CN111978074A - 一种碳纳米管增强的多孔陶瓷型芯及其制备方法 - Google Patents

一种碳纳米管增强的多孔陶瓷型芯及其制备方法 Download PDF

Info

Publication number
CN111978074A
CN111978074A CN202010757889.3A CN202010757889A CN111978074A CN 111978074 A CN111978074 A CN 111978074A CN 202010757889 A CN202010757889 A CN 202010757889A CN 111978074 A CN111978074 A CN 111978074A
Authority
CN
China
Prior art keywords
ceramic core
carbon nanotube
porous ceramic
reinforced porous
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010757889.3A
Other languages
English (en)
Inventor
杨玮
梁书锦
王庆相
赖运金
张鹏
刘海浪
杨文广
康路
黄椿森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Sino Euro Materials Technologies Co ltd
Original Assignee
Xi'an Sino Euro Materials Technologies Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Sino Euro Materials Technologies Co ltd filed Critical Xi'an Sino Euro Materials Technologies Co ltd
Priority to CN202010757889.3A priority Critical patent/CN111978074A/zh
Publication of CN111978074A publication Critical patent/CN111978074A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种碳纳米管增强的多孔陶瓷型芯,按照质量百分比由以下成分组成:基体Al2O3粉末65%~79%,矿化剂MgO粉末2%~6%,成孔剂8%~12%,增塑剂10%~15%,碳纳米管1%~2%。本发明还公开了一种碳纳米管增强的多孔陶瓷型芯的制备方法。

Description

一种碳纳米管增强的多孔陶瓷型芯及其制备方法
技术领域
本发明属于陶瓷制备技术领域,具体涉及一种碳纳米管增强的多孔陶瓷型芯,还涉及一种碳纳米管增强的多孔陶瓷型芯的制备方法。
背景技术
陶瓷型芯是制造高性能涡轮叶片的关键部件,与氧化硅基陶瓷型芯相比,氧化铝基陶瓷型芯具有熔点高2054℃、化学稳定性能和抗蠕变性能好等优点,可形成具有高尺寸精度的叶片内腔,提高叶片的合格率。但是氧化铝基陶瓷型芯的α-Al2O3化学性能稳定,常温常压下很难与酸碱腐蚀液发生反应,脱出性较差,成为制约氧化铝基陶瓷型芯广泛使用的一大瓶颈。
型芯气孔率是反映型芯脱芯性能好坏的重要指标之一,开展氧化铝基陶瓷型芯内部气孔率的研究,对解决其脱除困难的问题,具有十分重要的意义。成孔剂可以有效的增加型芯的气孔率。淀粉价格便宜,无毒易得,容易烧失,是一种较为理想的成孔剂。研究发现虽然加入成孔剂淀粉会获得多孔氧化铝基陶瓷型芯,但是陶瓷型芯的致密度降低,强度显著下降。
直管型单壁碳纳米管由于其优异的力学性能和高的导热性能、优异的机械稳定性和化学稳定性、良好的溶液加工性和高柔性。由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量和高强度。碳纳米管具有良好的力学性能,抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。因此在多孔陶瓷型芯中加入碳纳米管,可以获得具有良好力学性能的高气孔率氧化铝基陶瓷型芯。
发明内容
本发明的第一个目的是提供一种碳纳米管增强的多孔陶瓷型芯,解决现有多孔陶瓷型芯存在力学性能较差的问题。
为了达到上述目的,本发明所采用的技术方案是:一种碳纳米管增强的多孔陶瓷型芯,按照质量百分比由以下成分组成:
基体Al2O3粉末65%~79%,矿化剂MgO粉末2%~6%,成孔剂8%~12%,增塑剂10%~15%,碳纳米管1%~2%。
本发明的技术方案,还具有以下特点:
所述成孔剂为淀粉。
所述增塑剂为石蜡。
所述Al2O3粉末粒度为180目的占60%-65%,粒度为280目的占35%-40%。
所述MgO粉末的粒度为240目。
所述碳纳米管属于直管型单壁碳纳米管,碳纳米管的长度直径比大于25:1。
本发明的第二个目的是提供一种碳纳米管增强的多孔陶瓷型芯的制备方法,解决现有多孔陶瓷型芯存在力学性能较差的问题。
为了达到上述目的,本发明所采用的技术方案是:一种碳纳米管增强的多孔陶瓷型芯的制备方法,具体按照以下步骤实施:
步骤1,各成分按照对应质量比称取,先将增塑剂石蜡加热到60℃~70℃,再按照上述比例加入Al2O3粉末、MgO粉末、淀粉和碳纳米管并不断搅拌,搅拌时间3h-4h,得到混合均匀的浆料;
步骤2,将混合均匀的浆料加入到热压注机,制备陶瓷型芯坯体;
步骤3,将制得的陶瓷型芯坯体冷冻干燥,温度-46~-50℃,时间5h;
步骤4,将步骤3得到的陶瓷型芯坯体埋在氧化铝的刚玉匣钵中,进行烧结,得到目标碳纳米管增强的多孔陶瓷型芯。
本发明的技术方案,还具有以下特点:
在所述步骤2中,热压注机模具预热温度50℃~60℃,注射压力12Mpa~15Mpa,压注时间15s~17s。
在所述步骤3中,冷冻干燥的为温度-46~-50℃,时间为5h。
在所述步骤4中,烧结具体为:先室温升至420℃~450℃,升温速率4℃/min~5℃/min,保温时间2h;之后升温至900℃~920℃,升温速率8℃/min~10℃/min,保温时间1h;再升温至1770℃~1780℃,升温速率8℃/min~10℃/min,保温时间3h,然后断电,随炉冷却。
与现有技术相比,本发明的制备方法制备得到的碳纳米管增强的多孔陶瓷型芯,在加入成孔剂淀粉的陶瓷型芯中加入了适量的碳纳米管,再进行高温烧结获得气孔率30%~75%,陶瓷型芯的室温抗弯强度为35MPa~70MPa,在1650℃的高温下抗弯强度为25MPa~45MPa,同时表现出良好的抗冲击性能和溶出性,解决了多孔陶瓷型芯的力学性能较差的特性,有利于制备高强度,易脱除的陶瓷型芯。
具体实施方式
以下结合具体实施例对本发明的技术方案作进一步地详细说明。
本发明的一种碳纳米管增强的多孔陶瓷型芯,按照质量百分比由以下成分组成:
基体Al2O3粉末65%~79%,矿化剂MgO粉末2%~6%,成孔剂淀粉8%~12%,增塑剂石蜡10%~15%,碳纳米管1%~2%;其中:Al2O3粉末粒度为180目的占60%-65%,粒度为280目的占35%-40%,MgO粉末的粒度为240目;碳纳米管属于直管型单壁碳纳米管,碳纳米管的长度直径比大于25:1。
本发明的上述碳纳米管增强的多孔陶瓷型芯的制备方法,具体按照以下步骤实施:
步骤1,各成分按照对应质量比称取,先将增塑剂石蜡加热到60℃~70℃,再按照上述比例加入Al2O3粉末、MgO粉末、淀粉和碳纳米管并不断搅拌,搅拌时间3h-4h,得到混合均匀的浆料;
步骤2,将混合均匀的浆料加入到热压注机,制备陶瓷型芯坯体;热压注机模具预热温度50℃~60℃,注射压力12Mpa~15Mpa,压注时间15s~17s
步骤3,将制得的陶瓷型芯坯体冷冻干燥,冷冻干燥的为温度-46~-50℃,时间为5h;
步骤4,将步骤3得到的陶瓷型芯坯体埋在氧化铝的刚玉匣钵中,进行烧结,得到目标碳纳米管增强的多孔陶瓷型芯;烧结具体为:先室温升至420℃~450℃,升温速率4℃/min~5℃/min,保温时间2h;之后升温至900℃~920℃,升温速率8℃/min~10℃/min,保温时间1h;再升温至1770℃~1780℃,升温速率8℃/min~10℃/min,保温时间3h,然后断电,随炉冷却。
本发明的制备方法制备得到的碳纳米管增强的多孔陶瓷型芯,在加入成孔剂淀粉的陶瓷型芯中加入了适量的碳纳米管,再进行高温烧结获得气孔率30%~75%,陶瓷型芯的室温抗弯强度为35MPa~70MPa,在1650℃的高温下抗弯强度为25MPa~45MPa,同时表现出良好的抗冲击性能和溶出性,解决了多孔陶瓷型芯的力学性能较差的特性,有利于制备高强度,易脱除的陶瓷型芯。
实施例1
本发明的一种碳纳米管增强的多孔陶瓷型芯,按照质量百分比由以下成分组成:
基体Al2O3粉末65%,矿化剂MgO粉末6%,成孔剂淀粉12%,增塑剂石蜡15%,碳纳米管2%;其中:Al2O3粉末粒度为180目的占60%,粒度为280目的占40%,MgO粉末的粒度为240目;碳纳米管属于直管型单壁碳纳米管,碳纳米管的长度直径比为26:1。
本发明的上述碳纳米管增强的多孔陶瓷型芯的制备方法,具体按照以下步骤实施:
步骤1,各成分按照对应质量比称取,先将增塑剂石蜡加热到60℃,再按照上述比例加入Al2O3粉末、MgO粉末、淀粉和碳纳米管并不断搅拌,搅拌时间3h,得到混合均匀的浆料;
步骤2,将混合均匀的浆料加入到热压注机,制备陶瓷型芯坯体;热压注机模具预热温度50℃,注射压力12Mpa,压注时间15s;
步骤3,将制得的陶瓷型芯坯体冷冻干燥,冷冻干燥的为温度-46,时间为5h;
步骤4,将步骤3得到的陶瓷型芯坯体埋在氧化铝的刚玉匣钵中,进行烧结,得到目标碳纳米管增强的多孔陶瓷型芯;烧结具体为:先室温升至420℃,升温速率4℃/min,保温时间2h;之后升温至900℃,升温速率8℃/min,保温时间1h;再升温至1770℃,升温速率8℃/min,保温时间3h,然后断电,随炉冷却。
实施例2
本发明的一种碳纳米管增强的多孔陶瓷型芯,按照质量百分比由以下成分组成:
基体Al2O3粉末72%,矿化剂MgO粉末4%,成孔剂淀粉10%,增塑剂石蜡12.5%,碳纳米管1.5%;其中:Al2O3粉末粒度为180目的占62.5%,粒度为280目的占37.5%,MgO粉末的粒度为240目;碳纳米管属于直管型单壁碳纳米管,碳纳米管的长度直径比大于28:1。
本发明的上述碳纳米管增强的多孔陶瓷型芯的制备方法,具体按照以下步骤实施:
步骤1,各成分按照对应质量比称取,先将增塑剂石蜡加热到65℃,再按照上述比例加入Al2O3粉末、MgO粉末、淀粉和碳纳米管并不断搅拌,搅拌时间3.5h,得到混合均匀的浆料;
步骤2,将混合均匀的浆料加入到热压注机,制备陶瓷型芯坯体;热压注机模具预热温度55℃,注射压力13.5Mpa,压注时间16s;
步骤3,将制得的陶瓷型芯坯体冷冻干燥,冷冻干燥的为温度-48℃,时间为5h;
步骤4,将步骤3得到的陶瓷型芯坯体埋在氧化铝的刚玉匣钵中,进行烧结,得到目标碳纳米管增强的多孔陶瓷型芯;烧结具体为:先室温升至435℃,升温速率4.5℃/min,保温时间2h;之后升温至910℃,升温速率9℃/min,保温时间1h;再升温至1775℃,升温速率9℃/min,保温时间3h,然后断电,随炉冷却。
实施例3
本发明的一种碳纳米管增强的多孔陶瓷型芯,按照质量百分比由以下成分组成:
基体Al2O3粉末79%,矿化剂MgO粉末2%,成孔剂淀粉8%,增塑剂石蜡10%,碳纳米管1%;其中:Al2O3粉末粒度为180目的占65%,粒度为280目的占35%,MgO粉末的粒度为240目;碳纳米管属于直管型单壁碳纳米管,碳纳米管的长度直径比大于29:1。
本发明的上述碳纳米管增强的多孔陶瓷型芯的制备方法,具体按照以下步骤实施:
步骤1,各成分按照对应质量比称取,先将增塑剂石蜡加热到70℃,再按照上述比例加入Al2O3粉末、MgO粉末、淀粉和碳纳米管并不断搅拌,搅拌时间4h,得到混合均匀的浆料;
步骤2,将混合均匀的浆料加入到热压注机,制备陶瓷型芯坯体;热压注机模具预热温度60℃,注射压力15Mpa,压注时间17s;
步骤3,将制得的陶瓷型芯坯体冷冻干燥,冷冻干燥的为温度-50℃,时间为5h;
步骤4,将步骤3得到的陶瓷型芯坯体埋在氧化铝的刚玉匣钵中,进行烧结,得到目标碳纳米管增强的多孔陶瓷型芯;烧结具体为:先室温升至450℃,升温速率5℃/min,保温时间2h;之后升温至920℃,升温速率10℃/min,保温时间1h;再升温至1780℃,升温速率10℃/min,保温时间3h,然后断电,随炉冷却。

Claims (10)

1.一种碳纳米管增强的多孔陶瓷型芯,其特征在于,按照质量百分比由以下成分组成:
基体Al2O3粉末65%~79%,矿化剂MgO粉末2%~6%,成孔剂8%~12%,增塑剂10%~15%,碳纳米管1%~2%。
2.根据权利要求1所述的碳纳米管增强的多孔陶瓷型芯,其特征在于,所述成孔剂为淀粉。
3.根据权利要求1所述的碳纳米管增强的多孔陶瓷型芯,其特征在于,所述增塑剂为石蜡。
4.根据权利要求1所述的碳纳米管增强的多孔陶瓷型芯,其特征在于,所述Al2O3粉末粒度为180目的占60%-65%,粒度为280目的占35%-40%。
5.根据权利要求1所述的碳纳米管增强的多孔陶瓷型芯,其特征在于,所述MgO粉末的粒度为240目。
6.根据权利要求1所述的碳纳米管增强的多孔陶瓷型芯,其特征在于,所述碳纳米管属于直管型单壁碳纳米管,碳纳米管的长度直径比大于25:1。
7.一种权利要求1所述的碳纳米管增强的多孔陶瓷型芯的制备方法,其特征在于,具体按照以下步骤实施:
步骤1,各成分按照对应质量比称取,先将增塑剂石蜡加热到60℃~70℃,再按照上述比例加入Al2O3粉末、MgO粉末、淀粉和碳纳米管并不断搅拌,搅拌时间3h-4h,得到混合均匀的浆料;
步骤2,将混合均匀的浆料加入到热压注机,制备陶瓷型芯坯体;
步骤3,将制得的陶瓷型芯坯体冷冻干燥;
步骤4,将步骤3得到的陶瓷型芯坯体埋在氧化铝的刚玉匣钵中,进行烧结,得到目标碳纳米管增强的多孔陶瓷型芯。
8.根据权利要求7所述的碳纳米管增强的多孔陶瓷型芯的制备方法,其特征在于,在所述步骤2中,热压注机模具预热温度50℃~60℃,注射压力12Mpa~15Mpa,压注时间15s~17s。
9.根据权利要求7所述的碳纳米管增强的多孔陶瓷型芯的制备方法,其特征在于,在所述步骤3中,冷冻干燥的为温度-46~-50℃,时间为5h。
10.根据权利要求7所述的碳纳米管增强的多孔陶瓷型芯的制备方法,其特征在于,在所述步骤4中,烧结具体为:先室温升至420℃~450℃,升温速率4℃/min~5℃/min,保温时间2h;之后升温至900℃~920℃,升温速率8℃/min~10℃/min,保温时间1h;再升温至1770℃~1780℃,升温速率8℃/min~10℃/min,保温时间3h,然后断电,随炉冷却。
CN202010757889.3A 2020-07-31 2020-07-31 一种碳纳米管增强的多孔陶瓷型芯及其制备方法 Pending CN111978074A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010757889.3A CN111978074A (zh) 2020-07-31 2020-07-31 一种碳纳米管增强的多孔陶瓷型芯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010757889.3A CN111978074A (zh) 2020-07-31 2020-07-31 一种碳纳米管增强的多孔陶瓷型芯及其制备方法

Publications (1)

Publication Number Publication Date
CN111978074A true CN111978074A (zh) 2020-11-24

Family

ID=73445947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010757889.3A Pending CN111978074A (zh) 2020-07-31 2020-07-31 一种碳纳米管增强的多孔陶瓷型芯及其制备方法

Country Status (1)

Country Link
CN (1) CN111978074A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114082896A (zh) * 2021-11-23 2022-02-25 中国科学院金属研究所 一种光固化3d打印铝基陶瓷型芯及其制备方法
CN115322009A (zh) * 2021-05-10 2022-11-11 中国科学院上海硅酸盐研究所 一种大尺寸硅基陶瓷型芯及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101077836A (zh) * 2007-06-19 2007-11-28 西安交通大学 一种氧化铝基陶瓷型芯的制造方法
CN102266906A (zh) * 2010-06-02 2011-12-07 中国科学院金属研究所 一种易脱除陶瓷型芯的制备方法
CN108947499A (zh) * 2018-08-10 2018-12-07 河北钢研德凯科技有限公司 陶瓷型芯的制备方法及陶瓷型芯
CN109467419A (zh) * 2018-11-27 2019-03-15 中航装甲科技有限公司 一种石墨烯增强氧化铝基陶瓷型芯及其制备方法
CN110483087A (zh) * 2019-09-16 2019-11-22 郑州航空工业管理学院 燃气轮机涡轮叶片精密铸造用氧化铝基陶瓷型芯制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101077836A (zh) * 2007-06-19 2007-11-28 西安交通大学 一种氧化铝基陶瓷型芯的制造方法
CN102266906A (zh) * 2010-06-02 2011-12-07 中国科学院金属研究所 一种易脱除陶瓷型芯的制备方法
CN108947499A (zh) * 2018-08-10 2018-12-07 河北钢研德凯科技有限公司 陶瓷型芯的制备方法及陶瓷型芯
CN109467419A (zh) * 2018-11-27 2019-03-15 中航装甲科技有限公司 一种石墨烯增强氧化铝基陶瓷型芯及其制备方法
CN110483087A (zh) * 2019-09-16 2019-11-22 郑州航空工业管理学院 燃气轮机涡轮叶片精密铸造用氧化铝基陶瓷型芯制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张凤翻: "《热固性树脂基复合材料预浸料使用手册》", 30 June 2019, 中国建材工业出版社, pages: 170 - 172 *
李风光: ""淀粉对氧化铝基陶瓷型芯性能的影响",李风光,《航空材料学报》,第36卷,第6期,第86-91页", 《航空材料学报》 *
李风光: ""淀粉对氧化铝基陶瓷型芯性能的影响",李风光,《航空材料学报》,第36卷,第6期,第86-91页", 《航空材料学报》, vol. 36, no. 6, 31 December 2016 (2016-12-31), pages 86 - 91 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322009A (zh) * 2021-05-10 2022-11-11 中国科学院上海硅酸盐研究所 一种大尺寸硅基陶瓷型芯及其制备方法
CN114082896A (zh) * 2021-11-23 2022-02-25 中国科学院金属研究所 一种光固化3d打印铝基陶瓷型芯及其制备方法

Similar Documents

Publication Publication Date Title
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
EP0282879B1 (en) Composite ceramic sintered body and process for production thereof
CN100348537C (zh) 纤维增韧氧化铝陶瓷基复合材料及其制备方法
CN109293384B (zh) 一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法
JPS6358791B2 (zh)
CN107021771B (zh) 一种基于3d打印技术的氧化钙基陶瓷铸型制造方法
CN111978074A (zh) 一种碳纳米管增强的多孔陶瓷型芯及其制备方法
JPS5934147B2 (ja) 炭化ケイ素焼結セラミツク体及びその製造法
CN111995414B (zh) 一种聚丙烯腈基碳纤维增强的陶瓷型芯及其制备方法
CN101265108A (zh) 一种硼化物-碳化硅-碳化硼三元陶瓷基复合材料及其制备方法
Zhu et al. High strength aligned SiC nanowire reinforced SiC porous ceramics fabricated by 3D printing and chemical vapor infiltration
CN112500178B (zh) 一种原位生成ZrB2-SiC增韧PcBN刀具及其制备方法
CN113149686B (zh) 一种具有复合陶瓷层的炭/炭复合材料坩埚及其制备方法
CN108727050B (zh) 炭材料3d增韧碳化硅复合材料及其制备方法和应用
CN111517761A (zh) 一种复合内衬材料及其应用和应用方法
CN112592188A (zh) 一种石墨烯复合碳化硅陶瓷材料的制备方法
CN114716258B (zh) 一种碳纤维增强碳化硼复合材料的制备方法
CN112500167A (zh) 一种致密化碳化钛复合陶瓷的制备方法
Zhu et al. Research and application prospect of short carbon fiber reinforced ceramic composites
CN111196730B (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
CN111499386A (zh) 一种复合陶瓷材料及其制备方法
CN111892407B (zh) 湿纺-浸渍法制备双界面纤维独石硼化锆复合材料
CN110436955B (zh) 一种钇改性SiCf/SiC陶瓷基复合材料及其制备方法
CN114273659A (zh) 一种石墨烯/纳米Al2O3增韧Ti(C,N)基金属陶瓷刀具材料及其制备方法
Yang et al. Bo Wang

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201124

RJ01 Rejection of invention patent application after publication