CN111960846A - 一种纳米多孔材料及其制备方法 - Google Patents

一种纳米多孔材料及其制备方法 Download PDF

Info

Publication number
CN111960846A
CN111960846A CN202010694550.3A CN202010694550A CN111960846A CN 111960846 A CN111960846 A CN 111960846A CN 202010694550 A CN202010694550 A CN 202010694550A CN 111960846 A CN111960846 A CN 111960846A
Authority
CN
China
Prior art keywords
percent
nano
silicon carbide
carbonate
nanoporous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010694550.3A
Other languages
English (en)
Inventor
王超生
张瑞祥
阮国成
尹邦进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Jicheng New Material Co ltd
Original Assignee
Zhejiang Jicheng New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Jicheng New Material Co ltd filed Critical Zhejiang Jicheng New Material Co ltd
Priority to CN202010694550.3A priority Critical patent/CN111960846A/zh
Publication of CN111960846A publication Critical patent/CN111960846A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于材料制备领域,具体涉及一种纳米多孔碳化硅陶瓷材料及其制备方法。本发明所述纳米多孔材料是以碳酸盐为造孔剂,利用碳酸盐的分解温度,在碳化硅陶瓷的烧结过程中,随着温度的升高而使碳酸盐分解产生并释放二氧化碳,实现碳化硅陶瓷中产生纳米级孔隙的效果,最终制备得到纳米多孔碳化硅陶瓷材料。所述纳米多孔材料的孔径为20‑300nm,孔隙率为50%‑80%,维氏硬度为650‑950,韧性为10‑25MPa/m1/2,具有高孔隙率和机械性能强的优势,且纳米多孔材料的制备方法简单易操作、绿色环保,适合工业规模化生产。

Description

一种纳米多孔材料及其制备方法
技术领域
本发明属于材料制备领域,具体涉及一种纳米多孔碳化硅陶瓷材料及其制备方法。
背景技术
多孔材料由于具有良好的选择性渗透传质性能和高的比表面积,在膜过滤、吸附、催化剂制备等领域得到了广泛的应用。无机陶瓷、金属及其氧化物具有优异的化学稳定性、热稳定性或高机械强度等特点,是制备多孔材料的重要原料。多孔碳化硅陶瓷由于具有低密度、透过性好、比表面积大、耐高温、耐腐蚀、化学稳定性好以及抗氧化、抗热震性能好等优良性能,使其在分离装置、各种过滤器、催化剂载体、多孔电极、热交换器等诸多方面具有广泛的应用前景,并逐渐应用于冶金、化工、能源、环保及生物等领域。因此,关于多孔碳化硅陶瓷的制备成为目前多孔陶瓷领域研究的热点之一。
目前,多孔碳化硅陶瓷的研究主要集中在制备方法的改进上,以实现对孔隙率及孔隙结构的控制。目前已开发的方法主要如下:1)添加造孔剂法,如佘继红等人以碳化硅、氧化铝和碳粉为原料,以碳粉为造孔剂,压制成生坯后在空气炉中高温氧化,使碳化硅表面形成氧化硅,氧化硅与氧化铝形成莫来石相连接碳化硅颗粒,制备孔隙率可控的多孔碳化硅(She J H,Yang J F,Naoko kondo,et al.High strength porous silicon carbideceramics.J mater sci,2002,37:3615);2)模板复制法,如朱新文等人以软质聚氨酯海绵为模板,使用碳化硅浆料浸渍模板,养护试样后,在110℃下干燥,然后在600℃下烧掉有机泡沫体,经800℃对素坯预烧,再次用相同组分的低粘度浆料进行浸渍干燥涂覆等处理,最后在高温下烧制得到多孔碳化硅陶瓷(朱新文,江东亮,谭洪寿,张兆泉等,孔结构可控的网眼多孔陶瓷的制备,无机材料学报,2002,17:80);3)发泡法,如Kim等人用聚碳硅烷,物理方法发泡(饱和CO2)制成聚碳硅烷泡沫,然后将聚碳硅烷裂解,烧结制得孔径细小的碳化硅多孔体(Kim Y W,Park C B.Processing of microcellular preceramics using carbondioxide.compos Sci Technol.2003,63:2371);4)颗粒堆积法,如王晓刚等用树脂为粘结剂,将碳素材料和不同粒度的碳化硅级配后,压制成生坯经过干燥,预烧后再2230℃下高温烧结(王晓刚,樊子民.电致发热SiC多孔陶瓷制备工艺与性能研究.硅酸盐通报,2006,No.6:106);5)溶胶凝胶法,如Jin等用正硅酸乙酯加入酚醛树脂中进行水解,硝酸镍作为孔调节剂,形成凝胶后经过碳热还原反应生成孔径微小的介孔SiC材料(Jin G Q,Guo XY.Synthesis and characterization of mesoporous silicon carbide.MicroporMesopor Mat,2003,60:207)。
目前的制备方法得到的多孔碳化硅陶瓷材料的孔径多为微米级大小,纳米孔的多孔碳化硅陶瓷材料尚为少见,而这在一定程度上制约了碳化硅陶瓷的性能和应用。因此,如何制备纳米级的多孔碳化硅陶瓷材料成为研究热点。
发明内容
本发明的目的在于解决现有技术问题的不足,提供一种纳米多孔材料及其制备方法。
本发明的目的之一是提供一种纳米多孔材料,所述纳米多孔材料的配方按质量百分比为:
溶剂 20-50%
纳米颗粒 15-30%
造孔剂 5-30%
交联剂 5-10%
分散剂 1-8%
表面活性剂 1-8%
其中,所述纳米颗粒至少含有纳米碳化硅。
优选的,所述纳米多孔材料的配方按质量百分比为:
溶剂 35%
纳米颗粒 25%
造孔剂 24%
交联剂 8%
分散剂 4%
表面活性剂 4%。
优选的,所述纳米颗粒的组分按质量分数计为50%-70%纳米碳化硅、5%-20%二氧化硅、余量为碳粉的组合,所述纳米碳化硅的粒径为0.1-0.7μm。
优选的,所述造孔剂为碳酸盐。
优选的,所述碳酸盐为碳酸钾、碳酸钙、碳酸镁或碳酸钠的任意一种或多种。
优选的,所述溶剂为水、乙醇或聚乙二醇任意一种或多种。
优选的,所述交联剂为酚醛树脂、聚氨酯树脂、有机硅树脂或环氧树脂的任意一种或多种。
优选的,所述分散剂为羧甲基纤维素、聚丙烯酸钠、焦磷酸钠或六偏磷酸钠。
优选的,所述表面活性剂为十二烷基苯磺酸钠或脂肪醇聚氧乙烯醚。
优选的,所述纳米多孔材料的孔径尺寸为20-300nm,孔隙率为50%-80%。
本发明的另一目的是提供所述纳米多孔材料的制备方法,包括如下步骤:
(1)将配方量的各组分混合均匀后喷雾制粒,得到粒料;
(2)所述粒料经压制成型得到生坯;
(3)所述生坯经真空烧结得到预制体;
(4)所述预制体冷却出炉,经酸液腐蚀得到纳米多孔碳化硅陶瓷材料。
优选的,所述步骤(3)中真空烧结分为两步,先在500-800℃下烧结10-500min,后在800-1000℃下烧结10-240min。
优选的,所述步骤(3)中真空烧结的真空度为500Pa及以下。
本发明与现有技术相比,其有益效果主要体现在:本发明提供一种纳米多孔材料,具体为一种纳米多孔碳化硅陶瓷材料,所述材料是以碳酸盐为造孔剂,利用碳酸盐的分解温度,在碳化硅陶瓷的烧结过程中,随着温度的升高而使碳酸盐分解产生并释放二氧化碳,实现碳化硅陶瓷中产生纳米级孔隙的效果,最终制备得到纳米多孔碳化硅陶瓷材料。所述纳米多孔材料的孔径为20-300nm,孔隙率为50%-80%。,维氏硬度为650-950,韧性为10-25MPa/m1/2,具有高孔隙率和机械性能强的优势,且纳米多孔材料的制备方法简单易操作、绿色环保,适合工业规模化生产。
附图说明
图1是纳米多孔碳化硅陶瓷材料的扫描电镜图。
具体实施方式
本发明提供一种纳米多孔材料,所述纳米多孔材料的配方按质量百分比为:
溶剂 20-50%
纳米颗粒 15-30%
造孔剂 5-30%
交联剂 5-10%
分散剂 1-8%
表面活性剂 1-8%
其中,所述纳米颗粒为纳米碳化硅、二氧化硅、金属硅或碳粉的任意组合;所述造孔剂为碳酸盐。
本发明还提供一种所述纳米多孔材料的制备方法,包括如下步骤:
(1)将配方量的各组分混合均匀后喷雾制粒,得到粒料;
(2)所述粒料经压制成型得到生坯;
(3)所述生坯经真空烧结得到预制体;
(4)所述预制体冷却出炉,经酸液腐蚀得到纳米多孔碳化硅陶瓷材料。
本发明中,对所述混合方式没有特殊限制,能够将各组分原料混合均匀即可,具体采用本领域技术人员熟知的混料方式即可,如搅拌、球磨等。将原料混匀后,进行喷雾制粒。本发明中,所述喷雾制粒所得粒料的粒度优选为50-200μm。
本发明中,对粒料压制成型,所述压制成型的压力优选为5-25MPa,保压时长优选为5-30s,从而获得高强度的生坯,适用后续加工需求并满足产品基本性能要求。
本发明中,所述真空烧结分为两步,先在500-800℃下烧结10-500min,使造孔剂碳酸盐在此温度下分解,释放二氧化碳,形成孔隙,后在800-1000℃下烧结10-240min,得到预制体,真空烧结的升温速率优选为1-3℃/min,真空烧结的真空度优选为500Pa及以下是指真空效果优于500Pa的真空度,即真空度数值低于500Pa。
本发明中,酸液优选为盐酸、硫酸、硝酸、乙酸或草酸的任意一种或多种,以除去碳酸盐分解并释放二氧化碳后剩余的氧化物。
本发明中,通过添加碳酸盐作为造孔剂,在烧结过程中,先一步达到碳酸盐的分解温度,释放二氧化碳后产生空隙,后续烧结过程中,碳粉与氧气生成二氧化碳也会造成空隙,并且后续腐蚀步骤去除碳酸盐分解后留下的氧化物也能够造成一定的空隙。
下面通过具体实施例,并结合附图对本发明的技术方案作进一步的具体说明。
实施例1:
一种纳米多孔材料,配方按质量百分比为:
溶剂 35%
纳米颗粒 25%
造孔剂 24%
交联剂 8%
分散剂 4%
表面活性剂 4%,
其中,纳米颗粒为64%纳米碳化硅、18%二氧化硅、18%碳粉组合;造孔剂为碳酸钙,溶剂为水,交联剂为酚醛树脂,分散剂为羧甲基纤维素,表面活性剂为十二烷基苯磺酸钠。
所述纳米多孔材料的制备方法为:将配方量的各组分混合均匀后喷雾制粒,得到粒料,在压力18MPa下保压20s压制成型得到生坯,生坯在80Pa的真空度下以2℃/min的速率升温至680℃烧结340min,继续升温至1000℃烧结180min,得到预制体,后经1mol/L稀盐酸酸洗腐蚀,得到纳米多孔碳化硅陶瓷材料。所述纳米多孔材料的孔径为180nm,孔隙率为78%,扫描电镜图见附图1。
实施例2:
一种纳米多孔材料,配方按质量百分比为:
溶剂 48%
纳米颗粒 24%
造孔剂 8%
交联剂 10%
分散剂 2%
表面活性剂 8%,
其中,纳米颗粒为70%纳米碳化硅、20%二氧化硅、10%碳粉组合;造孔剂为碳酸镁,溶剂为乙醇,交联剂为环氧树脂,分散剂为聚丙烯酸钠,表面活性剂为十二烷基苯磺酸钠。
所述纳米多孔材料的制备方法为:将配方量的各组分混合均匀后喷雾制粒,得到粒料,在压力7MPa下保压30s压制成型得到生坯,生坯在500Pa的真空度下以2℃/min的速率升温至500℃烧结250min,继续升温至1000℃烧结240min,得到预制体,后经1mol/L稀硝酸酸洗腐蚀,得到纳米多孔碳化硅陶瓷材料。所述纳米多孔材料的孔径为270nm,孔隙率为55%。
实施例3:
一种纳米多孔材料,配方按质量百分比为:
溶剂 25%
纳米颗粒 30%
造孔剂 30%
交联剂 5%
分散剂 8%
表面活性剂 2%,
其中,纳米颗粒为58%纳米碳化硅、14%二氧化硅、28%碳粉组合;造孔剂为碳酸钠,溶剂为水,交联剂为聚氨酯树脂,分散剂为焦磷酸钠,表面活性剂为脂肪醇聚氧乙烯醚。
所述纳米多孔材料的制备方法为:将配方量的各组分混合均匀后喷雾制粒,得到粒料,在压力25MPa下保压8s压制成型得到生坯,生坯在500Pa的真空度下以2℃/min的速率升温至800℃烧结20min,继续升温至1000℃烧结50min,得到预制体,后经1mol/L稀盐酸酸洗腐蚀,得到纳米多孔碳化硅陶瓷材料。所述纳米多孔材料的孔径为40nm,孔隙率为76%。
实施例4:
一种纳米多孔材料,配方按质量百分比为:
溶剂 40%
纳米颗粒 18%
造孔剂 18%
交联剂 10%
分散剂 6%
表面活性剂 8%,
其中,纳米颗粒为60%纳米碳化硅、15%二氧化硅、5%金属硅、20%碳粉组合;造孔剂为碳酸钠,溶剂为乙醇,交联剂为环氧树脂,分散剂为羧甲基纤维素,表面活性剂为十二烷基苯磺酸钠。
所述纳米多孔材料的制备方法为:将配方量的各组分混合均匀后喷雾制粒,得到粒料,在压力15MPa下保压20s压制成型得到生坯,生坯在80Pa的真空度下以2℃/min的速率升温至700℃烧结70min,继续升温至1000℃烧结150min,得到预制体,后经1mol/L稀盐酸酸洗腐蚀,得到纳米多孔碳化硅陶瓷材料。所述纳米多孔材料的孔径为220nm,孔隙率为66%。
试验例1:
对实施例1-4所得纳米多孔碳化硅陶瓷材料进行性能检测,检测结果参见表1,其中,维氏硬度利用维氏硬度计进行测试,断裂韧性按照压痕法进行测试。
表1实施例1-4所得纳米多孔材料的性能检测结果
Figure BDA0002590563900000071
由以上结果可知,本发明制备的多孔材料,不仅孔径为纳米级,同时具有良好的机械性能。
以上所述的实施例只是本发明的较佳方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (10)

1.一种纳米多孔材料,其特征在于,所述纳米多孔材料的配方按质量百分比为:
溶剂20-50%
纳米颗粒15-30%
造孔剂5-30%
交联剂5-10%
分散剂1-8%
表面活性剂1-8%
其中,所述纳米颗粒至少含有纳米碳化硅。
2.根据权利要求2所述一种纳米多孔材料,其特征在于,所述纳米多孔材料的配方按质量百分比为:
溶剂35%
纳米颗粒25%
造孔剂24%
交联剂8%
分散剂4%
表面活性剂4%。
3.根据权利要求1所述一种纳米多孔材料,其特征在于,所述纳米颗粒的组分按质量分数计为50%-70%纳米碳化硅、5%-20%二氧化硅、余量为碳粉的组合,所述纳米碳化硅的粒径为0.1-0.7μm。
4.根据权利要求1所述一种纳米多孔材料,其特征在于,所述造孔剂为碳酸盐。
5.根据权利要求4所述一种纳米多孔材料,其特征在于,所述碳酸盐为碳酸钾、碳酸钙、碳酸镁或碳酸钠的任意一种或多种。
6.根据权利要求1所述一种纳米多孔材料,其特征在于,所述溶剂为水、乙醇或聚乙二醇任意一种或多种;所述交联剂为酚醛树脂、聚氨酯树脂、有机硅树脂或环氧树脂的任意一种或多种;所述分散剂为羧甲基纤维素、聚丙烯酸钠、焦磷酸钠或六偏磷酸钠;所述表面活性剂为十二烷基苯磺酸钠或脂肪醇聚氧乙烯醚。
7.根据权利要求1所述一种纳米多孔材料,其特征在于,所述纳米多孔材料的孔径尺寸为20-300nm,孔隙率为50%-80%。
8.一种权利要求1-7任一所述纳米多孔材料的制备方法,包括如下步骤:
(1)将配方量的各组分混合均匀后喷雾制粒,得到粒料;
(2)所述粒料经压制成型得到生坯;
(3)所述生坯经真空烧结得到预制体;
(4)所述预制体冷却出炉,经酸液腐蚀得到纳米多孔碳化硅陶瓷材料。
9.根据权利要求8所述的一种纳米多孔材料的制备方法,其特征在于,所述步骤(3)中真空烧结分为两步,先在500-800℃下烧结10-500min,后在800-1000℃下烧结10-240min。
10.根据权利要求8所述的一种纳米多孔材料的制备方法,其特征在于,所述步骤(3)中真空烧结的真空度为500Pa及以下。
CN202010694550.3A 2020-07-17 2020-07-17 一种纳米多孔材料及其制备方法 Pending CN111960846A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010694550.3A CN111960846A (zh) 2020-07-17 2020-07-17 一种纳米多孔材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010694550.3A CN111960846A (zh) 2020-07-17 2020-07-17 一种纳米多孔材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111960846A true CN111960846A (zh) 2020-11-20

Family

ID=73361730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010694550.3A Pending CN111960846A (zh) 2020-07-17 2020-07-17 一种纳米多孔材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111960846A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988399A (zh) * 2022-06-06 2022-09-02 山东海化集团有限公司 一种基于原位发泡技术制备石墨烯气凝胶的方法
CN118184391A (zh) * 2024-04-01 2024-06-14 湖南昌诺新材料有限公司 一种碳化硅多孔陶瓷材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162538A (ja) * 2003-12-03 2005-06-23 Noritake Co Ltd 炭化ケイ素多孔質体の製造方法
JP2009286678A (ja) * 2008-05-30 2009-12-10 Nsk Ltd セラミックス基複合材料及びその製造方法、並びに、転動部材及び転動装置
CN105084364A (zh) * 2015-08-10 2015-11-25 西安交通大学 一种多孔碳化硅球形粉末的制备工艺
CN105693276A (zh) * 2014-11-27 2016-06-22 中国科学院金属研究所 一种碳化硅过滤膜层及其低温制备方法
CN106148776A (zh) * 2016-07-13 2016-11-23 安徽祈艾特电子科技股份有限公司 一种汽车电子封装用纳米碳化硅增强铝镁合金材料及其制备方法
CN107986816A (zh) * 2017-12-18 2018-05-04 洛阳名力科技开发有限公司 一种用于工业废气处理的多孔碳化硅陶瓷的制备方法
CN108218467A (zh) * 2016-12-14 2018-06-29 中国科学院金属研究所 一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法
CN109607539A (zh) * 2019-01-31 2019-04-12 杭州致德新材料有限公司 高分散纳米碳化硅及其制备方法
CN110642593A (zh) * 2019-10-14 2020-01-03 青岛岩海碳材料有限公司 一种陶瓷造孔剂的制备方法
CN110818424A (zh) * 2019-11-11 2020-02-21 宁波伏尔肯科技股份有限公司 一种蒸汽式医用雾化器用多孔碳化硅陶瓷及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162538A (ja) * 2003-12-03 2005-06-23 Noritake Co Ltd 炭化ケイ素多孔質体の製造方法
JP2009286678A (ja) * 2008-05-30 2009-12-10 Nsk Ltd セラミックス基複合材料及びその製造方法、並びに、転動部材及び転動装置
CN105693276A (zh) * 2014-11-27 2016-06-22 中国科学院金属研究所 一种碳化硅过滤膜层及其低温制备方法
CN105084364A (zh) * 2015-08-10 2015-11-25 西安交通大学 一种多孔碳化硅球形粉末的制备工艺
CN106148776A (zh) * 2016-07-13 2016-11-23 安徽祈艾特电子科技股份有限公司 一种汽车电子封装用纳米碳化硅增强铝镁合金材料及其制备方法
CN108218467A (zh) * 2016-12-14 2018-06-29 中国科学院金属研究所 一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法
CN107986816A (zh) * 2017-12-18 2018-05-04 洛阳名力科技开发有限公司 一种用于工业废气处理的多孔碳化硅陶瓷的制备方法
CN109607539A (zh) * 2019-01-31 2019-04-12 杭州致德新材料有限公司 高分散纳米碳化硅及其制备方法
CN110642593A (zh) * 2019-10-14 2020-01-03 青岛岩海碳材料有限公司 一种陶瓷造孔剂的制备方法
CN110818424A (zh) * 2019-11-11 2020-02-21 宁波伏尔肯科技股份有限公司 一种蒸汽式医用雾化器用多孔碳化硅陶瓷及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988399A (zh) * 2022-06-06 2022-09-02 山东海化集团有限公司 一种基于原位发泡技术制备石墨烯气凝胶的方法
CN118184391A (zh) * 2024-04-01 2024-06-14 湖南昌诺新材料有限公司 一种碳化硅多孔陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
JP7099739B2 (ja) 多孔質炭化ケイ素セラミック担体の製造方法
CN100343196C (zh) 原位反应法制备莫来石结合的碳化硅多孔陶瓷
CN106478107B (zh) 一种氮化硅晶须结合碳化硅多孔陶瓷及其制备方法
CN109650935B (zh) 一种孔形可调的氧化铝多孔陶瓷膜的制备方法
CN107082628B (zh) 一种基于分子筛膜合成残液的多孔陶瓷支撑体制备方法
CN108558418B (zh) 一种轻量高强六铝酸钙耐火材料的制备方法
CN110655407A (zh) 一种电阻可控碳化硅陶瓷的制备方法
CN103641510B (zh) 添加PMMA造孔剂制备O-Sialon多孔陶瓷的方法
CN111960846A (zh) 一种纳米多孔材料及其制备方法
CN104671826A (zh) 一种多孔氧化铝陶瓷、制备方法及其应用
CN104926309B (zh) 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法
CN101328060A (zh) 一种硅藻土基多功能微孔陶瓷的制备方法
CN113307629A (zh) 一种碳化硅泡沫陶瓷及其制备方法
Rao et al. Fabrication and characterization of Li4SiO4 pebbles by extrusion spherodization technique: Effects of three different binders
CN105084364B (zh) 一种多孔碳化硅球形粉末的制备工艺
CN107512902B (zh) 一种多纤维强化的镁铝碳耐火材料及其制备工艺
CN117003580A (zh) 一种碳化硅多孔陶瓷及其制备方法和应用
CN108947576B (zh) 一种反向模板法制备纳米线编织微球的陶瓷海绵材料方法
CN113336529B (zh) 一种多通道油包水型乳化膜及其制备方法
CN107721259B (zh) 一种高性能透水砖
CN114133270B (zh) 中空平板陶瓷过滤膜及其制备方法
CN112679225A (zh) 一种多孔陶瓷材料造孔剂及其制备方法
CN109626979B (zh) 一种孔形可调的硅酸钙多孔陶瓷膜的制备方法
CN114292122A (zh) 一种多孔陶瓷的制备方法
CN110845241A (zh) 一种多孔氮化铝陶瓷材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201120

RJ01 Rejection of invention patent application after publication