CN111952403A - 一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器及其制备方法 - Google Patents
一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器及其制备方法 Download PDFInfo
- Publication number
- CN111952403A CN111952403A CN202010874279.1A CN202010874279A CN111952403A CN 111952403 A CN111952403 A CN 111952403A CN 202010874279 A CN202010874279 A CN 202010874279A CN 111952403 A CN111952403 A CN 111952403A
- Authority
- CN
- China
- Prior art keywords
- schottky junction
- ultrathin silicon
- type ultrathin
- silicon wafer
- color detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 75
- 239000010703 silicon Substances 0.000 title claims abstract description 75
- JTPDXCIVXNLRFP-UHFFFAOYSA-N bis(selanylidene)platinum Chemical compound [Pt](=[Se])=[Se] JTPDXCIVXNLRFP-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims description 29
- 239000011521 glass Substances 0.000 claims description 24
- 239000010408 film Substances 0.000 claims description 20
- 239000010409 thin film Substances 0.000 claims description 17
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910000807 Ga alloy Inorganic materials 0.000 claims description 4
- 229910000846 In alloy Inorganic materials 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 4
- 235000012431 wafers Nutrition 0.000 description 32
- 238000001514 detection method Methods 0.000 description 9
- 238000005286 illumination Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- -1 Platinum selenide-silicon Chemical compound 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/109—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0321—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种基于二硒化铂/n‑型超薄硅肖特基结的颜色探测器及其制备方法,该颜色探测器是由两个相同的二硒化铂/n‑型超薄硅肖特基结单元叠合而成,当光从第一肖特基结单元的上表面逐层照射颜色探测器时,第一肖特基结单元与第二肖特基结单元的电流比,随被探测光波长的增大而减小,从而可根据电流比识别被探测光的波长。本发明的颜色探测器制备工艺简单、成本低廉、性质稳定、电流开关比大、响应速度快。
Description
技术领域
本发明属于光电探测器技术领域,具体涉及一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器及其制备方法。
背景技术
颜色探测器是一种能将光信号转换成电信号的光电器件,属于光电探测器的一种,不仅可以实现光信号的探测,还能实现波长的有效识别。低成本高性能颜色探测器在人工智能辅助驾驶、图像传感、光通信、火灾检测、生物医学成像、环境监测、空间探测与安全检测等诸多科学研究与工业技术领域有重要的应用价值,因而得到了人们广泛的关注。
硅作为一种重要的半导体材料,一直推动着半导体工业的进步。但是,由于硅的厚度过大,不适合与各种形状和大小的基础设施集成,给光电探测器的发展带来了很大的不便。基于对轻量级和灵活性的更高要求,超薄硅片慢慢进入研究中。超薄硅具有很好的柔韧性以及机械灵活性,对于太阳能电池以及可穿戴领域都具有重要意义。此外对于扩散长度较短的少数载流子来说,使用较薄的硅衬底有助于减少电子-空穴复合,也是其的一种优势。但是,目前普遍研究的是由单个超薄硅片组成的光电探测器,研究角度过于局限、研究范围过于狭窄,制约了硅基光电探测器的进一步发展和广泛应用。另一方面,单一的光电探测器只能实现光信号的探测,无法实现对光波长的识别,严重阻碍了其在科学研究、工业生产和人民生活中的广泛应用。
在过去的十年中,二维过渡金属材料(2D TMDs)由于多用途和突出的材料特性(例如可调谐的开放带隙、高载流子迁移率、强光-物质相互作用、增加的光吸收效率、优异的机械柔性以及可调节的载流子密度和极性)而在全世界引起了相当大的关注。PtSe2作为一种新型TMDs材料,因可调禁带而备受关注,从单层(1.2eV)到具有零带隙的半金属体的转变,使其可以在近红外区进行光电检测。基于硒化铂-硅的探测器已被大量研究,但基于硒化铂-超薄硅的探测器尚未见报导。
发明内容
基于上述现有技术所存在的问题,本发明提供了一种制备工艺简单、成本低廉的基于二硒化铂/n-型超薄硅肖特基结的颜色探测器,以期可以通过两个肖特基结单元的电流比值与入射光波长的关系来有效地实现颜色探测器的功能。
本发明为解决技术问题,采用如下技术方案:
一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器,其特点在于:所述颜色探测器是由两个相同的肖特基结单元组合而成;
所述肖特基结单元是在玻璃衬底的上表面固定有n-型超薄硅片,在所述n-型超薄硅片上铺设有二硒化铂薄膜;在所述n-型超薄硅片上设置有与其呈欧姆接触的n-型超薄硅接触电极,在所述二硒化铂薄膜上设置有与其呈欧姆接触的二硒化铂接触电极;在所述肖特基结单元中,由n-型超薄硅片与二硒化铂薄膜构成肖特基结;
以第一肖特基结单元的玻璃衬底的下表面与第二肖特基结单元的玻璃衬底的上表面叠合,即构成颜色探测器;
当光从第一肖特基结单元的上表面逐层照射所述颜色探测器时,第一肖特基结单元与第二肖特基结单元的电流比,随被探测光波长的增大而减小,从而可根据电流比识别被探测光的波长。
进一步地,n-型超薄硅片设置在玻璃衬底的局部位置,二硒化铂薄膜与n-型超薄硅片错位布设(即二硒化铂薄膜既有位于n-型超薄硅片上的部分,也有位于玻璃衬底上的部分),n-型超薄硅接触电极和二硒化铂接触电极分别位于n-型超薄硅片与二硒化铂薄膜错开而不接触的位置上,以保证n-型超薄硅接触电极与二硒化铂薄膜不接触。
进一步地,所述玻璃衬底的厚度为0.8-1mm。
进一步地,所述n-型超薄硅片采用厚度为20-30μm、电阻率为1-7Ω/cm的n-型轻掺杂硅片。
进一步地,所述二硒化铂薄膜的厚度为20-25nm。
进一步地,所述n-型超薄硅接触电极为30-500nm厚的In/Ga合金电极。
进一步地,所述二硒化铂接触电极为30-300nm厚的Ag电极。
进一步地,所述颜色探测器的制备方法,是按如下步骤进行:
步骤1、将n-型超薄硅片放在质量浓度为5%-10%的氢氟酸溶液或BOE刻蚀液中刻蚀5-10分钟,去除表面的自然氧化层,取出后进行清洗并干燥;
步骤2、将经步骤1处理后的n-型超薄硅片转移到清洗干净的玻璃衬底上;
步骤3、将二硒化铂薄膜转移至n-型超薄硅片上;
步骤4、采用涂抹的方法,分别在n-型超薄硅片与二硒化铂薄膜上制作n-型超薄硅接触电极和二硒化铂接触电极,即形成肖特基结单元;
步骤5、取两个按照步骤1~4制得的相同的肖特基结单元,以第一肖特基结单元的玻璃衬底的下表面与第二肖特基结单元的玻璃衬底的上表面叠合,即完成基于二硒化铂/n-型超薄硅肖特基结的颜色探测器的制备。
具体的,两肖特基结单元可以粘贴固定,也可以捆绑固定。
与已有技术相比,本发明的有益效果体现在:
1、本发明设计了一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器,该器件是由两个完全相同的二硒化铂/n-型超薄硅肖特基结单元组合而成,对于相同功率、不同波长的可见光具有不同的光电响应,而且第一肖特基结单元与第二肖特基结单元的电流比与入射光波长具有一一对应的关系,因此可以有效识别入射光的波长,探测器对波长范围为200-800nm的探测光具有很好的线性关系。
2、本发明的颜色探测器,所用二硒化铂薄膜不仅和超薄硅片形成肖特基结,而且具有稳定性好、无毒等优点,非常适合在光电探测领域的使用,同时易与传统的硅基材料结合,具有很高的应用潜力。
3、本发明颜色探测器的制备方法简单,无需使用昂贵的仪器设备,显著降低了器件的制作成本。
4、本发明的颜色探测器可以工作于零电压下,无需消耗外部能量,因而可有效降低功耗。
附图说明
图1为本发明基于二硒化铂/n-型超薄硅肖特基结的颜色探测器的结构示意图;
图2为本发明实施例1所得颜色探测器在波长为200-1300nm、强度为~100μW/cm2的光照下,在室温、零工作电压的检测条件下,第一异质结单元(图中I1)和第二异质结单元(图中I2)的电流-波长特性曲线;
图3为本发明实施例1所得颜色探测器在波长为200-1300nm、强度为~100μW/cm2的光照下,在室温、零工作电压的检测条件下,第一异质结单元和第二异质结单元的电流比-波长特性曲线;
图4为本发明实施例1所得颜色探测器中的第一异质结单元分别在无光照和波长为660nm、强度为300μW/cm2的光照下的电流-电压特性曲线;
图5为本发明实施例1所得颜色探测器中的第一异质结单元在零工作电压下,在波长为660nm、强度为24μW/cm2的光照下的时间响应曲线;
图中标号:1为玻璃衬底;2为n-型超薄硅片;3为二硒化铂薄膜;4为n-型超薄硅接触电极;5为二硒化铂接触电极。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
下述实施例所用二硒化铂薄膜是通过热辅助转化法制备的,具体步骤如下:
a.采用电子束镀膜方法,在真空度为6.7×10-3Pa以下,在干净的氧化硅基底上蒸镀厚度为5nm的Pt薄膜。
b.将表面覆盖Pt薄膜的氧化硅基底放入管式炉的中心区,在管式炉的下游放置硒粉,向管式炉中通入95%Ar/5%H2气体,气流方向为从管式炉下游到上游方向,在真空度为2.5×101Pa的条件下,30min内将炉内温度升至450℃,并以450℃的温度保持60min,使硒粉与Pt充分反应,形成厚度~22nm的PtSe2薄膜。
c.在表面生长有PtSe2薄膜的氧化硅基底的上表面旋涂质量浓度PMMA,然后放入8mol/L的NaOH溶液中,待二硒化铂薄膜完全与氧化硅基底剥离之后,将二硒化铂薄膜转移至去离子水中清洗,得到二硒化铂薄膜。
实施例1
如图1所示,本实施例基于二硒化铂/n-型超薄硅肖特基结的颜色探测器,是由两个相同的肖特基结单元组合而成;
肖特基结单元是在玻璃衬底1的上表面固定有n-型超薄硅片2,在n-型超薄硅片2上铺设有二硒化铂薄膜3;在n-型超薄硅片2上设置有与其呈欧姆接触的n-型超薄硅接触电极4,在二硒化铂薄膜3上设置有与其呈欧姆接触的二硒化铂接触电极5;在异质结单元中,由n-型超薄硅片与二硒化铂薄膜构成肖特基结;
以第一肖特基结单元的玻璃衬底的下表面与第二肖特基结单元的玻璃衬底的上表面叠合,即构成颜色探测器。图1中,为清楚显示两肖特基结单元的结构,将二者进行了拆分,未叠合,具体使用中,即可以将二者粘结,也可以捆绑,只要保证二者的位置固定。
具体的,本实施例中:玻璃衬底1的厚度为1mm;n-型超薄硅片2采用厚度为20μm、电阻率为6Ω/cm的n-型轻掺杂硅片;二硒化铂薄膜3的厚度为22nm;n-型超薄硅接触电极4为500nm厚的In/Ga合金电极;二硒化铂接触电极5为300nm厚的Ag电极。
本实施例的颜色探测器按如下步骤制得:
步骤1、将面积为0.3cm×0.6cm、厚度为20μm、电阻率为6Ω/cm的n-型轻掺杂硅片放在质量浓度为5%的氢氟酸溶液中刻蚀5分钟,去除n-型超薄硅片表面的自然氧化层,取出后依次用丙酮、酒精、去离子水各超声清洗10分钟,并用氮气吹干。
步骤2、将经步骤1处理后的n-型超薄硅片转移到清洗干净的玻璃衬底上。
步骤3、将二硒化铂薄膜转移至n-型超薄硅片上。
步骤4、采用涂抹的方法,分别在n-型超薄硅片与二硒化铂薄膜上制作In/Ga合金电极和Ag电极,即形成肖特基结单元。
步骤5、取两个按照步骤1~4制得的相同的肖特基结单元,以第一肖特基结单元的玻璃衬底的下表面与第二肖特基结单元的玻璃衬底的上表面叠合,即完成基于二硒化铂/n-型超薄硅肖特基结的颜色探测器的制备。
图2和图3分别为本实施例所得颜色探测器在波长为200-1300nm、强度为~100μW/cm2的光照下(如图1所示,为配合光的方向,测试中将颜色探测器竖立),在室温、零工作电压的检测条件下,第一异质结单元(图中I1)和第二异质结单元(图中I2)的电流-波长特性曲线及电流比-波长特性曲线。从图中可以看出当波长200-800nm时,光电流比值随着波长增加而单调减小,当波长增加到800nm及之后时,光电流比值趋于稳定不再下降,可以得出本实施例颜色探测器可以探测的颜色范围包括200-800nm。通过调整二硒化铂薄膜薄膜的厚度或n-型超薄硅片的厚度,可实现探测颜色范围的调控。
图4为本实施例所得颜色探测器中的第一异质结单元分别在无光照和波长为660nm、强度为300μW/cm2的光照下的电流-电压特性曲线;图5为第一异质结单元在零工作电压下,在波长为660nm、强度为24μW/cm2的光照下的时间响应曲线。从图中可以看出,该异质结单元具有明显的光电响应特性,对被探测光非常敏感,电流开关比达到1×103,且具有超快的响应速度;此外该探测器在零工作电压下可以正常工作,可有效降低器件功耗。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
Claims (7)
1.一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器,其特征在于:所述颜色探测器是由两个相同的肖特基结单元组合而成;
所述肖特基结单元是在玻璃衬底(1)的上表面固定有n-型超薄硅片(2),在所述n-型超薄硅片(2)上铺设有二硒化铂薄膜(3);在所述n-型超薄硅片(2)上设置有与其呈欧姆接触的n-型超薄硅接触电极(4),在所述二硒化铂薄膜(3)上设置有与其呈欧姆接触的二硒化铂接触电极(5);在所述异质结单元中,由n-型超薄硅片与二硒化铂薄膜构成肖特基结;
以第一肖特基结单元的玻璃衬底的下表面与第二肖特基结单元的玻璃衬底的上表面叠合,即构成颜色探测器;
当光从第一肖特基结单元的上表面逐层照射所述颜色探测器时,第一肖特基结单元与第二肖特基结单元的电流比,随被探测光波长的增大而减小,从而可根据电流比识别被探测光的波长。
2.根据权利要求1所述的颜色探测器,其特征在于:所述玻璃衬底(1)的厚度为0.8-1mm。
3.根据权利要求1所述的颜色探测器,其特征在于:所述n-型超薄硅片(2)采用厚度为20-30μm、电阻率为1-7Ω/cm的n-型轻掺杂硅片。
4.根据权利要求1所述的颜色探测器,其特征在于:所述二硒化铂薄膜(3)的厚度为20-25nm。
5.根据权利要求1所述的颜色探测器,其特征在于:所述n-型超薄硅接触电极(4)为30-500nm厚的In/Ga合金电极。
6.根据权利要求1所述的颜色探测器,其特征在于:所述二硒化铂接触电极(5)为30-300nm厚的Ag电极。
7.一种权利要求1~6中任意一项所述颜色探测器的制备方法,其特征在于,按如下步骤进行:
步骤1、将n-型超薄硅片放在质量浓度为5%-10%的氢氟酸溶液或BOE刻蚀液中刻蚀5-10分钟,去除表面的自然氧化层,取出后进行清洗并干燥;
步骤2、将经步骤1处理后的n-型超薄硅片转移到清洗干净的玻璃衬底上;
步骤3、将二硒化铂薄膜转移至n-型超薄硅片上;
步骤4、采用涂抹的方法,分别在n-型超薄硅片与二硒化铂薄膜上制作n-型超薄硅接触电极和二硒化铂接触电极,即形成肖特基结单元;
步骤5、取两个按照步骤1~4制得的相同的肖特基结单元,以第一肖特基结单元的玻璃衬底的下表面与第二肖特基结单元的玻璃衬底的上表面叠合,即完成基于二硒化铂/n-型超薄硅肖特基结的颜色探测器的制备。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010874279.1A CN111952403B (zh) | 2020-08-26 | 2020-08-26 | 一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010874279.1A CN111952403B (zh) | 2020-08-26 | 2020-08-26 | 一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111952403A true CN111952403A (zh) | 2020-11-17 |
CN111952403B CN111952403B (zh) | 2022-08-30 |
Family
ID=73366604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010874279.1A Active CN111952403B (zh) | 2020-08-26 | 2020-08-26 | 一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111952403B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113437106A (zh) * | 2021-06-30 | 2021-09-24 | 合肥工业大学 | 一种基于二硒化钯/薄锗肖特基结的颜色探测系统及其制备方法 |
CN115050845A (zh) * | 2022-04-15 | 2022-09-13 | 西北工业大学 | 一种基于沟道材料的半导体器件、制备方法和用途 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1298483A (zh) * | 1998-04-24 | 2001-06-06 | 福维昂公司 | 使用三阱结构的有源像素单元成像矩阵中的颜色分离 |
US20070241260A1 (en) * | 2004-09-30 | 2007-10-18 | Osram Opto Semiconductors Gmbh | Radiation detector with an epitaxially grown semiconductor body |
CN101236981A (zh) * | 2007-01-30 | 2008-08-06 | 三星电子株式会社 | 包含有青色型和黄色型颜色特性的像素的彩色图像传感器 |
US20130193308A1 (en) * | 2011-12-21 | 2013-08-01 | Arizona State | Multiband Photodetector Utilizing Unipolar and Bipolar Devices |
CN103247637A (zh) * | 2013-04-27 | 2013-08-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | 红外探测器及其制作方法 |
-
2020
- 2020-08-26 CN CN202010874279.1A patent/CN111952403B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1298483A (zh) * | 1998-04-24 | 2001-06-06 | 福维昂公司 | 使用三阱结构的有源像素单元成像矩阵中的颜色分离 |
US20070241260A1 (en) * | 2004-09-30 | 2007-10-18 | Osram Opto Semiconductors Gmbh | Radiation detector with an epitaxially grown semiconductor body |
CN101236981A (zh) * | 2007-01-30 | 2008-08-06 | 三星电子株式会社 | 包含有青色型和黄色型颜色特性的像素的彩色图像传感器 |
US20130193308A1 (en) * | 2011-12-21 | 2013-08-01 | Arizona State | Multiband Photodetector Utilizing Unipolar and Bipolar Devices |
CN103247637A (zh) * | 2013-04-27 | 2013-08-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | 红外探测器及其制作方法 |
Non-Patent Citations (2)
Title |
---|
CHAO XIE: ""High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate"", 《NANOSCALE》 * |
D.KNIPP: ""Four terminal color detector for digital signal processing"", 《JOURNAL OF NON-CRYSTALLINE SOLIDS》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113437106A (zh) * | 2021-06-30 | 2021-09-24 | 合肥工业大学 | 一种基于二硒化钯/薄锗肖特基结的颜色探测系统及其制备方法 |
CN115050845A (zh) * | 2022-04-15 | 2022-09-13 | 西北工业大学 | 一种基于沟道材料的半导体器件、制备方法和用途 |
CN115050845B (zh) * | 2022-04-15 | 2024-01-23 | 西北工业大学 | 一种基于沟道材料的半导体器件、制备方法和用途 |
Also Published As
Publication number | Publication date |
---|---|
CN111952403B (zh) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | Performance analysis of RF-sputtered ZnO/Si heterojunction UV photodetectors with high photo-responsivity | |
CN110444618B (zh) | 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法 | |
CN109461789B (zh) | 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法 | |
CN111682088A (zh) | 一种基于范德华异质结的隧穿型光电探测器及其制备方法 | |
CN111952403B (zh) | 一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器及其制备方法 | |
CN111613691B (zh) | 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法 | |
CN110459548B (zh) | 一种基于范德瓦尔斯异质结的光电探测器及其制备方法 | |
Gwozdz et al. | Deep traps in the ZnO nanorods/Si solar cells | |
Şakar et al. | Ultraviolet and visible photo-response of transparent conductive Al-doped ZnO (AZO)/n-Silicon isotype heterojunction device | |
CN110190150B (zh) | 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法 | |
Huang et al. | Dual functional modes for nanostructured p-Cu2O/n-Si heterojunction photodiodes | |
CN111081806A (zh) | 一种基于超短沟道石墨烯的光电探测器及其制备方法 | |
Jamarkattel et al. | Ultra-thin and lightweight CdS/CdTe solar cell fabricated on ceramic substrate for space applications | |
CN106098804B (zh) | 石墨烯/氧化锌单晶基片肖特基结紫外光电探测器及其制备方法 | |
CN111063751B (zh) | 一种超薄无机窄带异质结光电探测器及其制备方法 | |
CN107706260A (zh) | 一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法 | |
CN111952401B (zh) | 一种基于范德瓦尔斯异质结的颜色探测器及其制备方法 | |
CN114420784B (zh) | 一种基于二硒化铂和硅的异质结结构及光电探测器、及其制备方法 | |
CN114695430A (zh) | 双极性响应双色探测器、其制备方法及应用 | |
CN111952402B (zh) | 一种基于石墨烯/超薄硅/石墨烯异质结的颜色探测器及其制备方法 | |
Teker et al. | Improving detectivity of self-powered GaN ultraviolet photodetector by nickel nanoparticles | |
CN111947792B (zh) | 一种基于二硒化钯/超薄硅/二硒化钯肖特基结的颜色探测系统及其制备方法 | |
Suntao et al. | Measurement and analysis of the characteristic parameters for the porous silicon/silicon using photovoltage spectra | |
TWI841366B (zh) | 雙波段薄膜電晶體檢光器 | |
CN117936648B (zh) | 钒氧化物纳米带/硅异质结及其制备方法和在光电探测器中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |