CN111944522B - 一种单组分碳基固态白色发光纳米材料的制备方法及其应用 - Google Patents

一种单组分碳基固态白色发光纳米材料的制备方法及其应用 Download PDF

Info

Publication number
CN111944522B
CN111944522B CN202010737485.8A CN202010737485A CN111944522B CN 111944522 B CN111944522 B CN 111944522B CN 202010737485 A CN202010737485 A CN 202010737485A CN 111944522 B CN111944522 B CN 111944522B
Authority
CN
China
Prior art keywords
carbon
nano material
preparation
based solid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010737485.8A
Other languages
English (en)
Other versions
CN111944522A (zh
Inventor
瞿建
张鑫
余叶剑
薛鑫
张波
唐志远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202010737485.8A priority Critical patent/CN111944522B/zh
Publication of CN111944522A publication Critical patent/CN111944522A/zh
Application granted granted Critical
Publication of CN111944522B publication Critical patent/CN111944522B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开一种单组分碳基固态白色发光纳米材料的制备方法,包括如下步骤:(1)将三嗪衍生物与多羧酸衍生物在溶剂中搅拌均匀,得到溶液;(2)将步骤(1)中所得溶液转移至反应釜中,密封;然后在烘箱中高温反应,反应后自然冷却至室温,过滤,得到的沉淀先水洗后乙醇洗,固液分离后将沉淀干燥,所得粉体即为碳基固态白色发光纳米材料。本发明所选碳源所得碳材料微结构为纳米花状结构,有效避免固态因碳纳米聚集引起光学猝灭现象,从而实现碳纳米材料固态发光;且本发明制备方法简便,无需高速离心、低温冻干等析出步骤,制备出的单组分碳基LED具有低自吸收、组分不易分离、组装简便、低毒环保优势。

Description

一种单组分碳基固态白色发光纳米材料的制备方法及其应用
技术领域
本发明属于材料领域,具体涉及一种单组分碳基固态白色发光纳米材料的制备方法及其应用。
背景技术
白光LED作为第四代照明电器具有节能环保、使用寿命长、高效等特点,在室内照明、道路照明、汽车照明等领域获得了广泛应用。目前获得白光LED的方式主要通过在紫外或蓝色LED芯片上涂覆不同发射波长的含金属离子的多组分荧光粉,通过三基色混合得到白光。但多组分混合易导致自吸收、组分分离、构造复杂、稳定性差、有毒金属离子的引入等问题,限制了其应用。
碳纳米材料是最近几年发展起来的一种新型光学材料,其光稳定性好,耐光漂白、发射及激发波长可调、低毒、易制备等优势,在生物医学、光电器件等领域具有广阔的应用前景。然而目前已有的碳纳米材料发光大多以蓝绿光区域单色光为主,且发光现象仅仅存在于溶液态。当其干燥成固体时,因碳核间的π电子堆积效应,荧光常发生猝灭,极大地限制了碳纳米材料在固态发光领域的应用。
CN201910091560.5公开了一种红色固态荧光碳点及其制备方法和应用。该制备方法是以芳香族的酸与胺为原料,通过一步水热法直接合成碳量子点,碳量子点粉末的产率为44.89%~75.80%,量子效率为2.54%~15.86%。红色荧光有机玻璃是通过本体聚合法制备PMMA,在PMMA预聚的过程中,掺入质量分数1%~30%的碳量子点粉末组装而成的。其为红色固态荧光碳点,且其形貌为准球形。
CN201911008167.1公开了单组分白光碳量子点量子点及其制备方法,其包含C=O键、C=C键、C=N键、C-O-C键和C-N键;受380nm紫外光激发时,产生分别位于400~500nm、500~600nm和600~700nm的三个发射峰。本发明以柠檬酸为碳源,甲酰胺为氮源,乙醇为溶剂,利用柠檬酸和甲酰胺在溶剂热作用下发生的脱水缩合反应,一步法直接合成了在单一紫外光波长激发下同时发射蓝绿红三基色光产生白光的碳量子点,未发生由团聚引起的荧光猝灭,发光效能稳定,有效弥补了传统荧光粉使用寿命不长和缺乏红光显色指数低的缺点。但其后处理方法为混合加热后取滤液,滤液再用乙醇分散、14000rpm离心,随后再在-55℃下冻干。流程较为繁琐,且需要高速离心和低温冻干。因为产物在滤液中,面临去除溶剂的问题,如果直接用烘箱把乙醇加热去除,一是危险,二是不便于工业生产;三是其产物在溶剂中加热的情况下存在继续反应的可能,从而改变发光性质,甚至发生团聚发光猝灭。所以该方法需要用到碳点去除溶剂的常用方法,即利用冻干机在-50度左右的温度进行原位冻干,从而得到粉末。
想要获得单组分碳基固态白色发光纳米材料仍然面临着巨大挑战。多组分的白光材料因由多个不同发光颜色的组分通过比例调配得到最终的白色,长时间使用会导致组分和组分之间分离、且多组分间易互相吸收他组发光现象,因为组分多需要进行各种不同发光粉末的比例调配,且在涂覆在LED芯片时需要各组分按照比例附着,组装不够简便。
另外,碳材料的合成主要区别就在于所选择的碳源和反应温度等条件,所选碳源不同,在水热过程中缩合、碳化后导致材料的掺杂元素、碳核外围官能团、颗粒大小不一致,最终形成不同磁、光、电性质;同时在某些立体微结构中,当改变碳源或投料比或温度均会改变立体结构,而为点状或球状结构,且发光颜色多为单一的蓝光、绿光或者黄光。
发明内容
发明目的:为了克服现有白光材料中存在的多组分混合易导致自吸收、组分分离、构造复杂、稳定性差、重金属掺杂的不足及碳纳米材料固态发光猝灭的现象,本发明提供一种单组分碳基固态白光碳纳米材料的制备方法及其应用。
为实现上述目的,本发明的技术方案如下:
一种单组分碳基固态白色发光纳米材料的制备方法,包括如下步骤:
(1)将三嗪衍生物与多羧酸衍生物在溶剂中搅拌均匀,得到溶液;
(2)将步骤(1)中所得溶液转移至反应釜中,密封;然后在烘箱中高温反应反应后自然冷却至室温,过滤,得到的沉淀先水洗后乙醇洗,固液分离后将沉淀干燥,所得粉体即为碳基固态白色发光纳米材料。具体地,本发明方法中,通过将三嗪衍生物和多羧酸衍生物混合加热过滤,滤渣即为产物,基本不含溶剂,不会继续反应,直接烘干即可,对于本方法中的烘干条件不做特别设定,目的为烘干除水。
具体地,步骤(1)中所述的三嗪衍生物为三聚氰胺、三聚氰酸、2,4,6-三(2-吡啶基)三嗪、2,4-二氨基-1,3,5-三嗪、2,4,6-三(4-氨基苯基)-1,3,5-三嗪、2,4-二氨基-6-[4-(三氟甲基)苯基]-1,3,5-三嗪、2-氯-4,6-二氨-1,3,5-三嗪、2,4-二氨基-6-十一烷基-三嗪和环丙氨嗪中的任意一种。
所述多羧酸衍生物为柠檬酸、苹果酸、5-氨基-1,2,3-苯三羧酸、间苯二甲酸、邻苯二甲酸、对苯二甲酸、均苯三甲酸、1,2,4-丁烷三羧酸、丙三酸、1,3,5-三羧基戊烷、1,3,5-环己三羧酸、1,2,3,4-环丁烷四羧酸、1,2,3,4-丁烷四羧酸、1,2,3,4,5,6-环己烷六羧酸、4,4',4”-s-三嗪-2,4,6-三基-三苯甲酸、2,4,6-三[(对羧基苯基)氨基]-1,3,5-三嗪、葡萄糖醛酸和2-膦酸丁烷-1,2,4-三羧酸中的任意一种。
优选地,所述溶剂为水或乙醇。
优选地,步骤(2)中的反应釜为聚四氟乙烯内衬的高压反应釜。
优选地,步骤(2)中,在烘箱中200~240℃下反应4~9h。
进一步优选地,优选地,三嗪衍生物与多羧酸衍生物摩尔比为10:1~3:1。
步骤(2)中的过滤采用的滤纸为中速滤纸,孔径30~50μm。
其中,利用本发明方法制备的碳纳米材料的产率为61.25%-81.89%,发光量子产率为4.88%-30.96%,所述碳纳米材料的微结构为纳米花状结构。
本发明通过选择合适的碳源,利用高度对称的三嗪类衍生物能够促进其顶端胺基与相近的羧羧,尤其是对应的多支羧酸沿多个方向缩合自组装,呈立体结构,同时,三嗪衍生物的杂环中的N极易吸附水分子形成非冻结结合水,通过水分子形成分子间的强氢键作用,促进自组装及结构的稳定性。
本发明进一步提出了上述纳米材料在制备白光LED上的应用。
具体地,将制备得到的纳米材料与紫光LED芯片复配组装,可得单组分碳基白光LED。
有益效果:与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明采用一步法溶剂热制备白光碳纳米材料,绿色环保、经济便捷;
(2)本发明所选碳源所得碳材料微结构为纳米花状结构,有效避免固态因碳纳米聚集引起光学猝灭现象,从而实现碳纳米材料固态发光;
(3)本发明所述单组分碳基LED具有低自吸收、组分不易分离、组装简便、低毒环保优势。
附图说明
图1为实施例1制备的碳基纳米材料的透射电镜图片;
图2为实施例1制备的碳材料的发光光谱,插图为紫外灯照射下的发光照片;
图3为实施例1中碳纳米材料发光CIE色度图;
图4为实施例1中组装的白光LED接通电源前后发光图;
图5为实施例3制备的碳基纳米材料的透射电镜图片;
图6为实施例3制备的碳材料的发光光谱,插图为紫外灯照射下的发光照片;
图7为实施例3中碳纳米材料发光CIE色度图;
图8为实施例5制备的碳基纳米材料的透射电镜图片;
图9为实施例5制备的碳材料的发光光谱,插图为紫外灯照射下的发光照片;
图10为实施例5中碳纳米材料发光CIE色度图;
图11为对比例1制备的碳点材料的透射电镜图片;
图12为对比例1制备的碳点的溶液态发光光谱,插图为紫外灯照射下的溶液态及固态发光照片;
图13为对比例1中碳点发光CIE色度图;
图14为对比例2制备的碳点材料的透射电镜图片;
图15为对比例2制备的碳点的溶液态发光光谱,插图为紫外灯照射下的溶液态及固态发光照片。
图16为对比例2中碳点发光CIE色度图。
具体实施方式
下面结合具体实施例对本发明名做进一步详细说明。给出了详细的实施方式和具体的操作过程,实施例将有助于理解本发明,但是本发明的保护范围不限于下述的实施例。
实施例1
称取0.1134g三聚氰胺与0.0523g柠檬酸加入到15mL的水中,搅拌10min,将混合液转移到25mL反应釜中,密封,将其放入烘箱中,设温200℃反应4h。反应后自然冷却至室温,中速滤纸(孔径30-50μm)过滤,所得沉淀分别用10mL水洗涤三次,再经5mL乙醇洗涤三次,固液分离后,在50℃干燥2h,所得淡黄色粉体即为目标产物碳基固态白光碳纳米材料,产率80.46%,采用FLS980荧光光谱仪检测荧光量子产率,荧光量子产率为30.96%。将目标产物通过常规涂覆封装于紫外LED芯片表面,即可得到碳基白光LED。
图1为实施例1制备的碳基纳米材料的透射电镜图片。图中可见,获得的碳材料平均粒径为161nm,呈纳米花状,尺寸分布均匀。图2为实施例1制备的碳材料的发光光谱,发射波长为400-650nm,呈现三重发射峰。插图可见其在365nm紫外灯照射下显示出明显的白光发射。图3为实施例1中发光材料CIE色度图,其坐标在(0.35,0.35),色温为4580K。图4为实施例1中组装的白光LED接通电源前后发光图,可见其为均匀白光。
实施例2
称取0.1934g 2,4,6-三(4-氨基苯基)-1,3,5-三嗪与0.07235g间苯二甲酸加入到15mL的水中,搅拌10min,将混合液转移到25mL反应釜中,密封,将其放入烘箱中,设温220℃反应4h。反应后自然冷却至室温,中速滤纸过滤,所得沉淀分别用10mL水洗涤三次,再经5mL乙醇洗涤三次,50℃干燥2h,所得白色粉体即为目标碳基固态白光碳纳米材料,产率72.26%,采用FLS980荧光光谱仪检测荧光量子产率,荧光量子产率为15.88%。电镜表征表明呈纳米花状,尺寸分布均匀,组装的白光LED接通电源前后发光为均匀白光。
实施例3
称取0.1134g三聚氰胺与0.0823g苹果酸加入到15mL的水中,搅拌10min,将混合液转移到25mL反应釜中,密封,将其放入烘箱中,设温200℃反应4h。反应后自然冷却至室温,中速滤纸过滤,所得沉淀分别用10mL水洗涤三次,再经5mL乙醇洗涤三次,50℃干燥2h,所得淡黄色粉体即为目标碳基固态白光碳纳米材料,产率66.68%,采用FLS980荧光光谱仪检测荧光量子产率,荧光量子产率为19.36%。其表征结果图如图5~7所示,其中,图5为碳基纳米材料的透射电镜图片,图6为碳材料的发光光谱,插图为紫外灯照射下的发光照片,图7为碳纳米材料发光CIE色度图。电镜表征表明呈纳米花状,尺寸分布均匀,组装的白光LED接通电源前后发光为均匀白光。
实施例4
称取0.2835g 2,4,6-三(4-氨基苯基)-1,3,5-三嗪与0.0653g 2-膦酸丁烷-1,2,4-三羧酸加入到15mL的水中,搅拌10min,将混合液转移到25mL反应釜中,密封,将其放入烘箱中,设温200℃反应5h。反应后自然冷却至室温,中速滤纸过滤,所得沉淀分别用10mL水洗涤三次,再经5mL乙醇洗涤三次,50℃干燥2h,所得淡黄色粉体即为碳基固态白光碳纳米材料,产率68.57%,采用FLS980荧光光谱仪检测荧光量子产率,荧光量子产率为22.35%。电镜表征表明呈纳米花状,尺寸分布均匀,组装的白光LED接通电源前后发光为均匀白光。
实施例5
称取0.1552g 2-氯-4,6-二氨-1,3,5-三嗪与0.0728g 1,3,5-三羧基戊烷加入到15mL的水中,搅拌10min,将混合液转移到25mL反应釜中,密封,将其放入烘箱中,设温220℃反应6h。反应后自然冷却至室温,中速滤纸过滤,所得沉淀分别用10mL水洗涤三次,再经5mL乙醇洗涤三次,50℃干燥2h,所得白色粉体即为碳基固态白光碳纳米材料,产率65.58%,采用FLS980荧光光谱仪检测荧光量子产率,荧光量子产率为22.16%。其标准结果如图8~图10所示,其中,图8为碳基纳米材料的透射电镜图片,图9为碳材料的发光光谱,插图为紫外灯照射下的发光照片,图10为碳纳米材料发光CIE色度图。电镜表征表明呈纳米花状,尺寸分布均匀,组装的白光LED接通电源前后发光为均匀白光。
对比例1
称取0.1134g三聚氰胺与0.0523g柠檬酸加入到15mL的水中,搅拌10min,将混合液转移到25mL反应釜中,密封,将其放入烘箱中,设温180℃反应6h。反应后自然冷却至室温,呈白色透明溶液,溶液在紫外灯下显示强蓝色荧光,而经高速离心、冻干后所得固态粉末则无荧光,产率82.12%,采用FLS980荧光光谱仪检测其液态荧光量子产率,液态荧光量子产率为33.25%。其表征图如图11~13所示,其中,图11为碳点材料的透射电镜图片,图12为碳点的溶液态发光光谱,插图为紫外灯照射下的溶液态及固态发光照片,图13为碳点发光CIE色度图。电镜表征表明其形态为球形,尺寸分布均匀。
对比例2
称取0.1134g三聚氰胺与0.0542g双甘膦加入到15mL的水中,搅拌10min,将混合液转移到25mL反应釜中,密封,将其放入烘箱中,设温220℃反应6h。反应后自然冷却至室温,呈淡黄色透明溶液,溶液在紫外灯下显示绿色荧光,而经高速离心、冻干后所得固态粉末则无荧光,产率84.55%,采用FLS980荧光光谱仪检测其液态荧光量子产率,液态荧光量子产率为28.84%。其表征结果图如图14~16所示,其中,图14为碳点材料的透射电镜图片,图15为对比例2制备的碳点的溶液态发光光谱,插图为紫外灯照射下的溶液态及固态发光照片,图16为对比例2中碳点发光CIE色度图。电镜表征表明其形态为球形,尺寸分布均匀。
本发明通过选择合适的碳源,利用高度对称的三嗪类衍生物能够促进其顶端胺基与相近的羧羧,尤其是对应的多支羧酸沿多个方向缩合自组装,呈立体结构,同时,三嗪衍生物的杂环中的N极易吸附水分子形成非冻结结合水,通过水分子形成分子间的强氢键作用,促进自组装及结构的稳定性。
本发明提供了一种单组分碳基固态白光碳纳米材料的制备思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (6)

1.一种单组分碳基固态白色发光纳米材料的制备方法,其特征在于,包括如下步骤:
(1)将摩尔比为10 :1~3:1的三嗪衍生物与多羧酸衍生物在溶剂中搅拌均匀,得到溶液;
(2)将步骤(1)中所得溶液转移至反应釜中,密封,然后在烘箱中200~220℃下反应4-6h,反应后自然冷却至室温,过滤,得到的沉淀先水洗后乙醇洗,固液分离后将沉淀干燥,所得粉体即为碳基固态白色发光纳米材料;所述的三嗪衍生物为三聚氰胺、2,4,6-三(4-氨基苯基)-1,3,5-三嗪和2-氯-4,6-二氨-1,3,5-三嗪中的任意一种;所述多羧酸衍生物为柠檬酸、苹果酸、间苯二甲酸、1,3,5-三羧基戊烷和2-膦酸丁烷-1,2,4-三羧酸中的任意一种。
2.根据权利要求1所述的单组分碳基固态白色发光纳米材料的制备方法,其特征在于,所述溶剂为水或乙醇。
3.根据权利要求1所述的单组分碳基固态白色发光纳米材料的制备方法,其特征在于,步骤(2)中的反应釜为聚四氟乙烯内衬的高压反应釜。
4.根据权利要求1所述的单组分碳基固态白色发光纳米材料的制备方法,其特征在于,所述碳基固态白色发光纳米材料的微结构为纳米花状结构。
5.权利要求1-4任一项所述的制备方法制备得到的纳米材料在制备白光LED上的应用。
6.根据权利要求5所述的应用,其特征在于,将权利要求1-4任一项所述的制备方法制备得到的纳米材料与紫光LED芯片复配组装,可得单组分碳基白光LED。
CN202010737485.8A 2020-07-28 2020-07-28 一种单组分碳基固态白色发光纳米材料的制备方法及其应用 Active CN111944522B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010737485.8A CN111944522B (zh) 2020-07-28 2020-07-28 一种单组分碳基固态白色发光纳米材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010737485.8A CN111944522B (zh) 2020-07-28 2020-07-28 一种单组分碳基固态白色发光纳米材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN111944522A CN111944522A (zh) 2020-11-17
CN111944522B true CN111944522B (zh) 2022-11-08

Family

ID=73339732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010737485.8A Active CN111944522B (zh) 2020-07-28 2020-07-28 一种单组分碳基固态白色发光纳米材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111944522B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940717B (zh) * 2021-02-04 2022-11-25 南京邮电大学 一种主客体掺杂敏化型有机长余辉材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104909349A (zh) * 2015-05-27 2015-09-16 南昌大学 一种氮掺杂荧光碳点的制备方法
CN107619035A (zh) * 2017-11-09 2018-01-23 扬州大学 一种氮掺杂碳纳米材料的制备方法
CN108913132B (zh) * 2018-07-20 2020-08-04 江南大学 一种双发射碳基纳米探针的制备方法及其产物

Also Published As

Publication number Publication date
CN111944522A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
Zhu et al. Spectrally tunable solid state fluorescence and room‐temperature phosphorescence of carbon dots synthesized via seeded growth method
Yuan et al. Surface state modulation of red emitting carbon dots for white light-emitting diodes
Zhang et al. Self‐quenching‐resistant red emissive carbon dots with high stability for warm white light‐emitting diodes with a high color rendering index
CN108774511B (zh) 全无机钙钛矿量子点/介孔mof-5复合发光材料的制备及在led中的应用
Zhang et al. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs
CN109097038B (zh) 一种固态黄色荧光碳量子点及其制备方法
CN110205124B (zh) 一种荧光磷光双发射白光碳量子点及制备方法和应用
CN109294564B (zh) 一种wled荧光粉的制备方法和制得的荧光粉及其应用
CN113025316B (zh) 一种高量子产率铜纳米团簇荧光纳米花及其制备方法与在led中的应用
Yin et al. Yellow fluorescent graphene quantum dots as a phosphor for white tunable light-emitting diodes
Chen et al. A dual-emitting core–shell carbon dot–silica–phosphor composite for white light emission
Wang et al. A dual-emitting core–shell carbon dot–silica–phosphor composite for LED plant grow light
CN109825288A (zh) 一种红色固态荧光碳点及其制备方法和应用
CN111518556B (zh) 一种多彩荧光粉及其微波制备方法和应用
Wang et al. Boric Acid‐Activated Room‐Temperature Phosphorescence and Thermally Activated Delayed Fluorescence for Efficient Solid‐State Photoluminescence Materials
Zhang et al. Color tunable of Ln-MOFs (Ln= Tb, Eu) and excellent stability for white light-emitting diode
He et al. Tunable luminescence and morphological evolution of facile synthesized zinc borate/carbon dots composites for NUV-WLEDs
CN110343521B (zh) 一种热响应磷光材料、其制备方法与应用
CN111944522B (zh) 一种单组分碳基固态白色发光纳米材料的制备方法及其应用
CN110734764A (zh) 一种微波加热快速制备碳氧共掺杂氮化硼室温磷光材料的方法
CN109439322A (zh) 一种含碳光致发黄光晶体的制备方法及其在白光led中的应用
CN108659843B (zh) 一种防伪标签材料
Lu et al. Combination of chemical etching of gold nanoclusters with aggregation-induced emission for preparation of new phosphors for the development of UV-driven phosphor-converted white light-emitting diodes
CN108358957B (zh) 一种发白光的稀土-高分子纳米球的制备方法
CN113025325B (zh) 一种单激发源下变色的室温磷光碳基复合材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant