CN111944152A - 一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备与应用 - Google Patents

一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备与应用 Download PDF

Info

Publication number
CN111944152A
CN111944152A CN202010658603.6A CN202010658603A CN111944152A CN 111944152 A CN111944152 A CN 111944152A CN 202010658603 A CN202010658603 A CN 202010658603A CN 111944152 A CN111944152 A CN 111944152A
Authority
CN
China
Prior art keywords
cdte
cdse
qds
mips
molecularly imprinted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010658603.6A
Other languages
English (en)
Other versions
CN111944152B (zh
Inventor
周敏
陈志风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN202010658603.6A priority Critical patent/CN111944152B/zh
Publication of CN111944152A publication Critical patent/CN111944152A/zh
Application granted granted Critical
Publication of CN111944152B publication Critical patent/CN111944152B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,是以巯基乙酸(TGA)修饰的水相CdTe/CdSe量子点为荧光载体,通过对其表面进行硅烷化修饰,以TC为模板分子,再以3‑氨丙基三乙氧基硅烷为功能单体、正硅酸乙酯为交联剂、氨水为催化剂,成功制备了量子点表面分子印迹聚合物(CdTe/CdSe@MIPs QDs),实验制备过程简单。该CdTe/CdSe@MIPs QDs以四环素为模板分子,通过功能单体和交联剂三者之间的相互作用,形成了具有四环素特异性识别位点的量子点分子印迹聚合物,实现了对目标物四环素的特异性识别,在与模板分子结构相似物质中达到对目标物的高选择性测定要求。

Description

一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备与应用
技术领域
本发明涉及一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,本发明同时涉及该CdTe/CdSe@MIPs QDs分子印迹聚合物在识别四环素的应用,属于复合材料技术领域和化学发光分析技术领域。
背景技术
量子点(Quantum dots, QDs)是一类粒径小于或者接近于激子波尔半径的准零维纳米晶粒,其尺寸一般在1.0-10 nm之间。量子点光学稳定性好,而且制备方法简单,在生物传感、医学成像和分析检测等多个领域得到广泛的应用。目前,随着高性能量子点的制备以及表面修饰技术的逐步完善与成熟,使量子点在荧光、化学发光信号上的响应有了很大的提高。然而基于量子点的荧光分析法和化学发光分析法在结构和性能类似的同类物质检测中暴露出选择性欠佳的不足,极大地限制了传统的量子点光学识别与检测方法在复杂样品分析中的应用范围。
分子印迹技术(Molecule imprinted technique, MIT)作为一种特异性的分子识别技术,常常用来合成具有特定分子识别位点的三维交联聚合物,即分子印迹聚合物(MIPs)。近年来,为了提高量子点发光检测的选择性,分子印迹技术的引入成为了行之有效的解决方案,即通过在量子点表面形成分子印迹聚合物来提升检测体系的选择性。
四环素(Tetracyclines, TC)是一种广谱的具有高浓度灭菌效果的抑菌剂。由于其低廉的价格,TC是世界上使用最广泛的抗生素之一。近年来,为了预防动植物疾病并促进动植物生长,四环素在我国畜牧业、林业、医药业等行业中得以广泛使用。然而,滥用四环素会带来严重的环境问题,进而也会对人类身体的健康造成严重危害。因此发展快速、灵敏的TC含量的检测方法仍具有重要意义。
发明内容
本发明的目的是提供一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备与应用。
一、CdTe/CdSe@MIPs QDs分子印迹聚合物的制备
本发明CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,包括以下步骤:
(1)前驱体NaHSe的合成:在高纯水中,氮气保护下,将Se粉与NaBH4以1:8~1:13的摩尔比,于40~60 ℃的水浴中反应;待溶液变为无色,得到前驱体NaHSe溶液。
(2)CdTe/CdSe@SiO2 QDs的制备:将氯化镉溶于高纯水中,加入巯基乙酸,用NaOH调节至溶液pH=10.0~11.0,然后加入硅烷化镉碲量子点(CdTe QDs)和上述前驱体NaHSe溶液,氮气保护下,于90~100℃的油浴中反应20~40 min;再加入四乙氧基硅烷(TEOS),继续反应2.5~3h,冷却至室温,用无水乙醇沉淀合成产物,真空干燥,得到硅烷化的核壳型CdTe/CdSe@SiO2 QDs量子点。其中,氯化镉与巯基乙酸的摩尔比为1:2~1:5;氯化镉与NaBH4的摩尔比为1:5~1:10;氯化镉与硅烷化镉碲量子点的质量比为2:1~5:1;氯化镉与四乙氧基硅烷的摩尔比为1:3~1:8。
(3)CdTe/CdSe@MIPs QDs的制备:将四环素(TC)模板分子溶解于无水乙醇中,加入功能单体3-氨丙基三乙氧基硅烷(APTES),振荡20~40min使模板分子与功能单体充分作用;再加入正硅酸乙酯(TEOS),继续震荡5~8 min,然后加入CdTe/CdSe@SiO2 QDs和催化剂氨水,于室温搅拌反应20~25 h,离心、洗涤和干燥,得到CdTe/CdSe@MIPs QDs分子印迹聚合物。其中,四环素模板分子与功能单体3-氨丙基三乙氧基硅烷的摩尔比为7:1~9:1;四环素模板分子与正硅酸乙酯的摩尔比为1:1~4:1;四环素模板分子与CdTe/CdSe@SiO2 QDs的质量比为8:1~15:1;催化剂氨水的质量分数为6.25%,其加入量为功能单体3-氨丙基三乙氧基硅烷体积的15~20倍。
作为对比,非印迹聚合物CdTe/CdSe@NIPs QDs的制备过程与上述过程相似,区别是非印迹聚合物的合成不需要加模板分子。
二、CdTe/CdSe@MIPs QDs分子印迹聚合物的表征
1、形貌表征
CdTe/CdSe@MIPs QDs呈橘红色细小固体粉末,在水中有着良好的分散性,并且在365nm紫外灯下,能发出橙色的荧光。用扫描电镜观察聚合物的形貌特征,如图1所示。从图中可以观察到 CdTe/CdSe@MIPs QDs 基本呈近球形颗粒,颗粒的大小比较均一,粒径大约为75nm左右。
2、紫外光谱表征
对CdTe/CdSe@MIPs QDs进行了紫外-可见光谱,如图2所示。从图中可以看出,聚合物在可见区552 nm处有激子吸收峰。
3、荧光光谱表征
对CdTe/CdSe@MIPs QDs进行了荧光光谱表征,如图3所示。聚合物在571 nm处有一个很强的荧光发射峰,并且荧光峰半峰宽较窄,说明合成的CdTe/CdSe@MIPs QDs分布比较均匀,分散性良好。
4、红外光谱表征
图4为CdTe/CdSe @MIPs QDs和CdTe/CdSe @NIPs QDs的红外光谱图。如图所示,在1109cm-1处的宽峰为Si-O-Si的对称伸缩振动峰,在798cm-1处出现的对称伸缩振动峰归因于Si-O的伸缩振动,2931 cm-1处的特征峰为C-H伸缩振动峰,1627 cm-1处的吸收峰可能来源于N-H键的弯曲振动,1382cm-1处的特征峰属于C-O的伸缩振动。以上分析可得知TEOS和APTES已经成功地修饰到了量子点的表面,进一步表明聚合物制备成功。此外,从红外谱图中还可以看出CdTe/CdSe@MIPs QDs和CdTe/CdSe@NIPs QDs特征峰位置基本一致,说明模板分子已洗脱干净。
5、X-射线衍射(XRD)表征
图5为CdTe/CdSe @MIPs QDs的X-射线衍射图,从图5 CdTe/CdSe@MIPs QDs的XRD表征结果可以看出,三个衍射峰位(111)、(220)、(311)与CdTe/CdSe@SiO2 QDs所属立方晶系的标准值相符,与CdTe/CdSe@SiO2 QDs的表征结果作比较,发现表面印迹聚合物在(220)、(311)处的衍射峰位显著降低。这种情况可能是因为在CdTe/CdSe@SiO2 QDs表面包裹分子印迹层后,阻碍了(220)、(311)峰位处的晶面进行衍射,导致其强度降低并有消失的趋势。而(111)处的衍射峰变宽,可能是由于在量子点表面包裹分子印迹形成CdTe/CdSe@MIPsQDs时,加剧了CdTe/CdSe@SiO2 QDs晶体表面的缺陷,硅烷化的量子点晶面结构无序,使得衍射峰面加宽。
三、CdTe/CdSe@MIPs QDs的分子识别性能测试
印迹因子(IF)是评价分子印迹聚合物分子识别性能即选择性吸附能力的重要参数。在同等条件下,根据Stern-Volmer方程,计算猝灭常数KSV和印迹因子(imprint factor, IF)。Stern-Volmer方程如下:
Ksv=[(I0/I)-1]/C
式中,I0为空白非印迹聚合物CdTe/CdSe@NIPs QDs或空白印迹聚合物CdTe/CdSe@MIPsQDs的发光强度,C为四环素的浓度,I为体系发光强度。KSV,1(CdTe/CdSe@MIPs QDs)与KSV,2(CdTe/CdSe@NIPs QDs)的比值即为印迹因子。
分别考察了非印迹聚合物CdTe/CdSe @NIPs QDs和印迹聚合物CdTe/CdSe @MIPsQDs对模板分子四环素及其结构相似物质土霉素、青霉素、左氧氟沙星、环丙沙星、洛美沙星、诺氟沙星的吸附能力,结果如表1所示。
由表1可知,土霉素、青霉素、左氧氟沙星、环丙沙星、洛美沙星、诺氟沙星对CdTe/CdSe@MIPs QDs有一定的荧光增敏作用,通过荧光猝灭常数计算得到四环素的印迹因子值(IF)最大,说明与四环素结构相似的物质相比,CdTe/CdSe@MIPs QDs 对四环素具有较好的特异性识别能力。由于在合成CdTe/CdSe@NIPs QDs时没有加入模板分子四环素,使得CdTe/CdSe@NIPs QDs表面的四环素特异性识别位点较少,对其吸附性能较差,而CdTe/CdSe@MIPsQDs表面四环素的特异性识别位点较多,能够特异性识别四环素,对其吸附性能较好,说明合成的CdTe/CdSe@MIPs QDs对四环素分子有良好的选择性识别能力。
Figure 102551DEST_PATH_IMAGE001
综上所述,本发明以巯基乙酸(TGA)修饰的水相CdTe/CdSe量子点为荧光载体,通过对其表面进行硅烷化修饰,以TC为模板分子,再以3-氨丙基三乙氧基硅烷为功能单体、正硅酸乙酯为交联剂、氨水为催化剂,成功制备了量子点表面分子印迹聚合物(CdTe/CdSe@MIPs QDs),实验制备过程简单。该CdTe/CdSe@MIPs QDs以四环素为模板分子,通过功能单体和交联剂三者之间的相互作用,形成了具有四环素特异性识别位点的量子点分子印迹聚合物,实现了对目标物四环素的特异性识别,在与模板分子结构相似物质中达到对目标物的高选择性测定要求。
附图说明
图1为CdTe/CdSe@MIPs QDs扫描电镜图。
图2为CdTe/CdSe@MIPs QDs的紫外-可见光谱图。
图3为CdTe/CdSe@MIPs QDs的荧光光谱图。
图4为CdTe/CdSe@MIPs QDs的红外图谱。
图5为CdTe/CdSe @MIPs QDs的X-射线衍射图。
具体实施方式
下面通过具体实施例对本发明制备稳定纳米银凝胶的制备和性能作进一步说明。
实验试剂:硼氢化钠(>97%),碲粉(>99.99%),均购自上海中秦化学试剂有限公司;氯化镉(>98%,北京化工厂);巯基乙酸(TGA)(>90%,天津市光复精细化工研究所);氢氧化钠(>96%,广东光华化学厂有限公司);鲁米诺(阿拉丁);四环素(阿拉丁);NaOH(广东光华化学厂有限公司);KIO4(北京化工厂);巯基乙酸(阿拉丁);四乙氧基硅烷(阿拉丁);3-氨丙基三乙氧基硅烷(阿拉丁);氨水25%(天津市凯通化学试剂有限公司)。实验所用试剂除特别注明外均为分析纯,实验用水均为二次去离子水。
实验仪器:BS224S精密电子天平(北京赛多利斯仪器有限公司);SK2200HP超声仪(上海科导超声仪器有限公司);PB-10酸度计(德国Sartorius仪器有限公司);TG18G-II台式通用离心机(湖南凯达科学仪器有限公司);DZF-6020型真空干燥箱(上海一恒科技有限公司);扫描电子显微镜(荷兰FEI仪器公司);IFFL-DX型流动注射化学发光仪(西安瑞迈电子设备有限公司);荧光光谱仪(日本岛津仪器公司);UV-757CRT紫外-可见分光光度计(上海精科仪器公司);D/max-2400粉末X射线衍射(日本理学公司)。
实施例1 CdTe/CdSe@MIPs QDs分子印迹聚合物的制备
(1)NaHSe前驱体溶液的合成:称0.12 g NaBH4和0.02 g Se粉,加到10 mL的蒸馏瓶中,再加入5 mL的高纯水,在60℃的水浴中反应,到黑色的硒粉完全反应为止。此时,溶液变成无色,得到NaHSe溶液作为Se源备用。实验在氮气的保护下完成,此过程同时产生H2
(2)CdTe QDs的合成:在10mL的蒸馏瓶中加入0.0128 g碲粉和0.06 g硼氢化钠,通氮气30min,然后加入5mL通氮气处理过的高纯水,在60℃的水浴中反应,待黑的碲粉完全消失,溶液变成无色得到前驱体溶液NaHTe备用。整个实验过程用氮气保护,同时会产生氢气。在100 mL三颈烧瓶中依次加入0.1828 g氯化镉,50 mL高纯水和134 µL巯基乙酸,搅拌溶解后,用1mol/L NaOH调节溶液pH=11,在氮气氛下搅拌30 min,然后迅速加入前驱体溶液NaHTe,在100℃下反应10 min,加入1.5 mL四乙氧基硅烷,反应3 h,冷却至室温,加入无水乙醇沉淀,得到硅烷化CdTe QDs,真空干燥,备用。
(3)CdTe/CdSe@SiO2 QDs的制备:将0.0912 g氯化镉和50 mL高纯水加入到在100mL三颈烧瓶中溶解,接着加入0.096 mL巯基乙酸,用1 mol/L NaOH调节至溶液pH=11,再将0.0256 g CdTe QDs加到溶液中,通氮气除氧1 h后,将上述NaHSe前驱体溶液快速加入,在100℃的油浴中反应30 min,加入TEOS 1.5 mL,反应3 h,得到硅烷化的核壳型CdTe/CdSe@SiO2 QDs量子点,冷却至室温,加入无水乙醇沉淀合成的量子点,真空干燥备用。
(4)CdTe/CdSe@MIPs QDs的制备:将2.1778 g TC模板分子溶解于10 mL无水乙醇中,加入140 µL APTES,将混合后的溶液充分振荡30 min,再将535 µL TEOS加到溶液中,振荡5 min后,在混合溶液中加入0.2 g CdTe/CdSe@SiO2 QDs和2.5 mL 6.25%的氨水溶液,氨水起催化作用,继续搅拌20 h,将反应后的溶液进行离心、洗涤和干燥,得到了CdTe/CdSe@MIPs QDs分子印迹聚合物。
实施例2、 CdTe/CdSe@MIPs QDs分子印迹聚合物识别四环素
在CdTe/CdSe@MIPs QDs分子印迹聚合物和CdTe/CdSe@NIPs QDs非印迹聚合物的水溶液中,分别加入四环素、土霉素、青霉素、左氧氟沙星、环丙沙星、洛美沙星、诺氟沙星的水溶液,CdTe/CdSe@MIPs QDs分子印迹聚合物和CdTe/CdSe@NIPs QDs非印迹聚合物荧光猝灭常数的比值即印迹因子值最大的是四环素。

Claims (10)

1.一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,包括以下步骤:
(1)前驱体NaHSe的合成:在高纯水中,氮气保护下,将Se粉与NaBH4以1:8~1:13的摩尔比,于40~60 ℃的水浴中反应;待溶液变为无色,得到前驱体NaHSe溶液;
(2)CdTe/CdSe@SiO2 QDs的制备:将氯化镉溶于高纯水中,加入巯基乙酸,用NaOH调节至溶液pH=10.0~11.0,然后加入硅烷化镉碲量子点和上述前驱体NaHSe溶液,氮气保护下,于90~100℃的油浴中反应20~40 min;再加入四乙氧基硅烷,继续反应2.5~3 h,冷却至室温,用无水乙醇沉淀合成产物,真空干燥,得到硅烷化的核壳型CdTe/CdSe@SiO2 QDs量子点;
(3)CdTe/CdSe@MIPs QDs的制备:将四环素模板分子溶解于无水乙醇中,加入功能单体3-氨丙基三乙氧基硅烷,振荡20~40 min使模板分子与功能单体充分作用;再加入正硅酸乙酯,继续震荡5~8 min,然后加入CdTe/CdSe@SiO2 QDs和催化剂氨水,于室温搅拌反应20~25h,离心、洗涤和干燥,得到CdTe/CdSe@MIPs QDs分子印迹聚合物。
2.如权利要求1所述一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,其特征在于:步骤(2)中,氯化镉与巯基乙酸的摩尔比为1:2~1:5;氯化镉与NaBH4的摩尔比为1:5~1:10。
3.如权利要求1所述一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,其特征在于:步骤(2)中,氯化镉与硅烷化镉碲量子点的质量比为2:1~5:1。
4.如权利要求1所述一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,其特征在于:步骤(2)中,氯化镉与四乙氧基硅烷的摩尔比为1:3~1:8。
5.如权利要求1所述一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,其特征在于:步骤(3)中,四环素模板分子与功能单体3-氨丙基三乙氧基硅烷的摩尔比为7:1~9:1。
6.如权利要求1所述一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,其特征在于:步骤(3)中,四环素模板分子与正硅酸乙酯的摩尔比为1:1~4:1。
7.如权利要求1所述一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,其特征在于:步骤(3)中,四环素模板分子与CdTe/CdSe@SiO2 QDs的质量比为8:1~15:1。
8.如权利要求1所述一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备方法,其特征在于:步骤(3)中,催化剂氨水的质量分数为6.25%,其加入量为功能单体3-氨丙基三乙氧基硅烷体积的15~20倍。
9.如权利要求1所述方法制备的CdTe/CdSe@MIPs QDs分子印迹聚合物在识别四环素的应用。
10.如权利要求9 所述CdTe/CdSe@MIPs QDs分子印迹聚合物在识别四环素的应用,其特征在于:在CdTe/CdSe@MIPs QDs分子印迹聚合物和CdTe/CdSe@NIPs QDs非印迹聚合物的水溶液中,分别加入四环素、土霉素、青霉素、左氧氟沙星、环丙沙星、洛美沙星、诺氟沙星的水溶液,印迹因子值最大的是四环素。
CN202010658603.6A 2020-07-09 2020-07-09 一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备与应用 Expired - Fee Related CN111944152B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010658603.6A CN111944152B (zh) 2020-07-09 2020-07-09 一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010658603.6A CN111944152B (zh) 2020-07-09 2020-07-09 一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备与应用

Publications (2)

Publication Number Publication Date
CN111944152A true CN111944152A (zh) 2020-11-17
CN111944152B CN111944152B (zh) 2021-12-14

Family

ID=73340417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010658603.6A Expired - Fee Related CN111944152B (zh) 2020-07-09 2020-07-09 一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备与应用

Country Status (1)

Country Link
CN (1) CN111944152B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292749A (zh) * 2021-03-16 2021-08-24 华南农业大学 一种用于根系分泌物原位可视化检测的荧光印迹膜及其制备与应用
CN113567521A (zh) * 2021-07-14 2021-10-29 山西大学 一种磁性cof表面分子印迹电化学传感器及制备方法和应用
CN115785947A (zh) * 2022-12-05 2023-03-14 中国科学院水生生物研究所 一种荧光检测材料及其制备方法和应用
CN116850202A (zh) * 2023-07-20 2023-10-10 广东医科大学 一种抗癌药物复合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1687304A (zh) * 2005-04-07 2005-10-26 上海交通大学 水溶性高荧光产率的CdTe/ZnSe核壳量子点的制备方法
CN103834408A (zh) * 2012-11-21 2014-06-04 北京化工大学 一种用于快速指纹显现的水相CdTe/CdSe核壳量子点的制备方法
CN104327271A (zh) * 2014-09-29 2015-02-04 西南大学 一种基于核壳量子点分子印迹聚合物及其用途
CN104359880A (zh) * 2014-11-05 2015-02-18 合肥学院 对痕量百草枯检测的CdTe量子点荧光探针的化学制备方法
CN110218325A (zh) * 2019-06-03 2019-09-10 西北师范大学 硅烷化镉碲量子点分子印迹聚合物的制备及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1687304A (zh) * 2005-04-07 2005-10-26 上海交通大学 水溶性高荧光产率的CdTe/ZnSe核壳量子点的制备方法
CN103834408A (zh) * 2012-11-21 2014-06-04 北京化工大学 一种用于快速指纹显现的水相CdTe/CdSe核壳量子点的制备方法
CN104327271A (zh) * 2014-09-29 2015-02-04 西南大学 一种基于核壳量子点分子印迹聚合物及其用途
CN104359880A (zh) * 2014-11-05 2015-02-18 合肥学院 对痕量百草枯检测的CdTe量子点荧光探针的化学制备方法
CN110218325A (zh) * 2019-06-03 2019-09-10 西北师范大学 硅烷化镉碲量子点分子印迹聚合物的制备及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIANG ZHANG ET AL.: ""Fluorescence Probe Based on Hybrid Mesoporous Silica/Quantum Dot/Molecularly Imprinted Polymer for Detection of Tetracycline"", 《ACS APPL. MATER. INTERFACES》 *
MUCHUAN NIU ET AL.: ""Core-shell nanoparticles coated with molecularly imprinted polymers: a review"", 《MICROCHIM ACTA》 *
SHAN-SHAN YANG ET AL.: ""Aqueous Synthesis of CdTe/CdSe Core/Shell Quantum Dots as pH-Sensitive Fluorescence Probe for the Determination of Ascorbic Acid"", 《J FLUORESC》 *
XIAO-FENG CHEN ET AL.: ""Novel synthesis of β-cyclodextrin functionalized CdTe quantum dots as luminescent probes"", 《APPLIED SURFACE SCIENCE》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292749A (zh) * 2021-03-16 2021-08-24 华南农业大学 一种用于根系分泌物原位可视化检测的荧光印迹膜及其制备与应用
CN113292749B (zh) * 2021-03-16 2022-07-05 华南农业大学 一种用于根系分泌物原位可视化检测的荧光印迹膜及其制备与应用
CN113567521A (zh) * 2021-07-14 2021-10-29 山西大学 一种磁性cof表面分子印迹电化学传感器及制备方法和应用
CN115785947A (zh) * 2022-12-05 2023-03-14 中国科学院水生生物研究所 一种荧光检测材料及其制备方法和应用
CN116850202A (zh) * 2023-07-20 2023-10-10 广东医科大学 一种抗癌药物复合物及其制备方法和应用

Also Published As

Publication number Publication date
CN111944152B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CN111944152B (zh) 一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备与应用
Zhu et al. A facile preparation method for new two-component supramolecular hydrogels and their performances in adsorption, catalysis, and stimuli-response
Liu et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications
Hou et al. Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk
Guo et al. Biosynthesis of gold nanoparticles using a kind of flavonol: Dihydromyricetin
US7767063B2 (en) Photo-formed metal nanoparticles and aerogel materials comprising the same
Dong et al. Magnetic assisted fluorescence immunoassay for sensitive chloramphenicol detection using carbon dots@ CaCO3 nanocomposites
Alizadeh et al. A review on gold nanoparticles aggregation and its applications
Pirot et al. Dual-template molecularly surface imprinted polymer on fluorescent metal-organic frameworks functionalized with carbon dots for ascorbic acid and uric acid detection
Wang et al. Efficient fabrication of ratiometric fluorescence imprinting sensors based on organic-inorganic composite materials and highly sensitive detection of oxytetracycline in milk
CN106053408B (zh) 碳点荧光探针检测水中和/或环境中痕量银纳米粒子的方法
CN112098391B (zh) 表面增强拉曼光谱基底的制备方法及表面增强拉曼检测方法
Xiao et al. Fluorescent nanomaterials combined with molecular imprinting polymer: synthesis, analytical applications, and challenges
Lu et al. Designing and controlling the morphology of spherical molecularly imprinted polymers
CN109019659A (zh) 一种手性氧化铜纳米粒子的合成方法
Chen et al. An eco-friendly near infrared fluorescence molecularly imprinted sensor based on zeolite imidazolate framework-8 for rapid determination of trace trypsin
Li et al. Design of Fe3O4@ SiO2@ mSiO2-organosilane carbon dots nanoparticles: Synthesis and fluorescence red-shift properties with concentration dependence
CN111621018A (zh) 基于Mn掺杂ZnS量子点的硼亲和分子印迹介孔聚合物及其制备方法及应用
Wang et al. Mn (II)-coordinated fluorescent carbon dots: preparation and discrimination of organic solvents
CN111849478A (zh) 一种新型磁性荧光双功能纳米材料的制备方法
Hassanzadeh et al. Molecularly imprinted polymer capped near infrared fluorescent emitting Ag2S-functionalized-COOH quantum dots for detection of creatinine as a nanosensor with high sensitivity and selectivity
CN111450824B (zh) 具有温度响应催化性能的金纳米催化剂的制备方法及应用
CN113770372A (zh) 一种金纳米颗粒聚集体材料的制备方法
CN110218325A (zh) 硅烷化镉碲量子点分子印迹聚合物的制备及应用
Liu et al. Formation of nitrogen-doped blue-and green-emitting fluorescent carbon dots via a one-step solid-phase pyrolysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211214