CN111951987B - Small modular reactor coolant system and experimental method applying same - Google Patents
Small modular reactor coolant system and experimental method applying same Download PDFInfo
- Publication number
- CN111951987B CN111951987B CN202010923117.2A CN202010923117A CN111951987B CN 111951987 B CN111951987 B CN 111951987B CN 202010923117 A CN202010923117 A CN 202010923117A CN 111951987 B CN111951987 B CN 111951987B
- Authority
- CN
- China
- Prior art keywords
- coolant
- air
- pipeline
- gas
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002826 coolant Substances 0.000 title claims abstract description 167
- 238000002474 experimental method Methods 0.000 title claims description 18
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 72
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 72
- 239000007788 liquid Substances 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 18
- 238000012546 transfer Methods 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 4
- 238000005192 partition Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 44
- 238000011160 research Methods 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/24—Promoting flow of the coolant
- G21C15/243—Promoting flow of the coolant for liquids
- G21C15/247—Promoting flow of the coolant for liquids for liquid metals
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
- G21C17/02—Devices or arrangements for monitoring coolant or moderator
- G21C17/022—Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
- G21C17/025—Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators for monitoring liquid metal coolants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
技术领域technical field
本发明涉及核能领域,具体涉及一种小型模块化反应堆冷却剂系统。The invention relates to the field of nuclear energy, in particular to a small modular reactor coolant system.
背景技术Background technique
随着能源需求的不断增长,环保意识的不断加强,核反应堆的作用愈加突出。核反应堆的快速发展也对反应堆冷却剂的导热效率以及反应堆的安全性提出了挑战。从目前来看,国际上的大部分核反应堆都是压水堆,是以水作为反应堆堆芯冷却剂的堆型,但近些年来以液态金属作为反应堆堆芯冷却剂的研究正在不断地进行中。液态金属冷却剂反应堆相对于压水堆,具有更好的自然循环能力、更大的功率密度,低压下运行,具有更好的固有安全性,体积更小,系统更紧凑。以金属钠、铅以及铅铋合金三种金属作为反应堆堆芯冷却剂的研究最为丰富,但却少有以液态金属镓作为反应堆堆芯冷却剂的研究,更没有在液体金属镓中添加少量气体后的循环能力、导热性能等方面的研究。With the continuous growth of energy demand and the continuous strengthening of environmental protection awareness, the role of nuclear reactors has become more and more prominent. The rapid development of nuclear reactors also poses challenges to the thermal conductivity of the reactor coolant and the safety of the reactor. From the current point of view, most of the nuclear reactors in the world are pressurized water reactors, which use water as the reactor core coolant. However, in recent years, the research on the use of liquid metal as the reactor core coolant is constantly being carried out. . Compared with pressurized water reactors, liquid metal coolant reactors have better natural circulation capability, greater power density, operate at low pressure, have better inherent safety, smaller size and more compact system. The research on the three metals sodium metal, lead and lead-bismuth alloy as the reactor core coolant is the most abundant, but there is little research on the use of liquid metal gallium as the reactor core coolant, and no small amount of gas is added to the liquid metal gallium. After the cycle capacity, thermal conductivity and other aspects of research.
为了提高反应堆的灵活性,小型模块化反应堆正在快速发展,它具有一体化设计、模块式安装、安全性高、适用性广、建设周期短和一次性投资低等优点,而将液态金属镓和小型模块化反应堆结合起来的方案也将是未来发展的重点,在此基础上,研究获取以液态金属镓为冷却剂的模块化反应堆的相关参数,尤其是冷却剂性能方面的研究显得尤为重要。In order to improve the flexibility of the reactor, small modular reactors are developing rapidly, which have the advantages of integrated design, modular installation, high safety, wide applicability, short construction period and low one-time investment. The scheme of combining small modular reactors will also be the focus of future development. On this basis, it is particularly important to study and obtain the relevant parameters of modular reactors using liquid metal gallium as the coolant, especially the research on the performance of the coolant.
由于上述原因,本发明人对现有的反应堆冷却剂性能研究方案做了深入研究,以期待设计出一种能够解决上述问题的用以研究液态金属镓冷却剂循环能力、导热性能的小型模块化反应堆冷却剂系统。Due to the above reasons, the inventors have conducted in-depth research on the existing research plans for the performance of the reactor coolant, expecting to design a small modular system for studying the circulation capability and thermal conductivity of the liquid metal gallium coolant that can solve the above problems. Reactor coolant system.
发明内容SUMMARY OF THE INVENTION
为了克服上述问题,本发明人进行了锐意研究,设计出一种小型模块化反应堆冷却剂系统,该系统中通过液态金属镓作为冷却剂,在冷却剂中添加一定量的气体,通过气体增加液态镓金属的自然循环能力,也能增加其扰动,加强换热效果;通过该系统能够反复增加或减少液态镓金属,也能够任意增加或减少其中掺杂的气体,调整气压,记录分析各种状况下液态镓金属的换热能力及自然循环能力,为搭建灵活多样的小型模块化反应堆提供基础数据,从而完成本发明。In order to overcome the above-mentioned problems, the inventors have carried out keen research and designed a small modular reactor coolant system. In the system, liquid metal gallium is used as the coolant, a certain amount of gas is added to the coolant, and the liquid metal is added to the coolant through the gas. The natural circulation ability of gallium metal can also increase its disturbance and enhance the heat transfer effect; through this system, the liquid gallium metal can be repeatedly increased or decreased, and the doped gas can also be arbitrarily increased or decreased, the air pressure can be adjusted, and various conditions can be recorded and analyzed. The heat transfer capability and natural circulation capability of the lower liquid gallium metal provide basic data for building flexible and diverse small modular reactors, thereby completing the present invention.
具体来说,本发明的目的在于提供一种小型模块化反应堆冷却剂系统,该系统包括反应堆压力容器、主泵和进气箱;Specifically, an object of the present invention is to provide a small modular reactor coolant system including a reactor pressure vessel, a main pump and an intake tank;
其中,在所述反应堆压力容器的壁面上设置有冷却剂入口和冷却剂出口;Wherein, a coolant inlet and a coolant outlet are arranged on the wall of the reactor pressure vessel;
在所述反应堆压力容器内部下方设置有堆芯,在所述反应堆压力容器内部上方设置有蒸汽发生器,A reactor core is arranged below the inside of the reactor pressure vessel, and a steam generator is arranged above the inside of the reactor pressure vessel,
所述主泵的出液口通过冷却剂管道连通至冷却剂入口,所述主泵的进液口通过冷却剂管道连通至冷却剂出口;The liquid outlet of the main pump is connected to the coolant inlet through the coolant pipeline, and the liquid inlet of the main pump is connected to the coolant outlet through the coolant pipeline;
所述进气箱通过抽气泵与所述冷却剂管道连通。The intake box is communicated with the coolant pipe through an air extraction pump.
其中,在所述反应堆压力容器内部下方,在堆芯周围设置有冷却剂下降环段,所述冷却剂下降环段一端与至冷却剂入口连通,所述冷却剂下降环段另一端连通至反应堆压力容器底部,Wherein, below the reactor pressure vessel, a coolant descending ring segment is arranged around the core, one end of the coolant descending ring segment is connected to the coolant inlet, and the other end of the coolant descending ring segment is connected to the reactor the bottom of the pressure vessel,
在所述堆芯中设置有供冷却剂流过的通道,该通道从反应堆压力容器底部连通至蒸汽发生器,The core is provided with passages through which the coolant flows, the passages communicating from the bottom of the reactor pressure vessel to the steam generator,
在所述蒸汽发生器中设置有换热管,A heat exchange tube is provided in the steam generator,
该换热管一端与堆芯中的通道连通,另一端与冷却剂出口连通。One end of the heat exchange tube is communicated with the channel in the core, and the other end is communicated with the coolant outlet.
其中,所述换热管为螺旋换热管,在所述换热管的外表面设置有传热翅片。Wherein, the heat exchange tube is a spiral heat exchange tube, and heat transfer fins are provided on the outer surface of the heat exchange tube.
其中,该系统还包括稳压罐和储气罐,Among them, the system also includes a surge tank and a gas storage tank,
所述稳压罐中设置有密封隔板,该密封隔板能够在稳压罐中往复移动,且保持与稳压罐内壁之间密封接触;The pressure-stabilizing tank is provided with a sealing baffle, and the sealing baffle can move back and forth in the pressure-stabilizing tank and maintain a sealed contact with the inner wall of the pressure-stabilizing tank;
所述密封隔板将所述稳压罐分隔为位于下方的气腔和位于上方的混合腔;The sealing partition divides the surge tank into a lower air chamber and an upper mixing chamber;
所述气腔与冷却剂管道连通;the air cavity is in communication with the coolant pipe;
所述混合腔与储气罐连通。The mixing chamber is communicated with the gas storage tank.
其中,所述储气罐还与进气箱3连通;Wherein, the air storage tank is also communicated with the air intake box 3;
优选地,在连通储气罐和混合腔的管道上设置有增压系统,在连通储气罐和进气箱的管道上也设置有增压系统;Preferably, a pressurization system is provided on the pipeline connecting the air storage tank and the mixing chamber, and a pressurizing system is also provided on the pipeline connecting the air storage tank and the intake box;
优选地,所述增压系统包括增压泵和压缩机。Preferably, the booster system includes a booster pump and a compressor.
其中,所述增压系统用于控制气腔中的气压值,进而控制混合腔中的气压值。Wherein, the pressurization system is used to control the air pressure value in the air chamber, and then control the air pressure value in the mixing chamber.
其中,所述抽气泵用于将进气箱中的气体输送至冷却剂管道中;Wherein, the suction pump is used to transport the gas in the intake box to the coolant pipeline;
所述抽气泵还用于将冷却剂管道中的气体输送至进气箱中。The suction pump is also used to deliver the gas in the coolant pipeline to the intake tank.
其中,该系统还包括液态金属镓储存罐,Among them, the system also includes a liquid metal gallium storage tank,
所述液态金属镓储存罐与冷却剂管道连通,在连通管道上设置有进料泵和阀门。The liquid metal gallium storage tank is communicated with a coolant pipeline, and a feed pump and a valve are arranged on the communication pipeline.
优选地,所述进料泵用于将液态镓从液态金属镓储存罐泵入到冷却剂管道中,Preferably, the feed pump is used to pump the liquid gallium from the liquid metal gallium storage tank into the coolant pipeline,
所述进料泵还用于将液态镓从冷却剂管道泵入到液态金属镓储存罐中。The feed pump is also used to pump the liquid gallium from the coolant line into the liquid metal gallium storage tank.
其中,在液态金属镓储存罐中设置有加热器,Among them, a heater is arranged in the liquid metal gallium storage tank,
通过该加热器持续给液态金属镓储存罐中存储的金属镓加热,使得金属镓的温度维持在30摄氏度以上,金属镓处于液态。The metal gallium stored in the liquid metal gallium storage tank is continuously heated by the heater, so that the temperature of the metal gallium is maintained above 30 degrees Celsius, and the metal gallium is in a liquid state.
本发明还提供一种获知液态镓换热性能的实验方法,该方法是通过文所述的小型模块化反应堆冷却剂系统实现的;The present invention also provides an experimental method for obtaining the heat transfer performance of liquid gallium, which is realized by the small modular reactor coolant system described herein;
优选地,该方法包括实验准备过程、实验过程和实验间期处理过程:Preferably, the method includes an experimental preparation process, an experimental process and an inter-experiment processing process:
所述实验准备过程包括如下子步骤:The experimental preparation process includes the following sub-steps:
子步骤1,启动进料泵91,将液态金属镓注入到冷却剂管道4内;
子步骤2,打开储气罐7与进气箱3之间的增压系统8,将气体泵入进气箱3内,再打开抽气泵5,将气体泵入冷却剂管道4中;
子步骤3,打开稳压罐6与储气罐7之间的增压系统8,控制稳压罐6内密封隔板61上方气腔62的气体压力,从而将冷却剂管道4中的气体压力调整到实验预设气压值,直至冷却剂管道4内的压力与气体量满足要求;Sub-step 3, open the
所述实验过程包括如下子步骤:The experimental process includes the following sub-steps:
子步骤a,启动主泵2,使金属镓冷却剂在冷却剂管道4中循环;Sub-step a, start the
子步骤b,当冷却剂循环稳定后,启动反应堆堆芯,使反应堆正常工作;Sub-step b, when the coolant circulation is stable, start the reactor core to make the reactor work normally;
所述实验间期处理过程包括如下子步骤:The inter-experiment processing process includes the following sub-steps:
子步骤甲,通过抽气泵5将冷却剂管道4中的气体抽取到进气箱中;Sub-step A, the gas in the
子步骤乙,启动主泵2促进冷却剂循环,并开启堆芯,确保冷却剂管道中液态金属镓的温度维持在40度以上。Sub-step B, start the
本发明所具有的有益效果包括:The beneficial effects of the present invention include:
(1)根据本发明提供的小型模块化反应堆冷却剂系统及应用其的实验方法中通过向液态镓金属中添加气体来增加液态镓金属的自然循环能力,也能增加其扰动,加强换热效果;(1) In the small modular reactor coolant system provided by the present invention and the experimental method for applying the same, by adding gas to the liquid gallium metal to increase the natural circulation capacity of the liquid gallium metal, it can also increase its disturbance and enhance the heat exchange effect. ;
(2)根据本发明提供的小型模块化反应堆冷却剂系统及应用其的实验方法中能够随时调节冷却剂液态镓金属的使用量,从而在增加气体时,适当减小液态镓金属的用量;(2) According to the small modular reactor coolant system provided by the present invention and the experimental method for applying the same, the usage amount of the coolant liquid gallium metal can be adjusted at any time, so that when the gas is increased, the usage amount of the liquid gallium metal can be appropriately reduced;
(3)根据本发明提供的小型模块化反应堆冷却剂系统及应用其的实验方法中能够随时调节冷却剂中添加的气体量,以便于找到效果最佳的气体和冷却剂的组合比例。(3) According to the small modular reactor coolant system provided by the present invention and the experimental method using the same, the amount of gas added to the coolant can be adjusted at any time, so as to find the best combination ratio of gas and coolant.
附图说明Description of drawings
图1示出根据本发明一种优选实施方式的一种小型模块化反应堆冷却剂系统整体结构示意图。FIG. 1 shows a schematic diagram of the overall structure of a small modular reactor coolant system according to a preferred embodiment of the present invention.
附图标号说明:Description of reference numbers:
1-反应堆压力容器1 - Reactor pressure vessel
11-冷却剂入口11-Coolant inlet
12-冷却剂出口12 - Coolant outlet
13-堆芯13-core
14-蒸汽发生器14-Steam generator
2-主泵2-Main pump
3-进气箱3- Intake box
4-冷却剂管道4- Coolant piping
41-冷却剂下降环段41-Coolant drop ring section
42-换热管42-Heat exchange tube
5-抽气泵5-Aspiration pump
6-稳压罐6-Pressure tank
61-密封隔板61-Sealing diaphragm
62-气腔62-air chamber
63-混合腔63-Mixing chamber
7-储气罐7-Gas tank
8-增压系统8-Pressurization system
9-液态金属镓储存罐9-Liquid metal gallium storage tank
91-进料泵91-Feed pump
92-阀门92-valve
93-加热器93-Heater
具体实施方式Detailed ways
下面通过附图和实施例对本发明进一步详细说明。通过这些说明,本发明的特点和优点将变得更为清楚明确。The present invention will be further described in detail below through the accompanying drawings and embodiments. The features and advantages of the present invention will become more apparent from these descriptions.
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。The word "exemplary" is used exclusively herein to mean "serving as an example, embodiment, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments. While various aspects of the embodiments are shown in the drawings, the drawings are not necessarily drawn to scale unless otherwise indicated.
根据本发明提供的小型模块化反应堆冷却剂系统,如图1中所示,该系统包括反应堆压力容器1、主泵2和进气箱3。The small modular reactor coolant system provided according to the present invention, as shown in FIG. 1 , includes a
其中,在所述反应堆压力容器1的壁面上设置有冷却剂入口11和冷却剂出口12;Wherein, a
在所述反应堆压力容器1内部下方设置有堆芯13,在所述反应堆压力容器1内部上方设置有蒸汽发生器14,所述堆芯13用于给冷却剂加热,所述堆芯13能够在短时间内产生大量的热,提供极高的温度,可以用核反应堆燃料棒制作该堆芯,也可以采用常规能源制作堆芯。A
所述主泵2的出液口通过冷却剂管道4连通至冷却剂入口11,所述主泵2的进液口通过冷却剂管道4连通至冷却剂出口12;The liquid outlet of the
所述进气箱3通过抽气泵5与所述冷却剂管道4连通。The intake box 3 communicates with the
优选地,在所述反应堆压力容器1内部下方,在堆芯13周围设置有冷却剂下降环段41,所述冷却剂下降环段41一端与至冷却剂入口11连通,所述冷却剂下降环段41另一端连通至反应堆压力容器1底部。Preferably, below the interior of the
在所述堆芯13中设置有供冷却剂流过的通道,该通道从反应堆压力容器1底部连通至蒸汽发生器14,在所述蒸汽发生器14中设置有换热管42,该换热管一端与堆芯13中的通道连通,另一端与冷却剂出口12连通。The
通过上述设置,构成了冷却剂的闭环循环管道,冷却剂在主泵的驱动下,流经堆芯13获取热量,并将该热量携带至蒸汽发生器14,在蒸汽发生器处散热,再回流到主泵处,进行下一轮循环。Through the above arrangement, a closed-loop circulation pipeline of the coolant is formed, and the coolant flows through the core 13 to obtain heat under the driving of the main pump, and carries the heat to the steam generator 14, where the heat is dissipated, and then flows back to the steam generator. to the main pump for the next cycle.
优选地,所述反应堆压力容器1可以设置成任意大小,其中的冷却剂管道4的孔径可以为1cm到100cm,其管型可以为圆形管、方形管或者菱形管,优选地,却剂管道的进口温度为200℃到300℃,出口温度为400℃到500℃。Preferably, the
在一个优选的实施方式中,所述换热管42为螺旋换热管,在所述换热管42的外表面设置有传热翅片。通过设置为螺旋换热管来增加换热面积,提高换热效率,在此基础上进一步设置传热翅片能够进一步增强换热能力,确保及时地将反应堆产生的热量传导到给水或蒸汽等二回路冷却剂。In a preferred embodiment, the
优选地,冷却剂通道与换热管的材质选则为耐腐蚀性优良的材质,从而避免金属镓的腐蚀。Preferably, the material of the coolant channel and the heat exchange tube is selected from a material with excellent corrosion resistance, so as to avoid corrosion of metal gallium.
在一个优选的实施方式中,该系统还包括稳压罐6和储气罐7,所述稳压罐6中设置有密封隔板61,该密封隔板61能够在稳压罐6中往复移动,且保持与稳压罐6内壁之间密封接触;In a preferred embodiment, the system further includes a
所述密封隔板61将所述稳压罐6分隔为位于下方的气腔62和位于上方的混合腔63;所述气腔62与冷却剂管道4连通;所述混合腔63与储气罐7连通。The sealing
通过该稳压罐6的设置,能够方便地控制冷却剂管道中的气体压力,进而获得不同气体压力情况下冷却剂的换热性能及自然循环能力。Through the arrangement of the
气体罐是稳压罐与进气箱的共用气源,简化了反应堆的设备,减小的反应堆的体积,简化了操作过程。The gas tank is the common gas source of the surge tank and the air intake box, which simplifies the equipment of the reactor, reduces the volume of the reactor, and simplifies the operation process.
优选地,为了记录所述冷却剂的换热性能及自然循环能力,在所述蒸汽发生器的二回路冷却剂处设置温度传感器和流量计,用以解算传递出来的热量。Preferably, in order to record the heat exchange performance and natural circulation capability of the coolant, a temperature sensor and a flow meter are provided at the secondary circuit coolant of the steam generator to calculate the transferred heat.
在实验过程中,可以在任意时刻突然关闭主泵,从而使得冷却剂失去主动流动的动力,此时冷却剂会执行自然循环流动,在气体的作用下该自然循环流动会加剧,记录此时的冷却剂的流动速度、传热效率等相关参数即可定量分析冷却剂的自然循环能力,通过调整更换气体和液体镓的比例,即可获得各种工况下的最优的性能参数。During the experiment, the main pump can be suddenly turned off at any time, so that the coolant loses the power of active flow. At this time, the coolant will perform a natural circulation flow, and the natural circulation flow will be intensified under the action of the gas. The flow rate, heat transfer efficiency and other related parameters of the coolant can quantitatively analyze the natural circulation capacity of the coolant. By adjusting the ratio of replacement gas and liquid gallium, the optimal performance parameters under various working conditions can be obtained.
在一个优选的实施方式中,所述储气罐7还与进气箱3连通;在连通储气罐7和混合腔63的管道上设置有增压系统8,In a preferred embodiment, the
在连通储气罐7和进气箱3的管道上也设置有增压系统8;A
优选地,所述增压系统8包括增压泵和压缩机。Preferably, the
所述增压系统8用于控制气腔62中的气压值,进而控制混合腔63中的气压值。该增压系统能够控制冷却剂管道中的气压,从而给出不同气压状况下的实验结果,为设计小型模块化反应堆压力提供数据基础。The
在一个优选的实施方式中,所述抽气泵5用于将进气箱3中的气体输送至冷却剂管道4中;所述抽气泵5还用于将冷却剂管道4中的气体输送至进气箱3中,即通过该抽气泵能够控制冷却剂管道中气体含量,为多次反复实验提供数据基础;本申请中所述气体为惰性气体,如氦气、氮气和氩气等气体,也可以是氦气、氮气和氩气的混合气体。In a preferred embodiment, the
在一个优选的实施方式中,该系统还包括液态金属镓储存罐9,所述液态金属镓储存罐9与冷却剂管道4连通,在连通管道上设置有进料泵91和阀门92。In a preferred embodiment, the system further includes a liquid metal gallium storage tank 9, the liquid metal gallium storage tank 9 communicates with the
优选地,所述进料泵91用于将液态镓从液态金属镓储存罐9泵入到冷却剂管道4中,Preferably, the
所述进料泵91还用于将液态镓从冷却剂管道4泵入到液态金属镓储存罐9中。通过设置该进料泵91和态金属镓储存罐9能够随时向冷却剂管道中补充冷却剂,或者从冷却剂管道中收回冷却剂,从而方便地调节冷却剂管道中冷却剂的量。The
在一个优选的实施方式中,在液态金属镓储存罐9中设置有加热器93,In a preferred embodiment, a
通过该加热器93持续给液态金属镓储存罐9中存储的金属镓加热,使得金属镓的温度维持在30摄氏度以上,金属镓处于液态,优选地,通过加热器93控制液态金属镓储存罐9中的金属镓温度维持在50摄氏度以上。The metal gallium stored in the liquid metal gallium storage tank 9 is continuously heated by the
本发明还提供一种获知液态镓换热性能的实验方法,该方法是通过上文所述的小型模块化反应堆冷却剂系统实现的;The present invention also provides an experimental method for obtaining the heat transfer performance of liquid gallium, which is realized by the above-mentioned small modular reactor coolant system;
优选地,该方法包括实验准备过程、实验过程和实验间期处理过程:Preferably, the method includes an experimental preparation process, an experimental process and an inter-experiment processing process:
实验准备过程:启动进料泵91,将液态金属镓注入到冷却剂管道4内,待注入量满足实验要求时,打开储气罐7与进气箱3之间的增压系统8,将气体泵入进气箱3内,再打开抽气泵5,将适量气体泵入冷却剂管道4中,然后打开稳压罐6与储气罐7之间的增压系统8,控制稳压罐6内密封隔板61上方气腔62的气体压力,从而将冷却剂管道4中的气体压力调整到实验预设气压值。当冷却剂管道4内的压力与气体量满足要求后,关闭输送金属镓的阀门92,同时关闭抽气泵5和冷却剂管道4之间的气阀。Experiment preparation process: start the
实验过程:启动主泵2,使金属镓冷却剂在冷却剂管道4中循环,当冷却剂循环稳定后,启动反应堆堆芯,使反应堆正常工作。Experimental process: Start the
优选地,在反应堆正常工作时,冷却剂将由主泵推动,流经冷却剂下降环段41,在反应堆压力容器1底部汇集,再转向向上流经堆芯13,吸收堆芯13的热量后继续向上流动,在流经蒸汽发生器14时通过换热管进行热量的交换,降低温度后的冷却剂从蒸汽发生器14流出,再次流入主泵2完成一次循环。Preferably, when the reactor is working normally, the coolant will be pushed by the main pump, flow through the coolant
在实验过程中,在反应堆正常工作后,观察记录冷却剂的流动速度、传热效率、冷却剂管道中气压等数据,用以判断反应堆正常工作时冷却剂的工作性能;During the experiment, after the reactor is working normally, observe and record data such as the flow rate of the coolant, heat transfer efficiency, air pressure in the coolant pipeline, etc., to judge the working performance of the coolant when the reactor is working normally;
停止主泵2,继续记录冷却剂的流动速度、传热效率、冷却剂管道中气压等数据,用以判断发生故障时冷却剂自然循环流动能力。Stop the
实验间期处理过程,通过抽气泵5将冷却剂管道4中的气体抽取到进气箱中;During the treatment process between experiments, the gas in the
通过进料泵将冷却剂管道4中的液态金属镓抽取到液态金属镓储存罐中,或者启动主泵2促进冷却剂循环,并小幅度开启堆芯,确保冷却剂管道中液态金属镓的温度维持在40度以上。The liquid metal gallium in the
以上结合了优选的实施方式对本发明进行了说明,不过这些实施方式仅是范例性的,仅起到说明性的作用。在此基础上,可以对本发明进行多种替换和改进,这些均落入本发明的保护范围内。The present invention has been described above with reference to the preferred embodiments, but these embodiments are only exemplary and serve only for illustrative purposes. On this basis, various substitutions and improvements can be made to the present invention, which all fall within the protection scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010923117.2A CN111951987B (en) | 2020-09-04 | 2020-09-04 | Small modular reactor coolant system and experimental method applying same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010923117.2A CN111951987B (en) | 2020-09-04 | 2020-09-04 | Small modular reactor coolant system and experimental method applying same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111951987A CN111951987A (en) | 2020-11-17 |
CN111951987B true CN111951987B (en) | 2022-07-29 |
Family
ID=73356123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010923117.2A Active CN111951987B (en) | 2020-09-04 | 2020-09-04 | Small modular reactor coolant system and experimental method applying same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111951987B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117174349A (en) * | 2022-05-27 | 2023-12-05 | 上海交通大学 | Gallium metal-cooled megawatt-scale small modular nuclear reactor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130012907A (en) * | 2011-07-26 | 2013-02-05 | 국립대학법인 울산과학기술대학교 산학협력단 | Gallium-cooled passive decay heat removal system for nuclear power generation |
CN103021483B (en) * | 2012-12-31 | 2015-08-19 | 中国科学院合肥物质科学研究院 | A kind of auxiliary heating system for liquid metal cooling natural circulation reactor |
RU2691755C2 (en) * | 2017-07-24 | 2019-06-18 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Method of natural circulation of a liquid metal coolant of a fast neutron reactor |
CN210805248U (en) * | 2019-08-27 | 2020-06-19 | 华南理工大学 | Fast neutron reactor using gallium metal as coolant |
-
2020
- 2020-09-04 CN CN202010923117.2A patent/CN111951987B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111951987A (en) | 2020-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110498393B (en) | Hydrogen generation device and method based on pressure control and fuel cell system | |
CN206207766U (en) | A kind of fused salt salt dissolving system of use line-focusing solar thermal-arrest | |
CN106276790B (en) | Normal pressure hydrogen making reaction device and hydrogen fuel cell power supply system | |
CN108123162B (en) | Fuel cell power generation system using liquid hydrogen as fuel | |
WO2022166031A1 (en) | Packed bed-based compressed air energy storage system and method | |
CN108286799B (en) | High-power liquid metal sodium heating system and adjusting method thereof | |
CN109958882A (en) | A kind of water electrolysis hydrogen production and alloy hydrogen storage integrated control system | |
CN111951987B (en) | Small modular reactor coolant system and experimental method applying same | |
CN108123163A (en) | A kind of high-energy-density aviation fuel cell power generating system and control method | |
CN110265691A (en) | A controllable water-interpreted hydrogen supply integrated system suitable for fuel cells | |
CN105423791A (en) | Adjustable chemical heat storage system | |
CN108317767A (en) | One proton exchanging film fuel battery afterheat utilizing system and method | |
WO2023207015A1 (en) | Pumped-hydro compressed isobaric-release air energy storage system and method | |
CN111754848B (en) | Experimental device and method for researching flow heat exchange characteristic of ultrahigh-temperature rare gas | |
CN117187834A (en) | A combined solar thermal and power hydrogen production system based on solid oxide electrolytic cell | |
CN215981985U (en) | Electrical heating type metal hydrogen storage and release system | |
JPS59500080A (en) | energy conversion system | |
CN213303662U (en) | Small-size modular reactor cooling system for experiments | |
CN116624749A (en) | A physical heat storage solid-state hydrogen storage device | |
CN220083698U (en) | Graphitization furnace cooling system | |
CN220692070U (en) | Solid-state hydrogen storage device capable of utilizing waste heat | |
CN212907809U (en) | Hydrogen path heating device for hydrogen fuel cell engine system | |
CN218295685U (en) | Electromagnetic heating steam generator | |
CN113437331B (en) | Heat exchange amount adjustable fuel cell thermal management system and control method | |
CN112032554B (en) | Passive natural circulation lead-bismuth aeration device and aeration method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |