CN111995759A - 稀土-叶酸配位聚合物纳米粒子及其制备方法 - Google Patents

稀土-叶酸配位聚合物纳米粒子及其制备方法 Download PDF

Info

Publication number
CN111995759A
CN111995759A CN202010094241.2A CN202010094241A CN111995759A CN 111995759 A CN111995759 A CN 111995759A CN 202010094241 A CN202010094241 A CN 202010094241A CN 111995759 A CN111995759 A CN 111995759A
Authority
CN
China
Prior art keywords
rare earth
coordination polymer
folic acid
solution
polymer nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010094241.2A
Other languages
English (en)
Other versions
CN111995759B (zh
Inventor
钟声亮
陈燕红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN202010094241.2A priority Critical patent/CN111995759B/zh
Publication of CN111995759A publication Critical patent/CN111995759A/zh
Application granted granted Critical
Publication of CN111995759B publication Critical patent/CN111995759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了一种稀土‑叶酸配位聚合物纳米粒子及其制备方法。在溶剂热条件下,使叶酸、钇离子、镱离子、饵离子形成配位聚合物。制备的稀土配位聚合物纳米粒子平均粒径200nm,分布均匀。

Description

稀土-叶酸配位聚合物纳米粒子及其制备方法
技术领域
本发明涉及配位聚合物,尤其涉及稀土配位聚合物纳米粒子及其制备方法。
背景技术
稀土配位聚合物是配位聚合物的重要分支,稀土配位聚合物中的稀土元素具有较多的配位数,使得稀土配位聚合物具较高的热稳定性。稀土配位聚合物是良好的发光材料、催化材料、化学传感材料和磁性材料。稀土配位聚合物可作为发光材料,其不仅能够实现下转换发光(斯托克斯定律),还能够实现高效率的上转换发光(反斯托克斯定律)。上转换发光材料通常由基质材料和低浓度的掺杂物(镧系离子)组成。掺杂物提供发光中心,离子之间的距离和空间矩阵对发光效率有很大的影响。镧系离子掺杂的上转换发光材料一般通过近红外光激发、可见光发射实现发光。高效的上转换发光必须要基质材料、掺杂物质和掺杂物质的浓度三者之间高度协调。
叶酸(FA)又称为蝶酰谷氨酸,是B族维生素中的一种合成化合物。叶酸是目前临床上用于治疗巨幼红细胞性贫血和预防新生儿神经管缺陷疾病的主要药物;此外,叶酸还可促进儿童骨髓中幼细胞成熟,具有预防儿童早期心血管疾病的作用。叶酸还用于治疗H型高血压、萎缩性胃炎、骨性关节炎,以及辅助治疗多种癌症,同时也用于叶酸受体介导的靶向药物和诊断显影剂。除用于治疗叶酸缺乏症之外,叶酸许多新的治疗作用(如靶向介导)正逐渐被发现,叶酸的相关研究也成为人们广泛关注的焦点。叶酸成为继维生素C、维生素E之后,国际市场上新崛起的维生素产品,近年来,它越来越广泛地应用在其他方面,具有很高的医疗价值。
发明内容
本发明的目的在于提供一种新的稀土配位聚合物纳米粒子及其制备方法。
本发明提供的一种稀土-叶酸配位聚合物纳米粒子,由叶酸、钇离子、镱离子、饵离子形成配位聚合物,粒径为180~220nm。
优选地,所述稀土-叶酸配位聚合物纳米粒子的粒径为200nm。
所述稀土配位聚合物纳米粒子的制备方法,包括以下步骤:将叶酸、钇源、镱源、饵源、乙醇置于反应釜中,在温度为180~220℃的条件下反应一段时间。
优选地,所述钇源为Y(NO3)3溶液,所述镱源为Yb(NO3)3溶液,所述饵源为Er(NO3)3溶液。
优选地,所述Y(NO3)3溶液的浓度为0.08M,所述Yb(NO3)3溶液的浓度为0.005M,所述Er(NO3)3溶液的浓度为0.015M。
优选地,所述反应温度为200℃,所述反应时间为24h。
所述稀土-叶酸配位聚合物纳米粒子能够用作上转换发光材料,并能够应用于生物医学工程、荧光检测或靶向成像领域。
本发明的有益效果:在溶剂热条件下合成稀土配位聚合物纳米粒子,合成步骤简单,且能对目标产物的直径大小、上转换性能、生物相容性等的精确控制。采用混合溶剂热方法合成的钇基稀土配位聚合物纳米粒子平均粒径200nm,分布均匀。由于(i)叶酸含有羧基,能与稀土离子形成较稳定的配位键;(ii)叶酸为配体具有良好的生物相容性;(iii)掺杂稀土离子形成的钇基配位聚合物具有良好的上转换性能。因此,本发明的稀土配位聚合物纳米粒子在生物医学工程、靶向成像、光学影像和药物释放等领域具有极高的应用价值。
附图说明
图1钇基配位聚合物纳米粒子的扫描电镜图。
图2钇基配位聚合物纳米粒子的透射电镜图。
图3是钇基配位聚合物纳米粒子的EDX图。
图4是钇基配位聚合物纳米粒子的上转换荧光光谱图。
具体实施方式
下面将结合附图和实施例详细说明本发明所具有的有益效果,旨在帮助阅读者更好地理解本发明的实质,但不能对本发明的实施和保护范围构成任何限定。
实施例1
首先,称取0.3064gY(NO3)3·6H2O,用容量瓶配制成10mL的水溶液,得到物质的量的浓度为0.08M的Y(NO3)3溶液;称取0.0224gYb(NO3)3·6H2O,用容量瓶配制成10mL的水溶液,得到物质的量的浓度为0.005mol/L的Yb(NO3)3溶液;称取0.0.0696gEr(NO3)3·6H2O,用容量瓶配制成10mL的水溶液,得到物质的量的浓度为0.015mol/L的Er(NO3)3溶液。
然后,按照以下步骤制备钇基配位聚合物纳米粒子:
称取0.01g叶酸放入到50mL的具有聚四氟乙烯内衬的高压反应釜中,加入9mL去离子水和13mLEtOH,再分别用移液枪移取1mL0.08M的Y(NO3)3溶液、1mL0.005M的Yb(NO3)3溶液、1mL0.015M的Er(NO3)3溶液于上述的反应釜中,之后在室温条件下进行磁力搅拌;搅拌5min后,将反应釜装配好,密封后放入200℃的烘箱中加热24小时;加热完成后,让反应釜自然冷却至室温,将产物离心分离并且用去离子水洗涤数次;最后将产物转移到小的离心塑料管中,放入到60℃的干燥箱中干燥6小时,得到淡黄色粉末,即钇基配位聚合物纳米粒子。
本实施例所用到的六水合稀土硝酸盐的纯度规格均为分析纯,叶酸的等级为USP。
对制备得到的钇基配位聚合物纳米粒子进行分析和测试,结果如图1~4所示。其中,扫描电子显微镜图片和EDX是在日本日立HITACHIS-3400N扫描电子显微镜SEM-EDX上得到的;透射电子显微镜图片是在日本JEOL-2010透射电子显微镜上得到的,加速电压200kV;上转换荧光光谱图是在英国爱丁堡FLS980型稳态荧光光谱仪上得到的,激发光为980nm。
图1(a)和图1(b)是稀土-叶酸配位聚合物纳米粒子的扫描电镜图,由图可知,纳米颗粒分散性较好,粒径大小约为200nm。
图2(a)和图2(b)是稀土-叶酸配位聚合物纳米粒子中的透射电镜图,从图中可观察到该化合物为空心结构,平均粒径约为200nm。
图3为稀土-叶酸配位聚合物纳米粒子的EDX图,由图可知,该化合物由Y、Yb、Er、C、N、O元素组成。
图4为在980nm激光激发下,稀土-叶酸配位聚合物纳米粒子的上转换发光光谱。
本发明在溶剂热条件下,以叶酸为配体,采用一锅法制备稀土上转换纳米粒子。将叶酸与稀土进行配位反应,产物同时具备生物应用和上转换稀土配位聚合物的特性。通过调节纳米粒子的各种合成条件能够调节目标产物大小、上转换性能等,合成方法简洁高效,为下一步荧光检测、靶向成像等方面的研究应用提供了可能,具有很好的潜在生物应用前景。
以上所述的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

1.一种稀土-叶酸配位聚合物纳米粒子,其特征在于:由叶酸、钇离子、镱离子、饵离子形成配位聚合物,粒径为180~220nm。
2.根据权利要求1所述的稀土-叶酸配位聚合物纳米粒子,其特征在于:所述稀土配位聚合物纳米粒子的粒径为200nm。
3.根据权利要求1所述的稀土-叶酸配位聚合物纳米粒子的制备方法,包括以下步骤:将叶酸、钇源、镱源、饵源、乙醇置于反应釜中,在温度为180~220℃的条件下反应一段时间。
4.根据权利要求3所述的方法,其特征在于:所述钇源为Y(NO3)3溶液,所述镱源为Yb(NO3)3溶液,所述饵源为Er(NO3)3溶液。
5.根据权利要求4所述的方法,其特征在于:所述Y(NO3)3溶液的浓度为0.08M,所述Yb(NO3)3溶液的浓度为0.005M,所述Er(NO3)3溶液的浓度为0.015M。
6.根据权利要求5所述的方法,其特征在于:所述反应温度为200℃,所述反应时间为24h。
7.根据权利要求1或2所述的稀土-叶酸配位聚合物纳米粒子的应用。
8.根据权利要求7所述的应用,其特征在于:所述的稀土-叶酸配位聚合物纳米粒子用作上转换发光材料。
CN202010094241.2A 2020-02-15 2020-02-15 稀土-叶酸配位聚合物纳米粒子及其制备方法 Active CN111995759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010094241.2A CN111995759B (zh) 2020-02-15 2020-02-15 稀土-叶酸配位聚合物纳米粒子及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010094241.2A CN111995759B (zh) 2020-02-15 2020-02-15 稀土-叶酸配位聚合物纳米粒子及其制备方法

Publications (2)

Publication Number Publication Date
CN111995759A true CN111995759A (zh) 2020-11-27
CN111995759B CN111995759B (zh) 2023-03-14

Family

ID=73461406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010094241.2A Active CN111995759B (zh) 2020-02-15 2020-02-15 稀土-叶酸配位聚合物纳米粒子及其制备方法

Country Status (1)

Country Link
CN (1) CN111995759B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070063154A1 (en) * 2005-02-02 2007-03-22 Wei Chen Energy-transfer nanocomposite materials and methods of making and using same
CN101525540A (zh) * 2009-04-08 2009-09-09 中国科学院长春光学精密机械与物理研究所 NaYF4上转换荧光纳米材料的制备方法
CN101914382A (zh) * 2010-06-24 2010-12-15 复旦大学 一种水溶性且表面功能化的稀土纳米材料的制备方法
US20110127445A1 (en) * 2006-10-17 2011-06-02 National University Of Singapore Upconversion fluorescent nano-structured material and uses thereof
CN103436263A (zh) * 2013-09-09 2013-12-11 天津师范大学 水溶性红绿光可调谐的稀土掺杂上转换纳米材料的制备方法
CN103468266A (zh) * 2013-09-18 2013-12-25 广州阳普医疗科技股份有限公司 一种水溶性上转换荧光纳米材料的制备方法
CN103698308A (zh) * 2013-12-23 2014-04-02 天津师范大学 上转换纳米粒子与氧化石墨烯复合材料的制备方法与应用
CN103773373A (zh) * 2014-01-10 2014-05-07 天津师范大学 叶酸自组装水溶性稀土掺杂上转换纳米材料的制备方法
CN103965905A (zh) * 2014-04-25 2014-08-06 上海大学 叶酸修饰的水溶性稀土上转换发光纳米晶的合成方法
CN104211722A (zh) * 2014-08-14 2014-12-17 东南大学 一种发光稀土配位聚合物纳米粒子的制备方法
CN104231502A (zh) * 2014-08-15 2014-12-24 天津师范大学 双靶向近红外上转换纳米材料及其制备方法及应用
CN104945424A (zh) * 2015-06-17 2015-09-30 江西师范大学 一种稀土配位聚合物纳米粒子制备方法及其应用
CN105733584A (zh) * 2016-04-18 2016-07-06 吉林大学 钒酸钇纳米粒子和稀土离子掺杂钒酸钇纳米粒子及其制备方法
CN106893111A (zh) * 2017-03-30 2017-06-27 江西师范大学 一种制备金@稀土配位聚合物纳米粒子的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070063154A1 (en) * 2005-02-02 2007-03-22 Wei Chen Energy-transfer nanocomposite materials and methods of making and using same
US20110127445A1 (en) * 2006-10-17 2011-06-02 National University Of Singapore Upconversion fluorescent nano-structured material and uses thereof
CN101525540A (zh) * 2009-04-08 2009-09-09 中国科学院长春光学精密机械与物理研究所 NaYF4上转换荧光纳米材料的制备方法
CN101914382A (zh) * 2010-06-24 2010-12-15 复旦大学 一种水溶性且表面功能化的稀土纳米材料的制备方法
CN103436263A (zh) * 2013-09-09 2013-12-11 天津师范大学 水溶性红绿光可调谐的稀土掺杂上转换纳米材料的制备方法
CN103468266A (zh) * 2013-09-18 2013-12-25 广州阳普医疗科技股份有限公司 一种水溶性上转换荧光纳米材料的制备方法
CN103698308A (zh) * 2013-12-23 2014-04-02 天津师范大学 上转换纳米粒子与氧化石墨烯复合材料的制备方法与应用
CN103773373A (zh) * 2014-01-10 2014-05-07 天津师范大学 叶酸自组装水溶性稀土掺杂上转换纳米材料的制备方法
CN103965905A (zh) * 2014-04-25 2014-08-06 上海大学 叶酸修饰的水溶性稀土上转换发光纳米晶的合成方法
CN104211722A (zh) * 2014-08-14 2014-12-17 东南大学 一种发光稀土配位聚合物纳米粒子的制备方法
CN104231502A (zh) * 2014-08-15 2014-12-24 天津师范大学 双靶向近红外上转换纳米材料及其制备方法及应用
CN104945424A (zh) * 2015-06-17 2015-09-30 江西师范大学 一种稀土配位聚合物纳米粒子制备方法及其应用
CN105733584A (zh) * 2016-04-18 2016-07-06 吉林大学 钒酸钇纳米粒子和稀土离子掺杂钒酸钇纳米粒子及其制备方法
CN106893111A (zh) * 2017-03-30 2017-06-27 江西师范大学 一种制备金@稀土配位聚合物纳米粒子的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIDIJA MANCIC等: "One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging", 《RSC ADVANCES》 *
SHENG-LIANG ZHONG等: "Fabrication of Yb3+/Er3+ Co-doped Yttrium-Based Coordination", 《CRYST. ENG. COMM.》 *
SUMANTA KUMAR SAHU等: "One-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release", 《DALTON TRANSACTIONS》 *
YAN LI等: "Facile synthesis of 5 nm NaYF4:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells", 《TALANTA》 *

Also Published As

Publication number Publication date
CN111995759B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
Duan et al. Recent progress in upconversion luminescence nanomaterials for biomedical applications
US8093566B2 (en) Upconversion fluorescent nano-structured material and uses thereof
Damasco et al. Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF4 nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging
Gai et al. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications
Stouwdam et al. Lanthanide-doped nanoparticles with excellent luminescent properties in organic media
Zhang et al. Hydroxyapatite nano-and microcrystals with multiform morphologies: controllable synthesis and luminescence properties
Wang et al. Single ultrasmall Mn 2+-doped NaNdF 4 nanocrystals as multimodal nanoprobes for magnetic resonance and second near-infrared fluorescence imaging
CN107033905A (zh) 一种稀土掺杂氟化镱锂纳米材料及其制备方法与应用
CN110669495B (zh) 一种碳点基荧光二氧化硅纳米球及其制备方法
CN112080278B (zh) 一种上/下转换双模式发光纳米晶及其制备方法和应用
CN110408377B (zh) 一种稀土掺杂NaCeF4近红外荧光纳米探针及其制备方法和生物应用
CN108456518A (zh) 一种强烈红色荧光的稀土纳米粒子及其制备方法和在细胞成像中的应用
Ren et al. PEGylated β-NaGdF4/Tb@ CaF2 core/shell nanophosphors for enhanced radioluminescence and folate receptor targeting
Cui et al. Comparison of two strategies for the synthesis of upconverting nanoparticles as biological labels
Shao et al. Hydrothermal synthesis of poly (acrylic acid)-functionalized α-(β-) NaYF4: Yb, Er up-conversion nano-/micro-phosphors
Nuñez et al. Uniform Poly (acrylic acid)‐Functionalized Lanthanide‐Doped LaVO4 Nanophosphors with High Colloidal Stability and Biocompatibility
Meesaragandla et al. Methyl oleate-capped upconverting nanocrystals: a simple and general ligand exchange strategy to render nanocrystals dispersible in aqueous and organic medium
CN111995759B (zh) 稀土-叶酸配位聚合物纳米粒子及其制备方法
Sun et al. Fluorescence-magnetism functional EuS nanocrystals with controllable morphologies for dual bioimaging
CN112940711A (zh) 一种生物可降解的上转换核壳纳米晶、制备方法及其应用
Singh et al. Eu 3+ doped α-sodium gadolinium fluoride luminomagnetic nanophosphor as a bimodal nanoprobe for high-contrast in vitro bioimaging and external magnetic field tracking applications
CN108743978B (zh) 一种金@钆基配位聚合物纳米复合材料制备方法和应用
CN114751397B (zh) 一种荧光纳米羟基磷灰石及其制备方法与应用
CN109722247A (zh) 一种掺杂Fe3+离子的NaYF4:Yb3+,Er3+上转换荧光纳米材料的制备方法
CN109266349B (zh) 一种水溶性稀土上转换纳米颗粒的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant