Fe100-y-z,其中,0.1≤x≤0.9,30≤y≤60,0≤z≤20,M为Co、Al、Cu、Ga、Nb、Mo、Ti、Zr、V、Zn、Ni中的一种或几种。
该富钬稀土永磁液相合金用于添加到烧结钕铁硼主相合金中,形成主、辅双合金结构;
所述富钬稀土永磁液相合金所制备的高矫顽力永磁体,其化学式为(质量百分比):(Hom,R1-m)n-(M,Fe)bal-B0.8-1.0,其中,0.02≤m≤0.2,30≤n≤35,R为稀土元素,包含Nd、Pr、Gd、La、Ce和Y中的一种或几种,但不包含重稀土Dy、Tb元素,M为Co、Al、Cu、Ga、Nb、Mo、Ti、Zr、V、Zn、Ni中的一种或几种。
所述高矫顽力永磁体由稀土永磁液相合金与钕铁硼主相合金经破碎、混合、磁场取向、成型、烧结和热处理所制成。
所述高矫顽力永磁体的坯料芯部氧含量低于800ppm。
所述高矫顽力永磁体的烧结毛坯密度大于7.5g/cm3,内禀矫顽力大于21kOe。
所述高矫顽力永磁体的制备方法,包括如下步骤:
步骤一:按照成分设计配制富钬稀土永磁液相合金,液相合金的化学式为(质量百分比):(Hox,(Pr0.25,Nd0.75)1-x)y-Mz-Fe100-y-z,其中,0.1≤x≤0.9,30≤y≤60,0≤z≤20,M为Co、Al、Cu、Ga、Nb、Mo、Ti、Zr、V、Zn、Ni中的一种或几种;
步骤二:将步骤一中的原料在真空感应电炉中熔炼制备成速凝片;
步骤三:将步骤二中的速凝片进行氢破碎;
步骤四:利用高压氮气气流磨,将步骤三中得到的氢破碎粉末进一步细化,制成表面平均粒径为2~3μm的粉末;
步骤五:按照成分设计要求,将步骤四所制成的粉末与粒度为2~5μm的RE:Fe:B=2:14:1型主相合金粉末按照不同的比例混合均匀;
步骤六:将步骤五得到的混合粉末在1~3T的磁场压机中取向成型,成型坯料密度为:3~5g/cm3,进一步冷等静压制成密度为4~6g/cm3的坯料;
步骤七:将步骤六得到的坯料,置于真空烧结炉中进行烧结,烧结温度为900~1100℃,保温时间为1~8小时。接着进行两次时效处理,第一次时效处理为:温度750~950℃,保温时间为1~5小时。第二次时效处理为:400~550℃,保温时间为1~8小时。
步骤二中速凝片的制备工艺为,将原材料放入坩埚内,在氩气保护下进行电弧感应熔炼,原料充分熔化形成合金后,保持1350~1550℃的温度,精炼10~20分钟,并在该温度下,将合金液浇铸到角速度为34~42r/min的水冷铜辊上,制备厚度为0.1~0.5mm的速凝片。
步骤三中氢破碎的具体步骤为,在真空度≤5pa,开始通入吸氢,吸氢时反应炉内压力峰值小于250kpa。吸氢饱和后,开始脱氢,脱氢温度为500~700℃,时间为4~10小时,即利用氢与液相合金速凝片之间发生歧化反应。
在步骤四中,气流磨制粉前,向氢碎粉末中添加防氧化剂,添加质量占总粉末质量比例为0.5‰~5‰。
在步骤五中RE为稀土元素,包含Nd、Pr、Gd、Ho、La、Ce和Y的一种或几种元素。
在步骤五中,液相合金粉末和RE:Fe:B=2:14:1型主相合金粉末的质量比例为(1%:99%)~(50%:50%)。
本发明的有益效果:
(1)本发明提出了一种富钬稀土永磁液相合金,能有效提升磁体的内禀矫顽力。
(2)本发明通过合理的对主、辅相成分和结构调控,完全不添加重稀土镝、铽,利用富钬液相合金,制备出内禀矫顽力大于21kOe的烧结钕铁硼永磁体。大幅度降低了材料成本。
(3)本发明不用过于苛刻要求细化粉料粒径,减少了制程中对气流磨设备的过度依赖,工艺实现较为简单、可行,也降低了制造成本。
(4)在成分相同的条件下,采用本发明方法制备磁体的磁性能高于传统方法制备磁体的磁性能,本发明方法使主、辅相之间的边界更清晰,能减少富钬相进入Nd2Fe14B1主相中,因为Ho2Fe14B1的磁极化强度低于Nd2Fe14B1,而磁极化强度是剩磁的极限值,这样就能保持磁体的剩磁维持在较高水平,而富钬相主要集中在边界处的辅相中,由于Ho2Fe14B1的磁晶各向异性场高于Nd2Fe14B1,而磁晶各向异性场主要贡献磁体的矫顽力,这样又能确保磁体矫顽力较高。主、辅相结构得到优化后,退磁曲线的方形度也得到了改善。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
通过本发明的制备方法制备高矫顽力的钕铁硼永磁体,具体步骤如下:
步骤一:按照质量百分比Pr5.5Nd16.5Ho20Co2.2Al6Cu5Fe44.8配制液相合金原料;
步骤二:按照质量百分比Pr8Nd24Co1.2Fe65.8B1配置主相合金原料;
步骤三:分别将步骤一和步骤二中的原料在真空感应电炉中熔炼制备成速凝片,熔炼在氩气保护下进行,原料充分熔化形成合金后,保持1350~1550℃的温度,精炼10~20分钟,并在该温度下,将合金液浇铸到角速度为34~42r/min的水冷铜辊上,制备厚度为0.1~0.5mm的速凝片;
步骤四:将步骤三中得到的液相合金铸片和主相合金铸片,分别采取氢破碎工艺,在真空度≤5pa,开始通入吸氢,吸氢时反应炉内压力峰值小于250kpa。吸氢饱和后,开始脱氢,脱氢温度为500~700℃,时间为4~10小时;
步骤五:利用高压氮气气流磨,将步骤四中得到的液相和主相两种氢破碎粉末进一步细化,分别制成表面平均粒径为2~3μm和2~5μm的粉末,气流磨制粉前,向氢碎粉末中添加防氧化剂,添加质量占总粉末质量比例为0.5‰~5‰;
步骤六:按照成分设计要求,将步骤五所制成的液相合金粉末和主相合金粉末,按照10%:90%的比例混合均匀;
步骤七:将步骤六得到的混合粉末在1~3T的磁场压机中取向成型,成型坯料密度为:3~5g/cm3,进一步冷等静压制成密度为4~6g/cm3的坯料;
步骤八:将步骤七得到的坯料,置于真空烧结炉中进行烧结,烧结温度为900~1100℃,保温时间为1~8小时,接着进行两次时效处理,第一次时效处理为:温度750~950℃,保温时间为1~5小时,第二次时效处理为:400~550℃,保温时间为1~8小时,最终获得成分为Pr7.75Nd23.25Ho2Co1.3Al0.6Cu0.5Fe63.7B0.9的永磁体。
利用AMT-4稀土永磁测试仪进行磁性能测量,磁性能见表1。
实施例2
通过本发明的制备方法制备高矫顽力的钕铁硼永磁体,具体步骤如下:
步骤一:按照质量百分比Pr4.75Nd14.25Ho21.4Co1.5Al10Cu7Fe41.1配制液相合金原料;
步骤二:按照质量百分比Pr8.25Nd24.75Co1.5Fe64.53B0.97配置主相合金原料;
步骤三:分别将步骤一和步骤二中的原料在真空感应电炉中熔炼制备成速凝片,熔炼在氩气保护下进行,原料充分熔化形成合金后,保持1350~1550℃的温度,精炼10~20分钟,并在该温度下,将合金液浇铸到角速度为34~42r/min的水冷铜辊上,制备厚度为0.1~0.5mm的速凝片;
步骤四:将步骤三中得到的液相合金铸片和主相合金铸片,分别采取氢破碎工艺,即利用氢与液相合金速凝片之间发生歧化反应,在真空度≤5pa,开始通入吸氢,吸氢时反应炉内压力峰值小于250kpa,吸氢饱和后,开始脱氢,脱氢温度为500~700℃,时间为4~10小时;
步骤五:利用高压氮气气流磨,将步骤四中得到的液相和主相两种氢破碎粉末进一步细化,分别制成表面平均粒径为2~3μm和2~5μm的粉末,气流磨制粉前,向氢碎粉末中添加防氧化剂,添加质量占总粉末质量比例为0.5‰~5‰;
步骤六:按照成分设计要求,将步骤五所制成的液相合金粉末和主相合金粉末,按照7%:93%的比例混合均匀;
步骤七:将步骤六得到的混合粉末在1~3T的磁场压机中取向成型,成型坯料密度为:3~5g/cm3,进一步冷等静压制成密度为4~6g/cm3的坯料;
步骤八:将步骤七得到的坯料,置于真空烧结炉中进行烧结,烧结温度为900~1100℃,保温时间为1~8小时,接着进行两次时效处理,第一次时效处理为:温度750~950℃,保温时间为1~5小时,第二次时效处理为:400~550℃,保温时间为1~8小时,最终获得成分为Pr8Nd24Ho1.5Co1.5Al0.7Cu0.5Fe62.9B0.9的永磁体。
利用AMT-4稀土永磁测试仪进行磁性能测量,磁性能见表1。
实施例3
通过本发明的制备方法制备高矫顽力的钕铁硼永磁体,具体步骤如下:
步骤一:按照质量百分比Pr5Nd15Ho20Co1.5Al7.5Cu5.8Fe45.2配制液相合金原料;
步骤二:按照质量百分比Pr7.5Nd22.5Gd3.4Co1.5Fe64.05B1.05配置主相合金原料;
步骤三:分别将步骤一和步骤二中的原料在真空感应电炉中熔炼制备成速凝片,熔炼在氩气保护下进行,原料充分熔化形成合金后,保持1350~1550℃的温度,精炼10~20分钟,并在该温度下,将合金液浇铸到角速度为34~42r/min的水冷铜辊上,制备厚度为0.1~0.5mm的速凝片;
步骤四:将步骤三中得到的液相合金铸片和主相合金铸片,分别采取氢破碎工艺,即利用氢与液相合金速凝片之间发生歧化反应。在真空度≤5pa,开始通入吸氢,吸氢时反应炉内压力峰值小于250kpa,吸氢饱和后,开始脱氢,脱氢温度为500~700℃,时间为4~10小时;
步骤五:利用高压氮气气流磨,将步骤四中得到的液相和主相两种氢破碎粉末进一步细化,分别制成表面平均粒径为2~3μm和2~5μm的粉末,气流磨制粉前,向氢碎粉末中添加防氧化剂,添加质量占总粉末质量比例为0.5‰~5‰;
步骤六:按照成分设计要求,将步骤五所制成的液相合金粉末和主相合金粉末,按照12%:88%的比例混合均匀;
步骤七:将步骤六得到的混合粉末在1~3T的磁场压机中取向成型,成型坯料密度为:3~5g/cm3,进一步冷等静压制成密度为4~6g/cm3的坯料;
步骤八:将步骤七得到的坯料,置于真空烧结炉中进行烧结,烧结温度为900~1100℃,保温时间为1~8小时,接着进行两次时效处理,第一次时效处理为:温度750~950℃,保温时间为1~5小时,第二次时效处理为:400~550℃,保温时间为1~8小时,最终获得成分为Pr7.2Nd21.6Gd3Ho2.4Co1.5Al0.9Cu0.7Fe61.78B0.92的永磁体。
利用AMT-4稀土永磁测试仪进行磁性能测量,磁性能见表1。
对比例1
利用单相合金制备方法制备成分为Pr7.55Nd23.25Ho2Co1.3Al0.6Cu0.5Fe63.7B0.9的永磁体,利用AMT-4稀土永磁测试仪进行磁性能测量,磁性能见表1。
表1本发明工艺方法制备磁体的磁性能一览表
Figure BDA0002648852520000091
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (8)

1.基于富钬稀土永磁液相合金的高矫顽力永磁体,其特征在于:
该高矫顽力永磁体的化学式为:(Hom,R1-m)n-(M,Fe)bal-B0.8-1.0,其中,0.02≤m≤0.2,30≤n≤35;
R为稀土元素,包含Nd、Pr、Gd、La、Ce和Y中的一种或几种,不包括重稀土Dy、Tb元素;
M为Co、Al、Cu、Ga、Nb、Mo、Ti、Zr、V、Zn、Ni中的一种或几种;
化学式中各元素的比例为质量百分比;
所述高矫顽力永磁体的坯料芯部氧含量低于800ppm;
所述高矫顽力永磁体的烧结毛坯密度大于7.5g/cm3,内禀矫顽力大于21kOe;
所述高矫顽力永磁体由富钬稀土永磁液相合金与钕铁硼主相合金经破碎、混合、磁场取向、成型、烧结和热处理所制成。
2.根据权利要求1所述的基于富钬稀土永磁液相合金的高矫顽力永磁体,其特征在于:所述富钬稀土永磁液相合金的化学式为:(Hox,(Pr0.25,Nd0.75)1-x)y-Mz-Fe100-y-z,其中,0.1≤x≤0.9,30≤y≤60,0≤z≤20;
M为Co、Al、Cu、Ga、Nb、Mo、Ti、Zr、V、Zn、Ni中的一种或几种;
化学式中各元素的比例为质量百分比。
3.根据权利要求2所述的基于富钬稀土永磁液相合金的高矫顽力永磁体的制备方法,其特征在于:包括如下步骤:
步骤一、按照成分设计配制富钬稀土永磁液相合金;
步骤二、将步骤一中配制的富钬稀土永磁液相合金在真空感应电炉中熔炼制备成速凝片;
步骤三、通过氢破碎工艺对步骤二中的速凝片进行氢破碎,得到氢破碎粉末;
步骤四、利用高压氮气气流磨,对步骤三中得到的氢破碎粉末进一步细化,制成表面平均粒径为2~3μm的粉末;
步骤五、将步骤四所制成的粉末与粒度为2~5μm的RE:Fe:B=2:14:1型主相合金粉末按照不同的比例混合均匀,得到混合粉末;
步骤六、将步骤五得到的混合粉末在1~3T的磁场压机中取向成型,成型坯料密度为:3~5g/cm3,进一步冷等静压制成密度为4~6g/cm3的坯料;
步骤七、将步骤六得到的坯料,置于真空烧结炉中进行烧结,烧结温度为900~1100℃,保温时间为1~8小时,然后进行两次时效处理,第一次时效处理为:温度750~950℃,保温时间为1~5小时,第二次时效处理为:400~550℃,保温时间为1~8小时。
4.根据权利要求3所述的基于富钬稀土永磁液相合金的高矫顽力永磁体的制备方法,其特征在于:步骤二中速凝片的制备方法为:
将原材料放入坩埚内,在氩气保护下进行电弧感应熔炼,原料充分熔化形成合金后,保持1350~1550℃的温度,精炼10~20分钟,并在该温度下,将合金液浇铸到角速度为34~42r/min的水冷铜辊上,制备厚度为0.1~0.5mm的速凝片。
5.根据权利要求3所述的基于富钬稀土永磁液相合金的高矫顽力永磁体的制备方法,其特征在于:步骤三中氢破碎工艺的具体步骤为:
在真空度≤5pa,开始通入吸氢,吸氢时反应炉内压力峰值小于250kpa,吸氢饱和后,开始脱氢,脱氢温度为500~700℃,时间为4~10小时。
6.根据权利要求3所述的基于富钬稀土永磁液相合金的高矫顽力永磁体的制备方法,其特征在于:步骤四中,气流磨制粉前,向氢碎粉末中添加防氧化剂,防氧化剂的添加质量占总粉末质量比例为0.5‰~5‰。
7.根据权利要求3所述的基于富钬稀土永磁液相合金的高矫顽力永磁体的制备方法,其特征在于:步骤五中RE为稀土元素,RE包括Nd、Pr、Gd、Ho、La、Ce和Y的一种或几种元素。
8.根据权利要求3所述的基于富钬稀土永磁液相合金的高矫顽力永磁体的制备方法,其特征在于:步骤五中,液相合金粉末和RE:Fe:B=2:14:1型主相合金粉末的质量比例为(1%:99%)~(50%:50%)。
CN202010863158.7A 2020-08-25 2020-08-25 基于富钬稀土永磁液相合金的高矫顽力永磁体及制备方法 Pending CN112002510A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010863158.7A CN112002510A (zh) 2020-08-25 2020-08-25 基于富钬稀土永磁液相合金的高矫顽力永磁体及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010863158.7A CN112002510A (zh) 2020-08-25 2020-08-25 基于富钬稀土永磁液相合金的高矫顽力永磁体及制备方法

Publications (1)

Publication Number Publication Date
CN112002510A true CN112002510A (zh) 2020-11-27

Family

ID=73470826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010863158.7A Pending CN112002510A (zh) 2020-08-25 2020-08-25 基于富钬稀土永磁液相合金的高矫顽力永磁体及制备方法

Country Status (1)

Country Link
CN (1) CN112002510A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223807A (zh) * 2021-05-31 2021-08-06 包头金山磁材有限公司 一种钕铁硼永磁体及其制备方法和应用
CN113517125A (zh) * 2021-07-12 2021-10-19 安徽大地熊新材料股份有限公司 一种高稳定性烧结钕铁硼磁体及其制备方法
CN113724954A (zh) * 2021-08-27 2021-11-30 安徽吉华新材料有限公司 一种无重稀土的高矫顽力永磁体及其制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426578A (zh) * 2012-05-22 2013-12-04 比亚迪股份有限公司 一种稀土永磁材料及其制备方法
CN105990019A (zh) * 2016-06-08 2016-10-05 浙江东阳东磁稀土有限公司 一种低重稀土烧结钕铁硼的制备方法
CN106319323A (zh) * 2015-06-16 2017-01-11 有研稀土新材料股份有限公司 一种烧结钕铁硼磁体用辅助合金铸片及其制备方法
CN106328331A (zh) * 2015-06-16 2017-01-11 有研稀土新材料股份有限公司 烧结钕铁硼磁体用辅助合金铸片及其制备方法
JP2017017121A (ja) * 2015-06-30 2017-01-19 日立金属株式会社 R−t−b系焼結磁石の製造方法およびr−t−b系焼結磁石
CN106710765A (zh) * 2015-07-21 2017-05-24 宁波科田磁业有限公司 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN108922710A (zh) * 2018-07-18 2018-11-30 钢铁研究总院 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426578A (zh) * 2012-05-22 2013-12-04 比亚迪股份有限公司 一种稀土永磁材料及其制备方法
CN106319323A (zh) * 2015-06-16 2017-01-11 有研稀土新材料股份有限公司 一种烧结钕铁硼磁体用辅助合金铸片及其制备方法
CN106328331A (zh) * 2015-06-16 2017-01-11 有研稀土新材料股份有限公司 烧结钕铁硼磁体用辅助合金铸片及其制备方法
JP2017017121A (ja) * 2015-06-30 2017-01-19 日立金属株式会社 R−t−b系焼結磁石の製造方法およびr−t−b系焼結磁石
CN106710765A (zh) * 2015-07-21 2017-05-24 宁波科田磁业有限公司 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN105990019A (zh) * 2016-06-08 2016-10-05 浙江东阳东磁稀土有限公司 一种低重稀土烧结钕铁硼的制备方法
CN108922710A (zh) * 2018-07-18 2018-11-30 钢铁研究总院 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223807A (zh) * 2021-05-31 2021-08-06 包头金山磁材有限公司 一种钕铁硼永磁体及其制备方法和应用
CN113517125A (zh) * 2021-07-12 2021-10-19 安徽大地熊新材料股份有限公司 一种高稳定性烧结钕铁硼磁体及其制备方法
CN113517125B (zh) * 2021-07-12 2023-05-05 安徽大地熊新材料股份有限公司 一种高稳定性烧结钕铁硼磁体及其制备方法
CN113724954A (zh) * 2021-08-27 2021-11-30 安徽吉华新材料有限公司 一种无重稀土的高矫顽力永磁体及其制备工艺
CN113724954B (zh) * 2021-08-27 2024-01-19 安徽吉华新材料有限公司 一种无重稀土的高矫顽力永磁体及其制备工艺

Similar Documents

Publication Publication Date Title
US11195645B2 (en) Ce-containing sintered rare-earth permanent magnet with having high toughness and high coercivity, and preparation method therefor
CN104700973B (zh) 一种由白云鄂博共伴生原矿混合稀土制成的稀土永磁体及其制备方法
CN112002510A (zh) 基于富钬稀土永磁液相合金的高矫顽力永磁体及制备方法
CN102368439B (zh) 钕铁硼中添加重稀土氢化物制备高矫顽力永磁体的优化处理方法
CN103103442A (zh) 主辅合金法制备钕铁硼的方法
CN110047636A (zh) 一种高矫顽力富La/Ce烧结磁体的制备方法
CN107958760B (zh) 一种稀土永磁材料及其制备方法
CN103646742A (zh) 一种钕铁硼磁体及其制备方法
CN113205955B (zh) 一种高性能烧结钐钴磁体的制备方法
CN103903824A (zh) 一种稀土永磁材料及其制备方法
EP4152349A1 (en) Method for preparing ndfeb magnets including lanthanum or cerium
WO2021223436A1 (zh) 一种高性能钕铁硼永磁材料及其制备方法
CN108269665A (zh) 一种钕铁硼磁体及其制备方法
CN111383808B (zh) 高剩磁高矫顽力钕铁硼磁体的制备方法
CN112750586B (zh) 混合稀土烧结钕铁硼永磁体及其制备方法
CN111968813B (zh) NdFeB系磁粉、NdFeB系烧结磁体及制备方法
CN110993235B (zh) 一种高铁低铜型钐钴永磁材料及其制备方法
CN108597707B (zh) 一种含Ce烧结磁体及制备方法
EP4354472A1 (en) Corrosion-resistant and high-performance neodymium-iron-boron sintered magnet, preparation method therefor, and use thereof
CN113871120B (zh) 一种混合稀土永磁材料及其制备方法
EP4394809A1 (en) High-remanence neodymium-iron-boron magnet, and preparation method therefor and use thereof
CN114914048A (zh) 一种高剩磁高矫顽力无重稀土烧结钕铁硼磁体及其制备方法
CN110289161B (zh) 一种低稀土含量的钕铁硼磁体的制备方法
CN108806911B (zh) 一种钕铁硼磁体及其制备方法
CN1424164A (zh) 一种还原扩散法制造稀土铁硼永磁合金粉末的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination