CN111979502A - 一种高强度织构金属基带的制备方法 - Google Patents

一种高强度织构金属基带的制备方法 Download PDF

Info

Publication number
CN111979502A
CN111979502A CN202010642057.7A CN202010642057A CN111979502A CN 111979502 A CN111979502 A CN 111979502A CN 202010642057 A CN202010642057 A CN 202010642057A CN 111979502 A CN111979502 A CN 111979502A
Authority
CN
China
Prior art keywords
carrying
rolling
base band
metal base
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010642057.7A
Other languages
English (en)
Other versions
CN111979502B (zh
Inventor
黎文峰
杨海刚
张娜
杨枫
刘志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202010642057.7A priority Critical patent/CN111979502B/zh
Publication of CN111979502A publication Critical patent/CN111979502A/zh
Application granted granted Critical
Publication of CN111979502B publication Critical patent/CN111979502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/06Thermomechanical rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本发明公开了一种高强度织构金属基带的制备方法,采用连续铸造的方式制备合金铸锭,合金组分为:25at.% Cu、25at.% Fe、25at.% V,余量为Ni,控制连续铸造温度、拉坯速度及冷却水等参数,然后对合金铸锭进行热轧及淬火,随后将热轧板进行大变形量冷轧,中间采用两次低温退火处理,控制变形量,最后进行再结晶退火获得高性能金属基带。本发明制得的高强度织构金属基带具备优异的力学性能、表面化学稳定性、强织构和无铁磁性等,是一种具有优异综合性能的金属基带。

Description

一种高强度织构金属基带的制备方法
技术领域
本发明涉及第二代高温涂层超导用的织构金属基底带材的制备方法,具体涉及一种高强度织构金属基带的制备方法,属于强化高温涂层超导带材技术领域。
背景技术
以YBCO为代表的第二代高温超导体为氧化物陶瓷结构,无法直接制备成线、带材,目前,第二代高温超导主要通过涂层技术来制备,即在韧性的金属基底带材上外延生长缓冲层及YBCO超导层,其中强立方织构的金属基底带材(基带)是制备涂层超导带材的常用材料之一。对于高性能的超导带材而言,需要基带具有高强度、强立方织构、耐高温特性,并且在液氮温区无铁磁性,目前商业化的镍钨二元合金基带的力学性能仍有待于进一步提高。铜镍二元合金容易兼顾磁性能和立方织构的问题,但其力学性能较差,且容易氧化,难以大规模应用。复合基带具有优越的综合性能,但制备方法较特殊,效率较低,无法实现大规模的工业化生产。考虑到第二代高温超导带材的工业化应用需求及制备环境的要求,金属基带必须具备优异的力学性能、表面化学稳定性、强织构、无铁磁性等要素。因此,开发优异综合性能的金属基带是加速第二代高温超导带材研发的重要方向。
发明内容
本发明的目的是提供了一种高强度织构金属基带的制备方法,该方法用于开发适合工业化生产的高性能金属基带。
本发明为实现上述目的采用如下技术方案,一种高强度织构金属基带的制备方法,其特征在于具体步骤为:
步骤S1:合金成分设计及初始坯锭的制备
合金组分为:25at.% Cu、25at.% Fe、25at.% V,余量为Ni,采用连续铸造的方式获得合金铸锭,合金铸锭厚度为100mm,其中,待金属熔化后加入CaO,该CaO的含量为0.5~0.8wt.%,浇铸温度为1300~1330℃,拉坯速度为30~60mm/min,冷却水温度为28~35℃;
步骤S2:铸锭热轧
对步骤S1得到的合金铸锭进行热轧获得热轧板材,热轧工艺为:1250℃保温0.5小时,然后热轧至10~12mm厚,终轧温度控制在1020℃以上,最后一道次后水淬处理;
步骤S3:冷轧及中间退火
将步骤S2得到的热轧板材进行大变形量冷轧至6mm厚,随后进行中间退火处理获得冷轧带材,冷轧工艺为:550~600℃保温8min,然后再冷轧至1mm厚进行中间退火,退火工艺为:500~550℃保温5min,将退火处理后的带材再冷轧至100μm厚,整个冷轧阶段道次变形量均控制在20%~25%;
步骤S4:再结晶退火处理
将步骤S3得到的冷轧带材进行再结晶退火,退火工艺为:以5~8℃/min的升温速率加热至500℃保温10~15min,再以5~8℃/min的升温速率加热至700℃保温5min,最后以5~8℃/min的升温速率加热1200℃保温80min,最终获得高强度织构金属基带。
本发明与现有技术相比具有以下有益效果:本发明制得的高强度织构金属基带具备优异的力学性能、表面化学稳定性、强织构和无铁磁性等,是一种具有优异综合性能的金属基带。
附图说明
图1是实施例1制得金属基带的{111}面极图;
图2是实施例2制得金属基带的{111}面极图。
具体实施方式
下面结合附图对本发明做进一步的详细说明。本发明采用美国QUATEK INC铁电工作仪测定了所制备的聚合物基柔性复合薄膜材料的储能性能,以上性能参数皆在室温下测得。
实施例1
采用连续铸造的方式获得合金铸锭,合金组分为:25at.% Cu、25at.% Fe、25at.% V,余量为Ni。合金铸锭厚度为100mm,其中,待金属熔化后加入少量的CaO,CaO的含量为0.8wt.%,浇铸温度为1330℃,拉坯速度为60mm/min,冷却水温度为28~35℃。对合金铸锭进行热轧获得热轧板材,热轧工艺为:1250℃保温0.5小时,然后热轧至10mm厚,终轧温度控制在1020℃以上,最后一道次后水淬处理。将热轧板材进行大变形量冷轧至6mm厚,随后进行中间退火处理获得冷轧带材,冷轧工艺为:600℃保温8min,再冷轧至1mm厚进行中间退火,退火工艺为:550℃保温5min,将退火后的带材再冷轧至100μm厚,整个冷轧阶段道次变形量均控制在20%。将冷轧带材进行再结晶退火,退火工艺为:以8℃/min的升温速率加热至500℃保温15min,再以8℃/min的升温速率加热至700℃保温5min,最后以8℃/min的升温速率加热1200℃保温80min,最终获得高性能金属基带。该金属基带表面的{111}面极图如图1所示;该金属基带在室温下的屈服强度为700MPa,明显高于Ni-5at.%W合金基带的屈服强度。
实施例2
采用连续铸造的方式获得合金铸锭,合金组分为:25at.% Cu、25at.% Fe、25at.% V,余量为Ni。合金铸锭厚度为100mm,其中,待金属熔化后加入少量的CaO,CaO的含量为0.5wt.%,浇铸温度为1300℃,拉坯速度为30mm/min,冷却水温度为28~35℃。对合金铸锭进行热轧获得热轧板材,热轧工艺为:1250℃保温0.5小时,然后热轧至10mm厚,终轧温度控制在1020℃以上,最后一道次后水淬处理。将热轧板材进行大变形量冷轧至6mm厚,随后进行中间退火处理获得冷轧带材,冷轧工艺为:550℃保温8min,再冷轧至1mm厚进行中间退火,退火工艺为:500℃保温5min,将退火后的带材再冷轧至100μm厚,整个冷轧阶段道次变形量均控制在20%。将冷轧带材进行再结晶退火,退火工艺为:以5℃/min的升温速率加热至500℃保温10min,再以5℃/min的升温速率加热至700℃保温5min,最后以5℃/min的升温速率加热1200℃保温80min,最终获得高性能的金属基带。该金属基带表面的{111}面极图如图2所示;该金属基带在室温下的屈服强度为730MPa,明显高于Ni-5at.%W合金基带的屈服强度。
以上显示和描述了本发明的基本原理,主要特征和优点,在不脱离本发明精神和范围的前提下,本发明还有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围。

Claims (1)

1.一种高强度织构金属基带的制备方法,其特征在于具体步骤为:
步骤S1:合金成分设计及初始坯锭的制备
合金组分为:25at.% Cu、25at.% Fe、25at.% V,余量为Ni,采用连续铸造的方式获得合金铸锭,合金铸锭厚度为100mm,其中,待金属熔化后加入CaO,该CaO的含量为0.5~0.8wt.%,浇铸温度为1300~1330℃,拉坯速度为30~60mm/min,冷却水温度为28~35℃;
步骤S2:铸锭热轧
对步骤S1得到的合金铸锭进行热轧获得热轧板材,热轧工艺为:1250℃保温0.5小时,然后热轧至10~12mm厚,终轧温度控制在1020℃以上,最后一道次后水淬处理;
步骤S3:冷轧及中间退火
将步骤S2得到的热轧板材进行大变形量冷轧至6mm厚,随后进行中间退火处理获得冷轧带材,冷轧工艺为:550~600℃保温8min,然后再冷轧至1mm厚进行中间退火,退火工艺为:500~550℃保温5min,将退火处理后的带材再冷轧至100μm厚,整个冷轧阶段道次变形量均控制在20%~25%;
步骤S4:再结晶退火处理
将步骤S3得到的冷轧带材进行再结晶退火,退火工艺为:以5~8℃/min的升温速率加热至500℃保温10~15min,再以5~8℃/min的升温速率加热至700℃保温5min,最后以5~8℃/min的升温速率加热1200℃保温80min,最终获得高强度织构金属基带。
CN202010642057.7A 2020-07-06 2020-07-06 一种高强度织构金属基带的制备方法 Active CN111979502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010642057.7A CN111979502B (zh) 2020-07-06 2020-07-06 一种高强度织构金属基带的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010642057.7A CN111979502B (zh) 2020-07-06 2020-07-06 一种高强度织构金属基带的制备方法

Publications (2)

Publication Number Publication Date
CN111979502A true CN111979502A (zh) 2020-11-24
CN111979502B CN111979502B (zh) 2021-09-10

Family

ID=73439072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010642057.7A Active CN111979502B (zh) 2020-07-06 2020-07-06 一种高强度织构金属基带的制备方法

Country Status (1)

Country Link
CN (1) CN111979502B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2745298A1 (fr) * 1996-02-27 1997-08-29 Imphy Sa Alliage fer-nickel et bande laminee a froid a texture cubique
FR2811684A1 (fr) * 2000-07-13 2002-01-18 Imphy Ugine Precision Bande en alliage fe-ni ou fe-ni-co ou fe-ni-co-cu a decoupabilite amelioree
CN103421985A (zh) * 2013-09-11 2013-12-04 河南师范大学 一种无磁性、高强度的织构Cu基三元合金基带的制备方法
CN108467984A (zh) * 2018-03-28 2018-08-31 广西大学 一种五元高熵合金Cu0.5FeNiVAlx及其强度硬度提升方法
CN109735778A (zh) * 2019-01-31 2019-05-10 河南城建学院 一种高强度立方织构金属基带的制备方法
CN111004943A (zh) * 2020-01-06 2020-04-14 河南师范大学 一种高性能镍钒铜磷合金基带的制备方法
CN111074094A (zh) * 2019-12-30 2020-04-28 河南师范大学 一种高强度立方织构铜基合金基带的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2745298A1 (fr) * 1996-02-27 1997-08-29 Imphy Sa Alliage fer-nickel et bande laminee a froid a texture cubique
FR2811684A1 (fr) * 2000-07-13 2002-01-18 Imphy Ugine Precision Bande en alliage fe-ni ou fe-ni-co ou fe-ni-co-cu a decoupabilite amelioree
CN103421985A (zh) * 2013-09-11 2013-12-04 河南师范大学 一种无磁性、高强度的织构Cu基三元合金基带的制备方法
CN108467984A (zh) * 2018-03-28 2018-08-31 广西大学 一种五元高熵合金Cu0.5FeNiVAlx及其强度硬度提升方法
CN109735778A (zh) * 2019-01-31 2019-05-10 河南城建学院 一种高强度立方织构金属基带的制备方法
CN111074094A (zh) * 2019-12-30 2020-04-28 河南师范大学 一种高强度立方织构铜基合金基带的制备方法
CN111004943A (zh) * 2020-01-06 2020-04-14 河南师范大学 一种高性能镍钒铜磷合金基带的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
清华大学马莒生: "《精密合金及粉末冶金材料》", 31 January 1982, 北京:机械工业出版社 *
薛云飞: "《先进金属基复合材料》", 30 April 2019, 北京:北京理工大学出版社 *

Also Published As

Publication number Publication date
CN111979502B (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
CN100425392C (zh) 高硅钢薄板的冷轧制备方法
CN100571970C (zh) 一种涂层超导高W含量Ni-W合金基带的制备方法
CN102500638B (zh) 一种高立方织构高钨含量Ni-W合金基带的制备方法
CN102430572B (zh) 一种无磁性强立方织构的Cu基合金基带的制备方法
CN104404306B (zh) 涂层导体用高强度立方织构镍基合金基带及其制备方法
CN106381418A (zh) 一种强立方织构Ni‑10at.%W合金基带的制备方法
CN103194704B (zh) 一种低成本高立方织构含量镍基带的制备方法
CN110951995B (zh) 一种高强度镍基合金基带的制备方法
CN111979502B (zh) 一种高强度织构金属基带的制备方法
CN111004943A (zh) 一种高性能镍钒铜磷合金基带的制备方法
CN109811310B (zh) 无铁磁性、高强度、强立方织构镍钨复合基带及制备方法
CN111074094B (zh) 一种高强度立方织构铜基合金基带的制备方法
CN111112331B (zh) 一种高强度的织构复合基带的制备方法
CN108385135B (zh) 一种电化学沉积制备涂层导体用高钨合金基带坯锭的方法
CN107267900A (zh) 一种高强度无铁磁性织构铜基合金基带的制备方法
CN111118347B (zh) 一种高强度Ni基复合基带的制备方法
CN109604546B (zh) 一种高强度、强立方织构镍钨基带的制备方法
CN110983109B (zh) 一种立方织构的镍铬钒合金基带的制备方法
CN102154578A (zh) 一种无磁性织构NiV合金基带及其熔炼制备方法
CN111996477B (zh) 一种涂层超导带材用高强度立方织构金属基带的制备方法
CN112813368B (zh) 一种高性能Cu-Ni-Si合金板带材及其生产工艺
CN109371284B (zh) 一种高性能立方织构金属基带及其制备方法
CN111850353B (zh) 一种5g新型电容器外壳用铝带及其制备方法
CN111180134A (zh) 一种强立方织构金属复合带材的制备方法
CN106868344A (zh) 一种高性能立方织构Ni‑12at.%W合金基带的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant