CN111943668B - 一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法 - Google Patents

一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法 Download PDF

Info

Publication number
CN111943668B
CN111943668B CN202010631800.9A CN202010631800A CN111943668B CN 111943668 B CN111943668 B CN 111943668B CN 202010631800 A CN202010631800 A CN 202010631800A CN 111943668 B CN111943668 B CN 111943668B
Authority
CN
China
Prior art keywords
medium
tio
dielectric
zno
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010631800.9A
Other languages
English (en)
Other versions
CN111943668A (zh
Inventor
刘杨琼
李红卫
黄振娟
汪小玲
赵杨军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Hongke Electronic Technology Co ltd
Original Assignee
Chengdu Hongke Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Hongke Electronic Technology Co ltd filed Critical Chengdu Hongke Electronic Technology Co ltd
Priority to CN202010631800.9A priority Critical patent/CN111943668B/zh
Publication of CN111943668A publication Critical patent/CN111943668A/zh
Application granted granted Critical
Publication of CN111943668B publication Critical patent/CN111943668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明属于陶瓷材料技术领域,提供了一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法。该高介低损耗负温度补偿型瓷料,其原料包括基料、改性剂和烧结助剂;基料的化学式为Sr1‑xBixTiO3,其中,0.14≤x≤0.18;改性剂包括CaCO3和Re2O3,烧结助剂包括ZnO和ZnO‑B2O3玻璃。该负温度补偿型瓷料的介电常数≥900,可用于制备得到更小尺寸的电容器;介质损耗≤4.8×10‑4,可减少因损耗导致的发热,延长使用寿命;且可在中温下烧结而成,能耗低,节约生产成本;抗脉冲性强,能用于交流或脉冲工作环境。该制备方法通过固相合成法中温烧结得到产品。制备方法过程简单,易于产业化生产。

Description

一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法
技术领域
本发明属于陶瓷材料技术领域,具体地说,涉及一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法。
背景技术
目前,DC/DC电源模块和EMI滤波器的大容量陶瓷电容器多采用X7R材料。但因X7R材料交流损耗大(tanδ≥0.025),在交流或脉冲工作时会发热升温导致产生微裂纹,从而导致失效。
负温度补偿型瓷料具有高介、低损耗等优点,在-55~+125℃条件下结合了最优势的NPO和X7R的介质特性。其可靠性高,主要用于AC/DC、DC/DC模块的高压脉冲交流低损耗SMD型MLCC产品的制备,广泛应用于国防、航空、航天等军工重点工程配套电子设备。
目前,研究的较多的负温度补偿型介质材料为CaTiO3、SrTiO3、TiO2、CaZrO3。其中CaTiO3、TiO2、CaZrO3的室温介电常数分别150、100和40,介电常数低,难以实现高介的特点。SrTiO3基陶瓷因其居里温度低(约为-250℃),常温下介电常数相对较高(约为270),顺电态,损耗小(介质损耗可达10-3-10-4)而成为最受关注的材料之一。
但因SrTiO3基陶瓷介电常数仍处于较低水平,难以实现小型化,且难以解决目前存在的脉冲、交流工作下损耗发热失效机理问题。因此,如何在维持SrTiO3基陶瓷本身顺电态和低损耗的优势下,能够进一步地提高其介电常数成为目前亟待解决的问题。
发明内容
针对现有技术中上述的不足,本发明的第一目的在于提供了一种中温烧结的高介低损耗负温度补偿型瓷料;该负温度补偿型瓷料的介电常数≥900,可用于制备得到更小尺寸的电容器;介质损耗≤4.8×10-4,可减少因损耗导致的发热,延长使用寿命;且可在中温下烧结而成,能耗低,节约生产成本;抗脉冲性强,能用于交流或脉冲工作环境。
针对现有技术中上述的不足,本发明的第二目的在于提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法;该制备方法过程简单,易于产业化生产。
为了达到上述目的,本发明采用的解决方案是:
一种中温烧结的高介低损耗负温度补偿型瓷料,其原料包括基料、改性剂和烧结助剂;基料的化学式为Sr1-xBixTiO3,其中,0.14≤x≤0.18;改性剂包括 CaCO3和Re2O3,烧结助剂包括ZnO和ZnO-B2O3玻璃。
一种上述中温烧结的高介低损耗负温度补偿型瓷料的制备方法,包括:(1) 将Sr1-xBixTiO3、CaCO3、ZnO和ZnO-B2O3玻璃按配比混合、球磨、烘干、过筛后在(1060±20)℃下煅烧得到所需烧块;(2)接着向煅烧后的烧块中按配比加入Re2O3,球磨、烘干后过筛得到瓷料;(3)将陶瓷粉料压制成片,排胶后升温至1120-1160℃,烧结3-4h后随炉冷却,制得陶瓷圆片,将圆片表面涂覆并烧制电极,用于圆片性能的测试。
本发明提供的一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法的有益效果是:
(1)本发明提供的该种中温烧结的高介低损耗负温度补偿型瓷料,原料包括基料、改性剂、烧结助剂和降温剂。其中,基料的化学式为Sr1-xBixTiO3,基料通过向SrTiO3中加入Bi3+以提高自身的介电常数,并通过改性剂CaCO3和 Re2O3进行掺杂改性,引起晶格畸变,并能够保持在使用温度范围内-55℃~+125℃呈线性变化,保持室温的顺电态不变,维持小的介质损耗;Re2O3的掺杂能够起到进一步降低材料的介质损耗的作用;在烧块制备过程中加入了烧结助剂ZnO 提高煅烧效率,并直接加入了玻璃料ZnO-B2O3,玻璃的润湿和包附作用,可直接降低烧块的煅烧温度。在烧块制备过程中直接加入玻璃料,可达到加入少量玻璃实现中温烧结的目的,节约生产成本。上述各原料之间能够协同配合,共同完成提高产品介电常数、减小介质损耗,添加少量玻璃实现中温烧结的目的。
(2)本发明提供的该种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,包括采用固相合成法将各原料进行充分混合,增大合成物之间的接触面积,使原子或离子的扩散比较容易进行,以增大合成速率;通过同时对合成过程中的料、球和水的范围配比的调控,球磨时间的调控以及煅烧温度的调控,能够制备得到可靠性高且符合本申请所需介电性能的陶瓷材料。在本申请中,Re2O3在煅烧后的烧块中进行能够进行二次掺杂改性合成,进一步地起到降低介质损耗的目的。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例提供的一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法进行具体说明。
一种中温烧结的高介低损耗负温度补偿型瓷料,其原料包括基料、改性剂和烧结助剂。基料的化学式为Sr1-xBixTiO3,其中,0.14≤x≤0.18;改性剂包括 CaCO3和Re2O3。其中,Re2O3的添加能够起到进一步地降低介电损耗的作用。
在本实施例中,可通过向Sr1-xBixTiO3掺杂改性剂引起晶格畸变,向正温方向移动居里温度,提高介电常数,同时保持在使用温度范围内(-55℃~+125℃) 呈线性变化,保持室温的顺电态不变,以维持小的介质损耗。
在本实施例中,CaCO3占Sr1-xBixTiO3的摩尔百分比为5-8mol%,Re2O3占 Sr1- xBixTiO3的质量百分比为0.21-0.61wt%。改性剂进一步地还包括BaCO3和 MnCO3;其中,BaCO3占Sr1-xBixTiO3的摩尔百分比小于或等于4mol%,MnCO3占Sr1-xBixTiO3的质量百分比小于或等于0.03wt%。
烧结助剂包括ZnO和ZnO-B2O3玻璃。其中,ZnO占Sr1-xBixTiO3的摩尔百分比为1.5-3mol%。ZnO-B2O3玻璃占Sr1-xBixTiO3的质量百分比为0.2-0.75wt%。
ZnO-B2O3玻璃进一步地包括质量百分比为75-85wt%的ZnO和质量百分比为15-25wt%的B2O3。在该配比范围内,ZnO-B2O3玻璃对Sr1-xBixTiO3的润湿、包附效果更好,易于达到降温目的。此外,在本实施例中,ZnO-B2O3玻璃由ZnO 和B2O3球磨混合后于800-870℃下烧结而成。在该温度范围内,ZnO-B2O3更容易形成连续的玻璃结构,避免因温度过低无法形成玻璃相以及温度过高导致其硬度过高。
本发明实施例还提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,包括:(1)将Sr1-xBixTiO3、CaCO3、BaCO3、ZnO和ZnO-B2O3玻璃按配比装入料斗,按照料:球:水=1:5:(2-2.5)的比例进行球磨6-8h后,烘干过筛,然后在(1060±20)℃下煅烧得到所需烧块;(2)向煅烧后的烧块中按配比加入MnCO3和Re2O3,按料:球:水=1:5:(1-1.5)的比例球磨24-30h,烘干后过筛得到所需瓷料;(3)向瓷料加入7-12wt%石蜡造粒,压成圆片,然后以2℃/min的速度升至450℃排出胶合剂,后以3℃/min的速度升至 1120-1160℃,烧结3-4h后随炉冷却,制得陶瓷圆片,将圆片表面涂覆并烧制电极,用于圆片性能的测试。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,包括:(1)取x=0.15,将Sr1-xBixTiO3、占Sr1-xBixTiO3的摩尔百分比为6mol%的 CaCO3、占Sr1- xBixTiO3的摩尔百分比为2mol%ZnO和占Sr1-xBixTiO3的质量百分比为0.75wt%的ZnO-B2O3玻璃按配比装入料斗,按照料:球:水=1:5:2的比例进行球磨8h后,烘干过筛,然后在1080℃下煅烧得到所需烧块;(2)向煅烧后的烧块中按配比加入占Sr1-xBixTiO3的质量百分比为0.03wt%的MnCO3和占 Sr1-xBixTiO3的质量百分比为0.21wt%的Re2O3,按料:球:水=1:5:1的比例球磨30h,烘干后过筛得到所需瓷料;(3)向瓷料加入7-12wt%石蜡造粒,压成圆片,然后以2℃/min的速度升至450℃排出胶合剂,后以3℃/min的速度升至 1120-1160℃,烧结3h后随炉冷却,制得陶瓷圆片,将圆片表面涂覆并烧制电极,用于圆片性能的测试。
实施例2
本实施例提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,具体方法可参照实施例1,不同之处在于:步骤(1)中,将Sr1-xBixTiO3、占 Sr1-xBixTiO3的摩尔百分比为8mol%的CaCO3、占Sr1-xBixTiO3的摩尔百分比为 3mol%ZnO和占Sr1-xBixTiO3的质量百分比为0.3wt%的ZnO-B2O3玻璃按配比装入料斗;步骤(2)中,向煅烧后的烧块中按配比加入占Sr1-xBixTiO3的质量百分比为0.11wt%的Re2O3
实施例3
本实施例提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,具体方法可参照实施例1,不同之处在于:步骤(1)中,将Sr1-xBixTiO3、占 Sr1-xBixTiO3的摩尔百分比为5mol%的CaCO3、占Sr1-xBixTiO3的摩尔百分比为 1.5mol%ZnO和占Sr1-xBixTiO3的质量百分比为0.35wt%的ZnO-B2O3玻璃按配比装入料斗;步骤(2)中,向煅烧后的烧块中按配比加入占Sr1-xBixTiO3的质量百分比为0.61wt%的Re2O3
实施例4
本实施例提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,包括:(1)取x=0.16,将Sr1-xBixTiO3、占Sr1-xBixTiO3的摩尔百分比为6mol%的 CaCO3、占Sr1- xBixTiO3的摩尔百分比为2mol%的BaCO3、占Sr1-xBixTiO3的摩尔百分比为2mol%ZnO和占Sr1-xBixTiO3的质量百分比为0.5wt%的ZnO-B2O3玻璃按配比装入料斗,按照料:球:水=1:5:2.5的比例进行球磨6h后,烘干过筛,然后在1040℃下煅烧得到所需烧块;(2)向煅烧后的烧块中按配比加入占Sr1-xBixTiO3的质量百分比为0.03wt%的MnCO3和占Sr1-xBixTiO3的质量百分比为 0.29wt%的Re2O3,按料:球:水=1:5:1.5的比例球磨24h,烘干后过筛得到陶瓷产品;(3)向瓷料加入7-12wt%石蜡造粒,压成圆片,然后以2℃/min的速度升至450℃排出胶合剂,后以3℃/min的速度升至1120-1160℃,烧结3h后随炉冷却,制得陶瓷圆片,将圆片表面涂覆并烧制电极,用于圆片性能的测试。
实施例5
本实施例提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,具体方法可参照实施例4,不同之处在于:步骤(1)中,将Sr1-xBixTiO3、占 Sr1-xBixTiO3的摩尔百分比为6mol%的CaCO3、占Sr1-xBixTiO3的摩尔百分比为 2mol%ZnO和占Sr1-xBixTiO3的质量百分比为0.5wt%的ZnO-B2O3玻璃按配比装入料斗;步骤(2)中,向煅烧后的烧块中按配比加入占Sr1-xBixTiO3的质量百分比为0.24wt%的Re2O3
实施例6
本实施例提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,具体方法可参照实施例4,不同之处在于:步骤(1)中,将Sr1-xBixTiO3、占 Sr1-xBixTiO3的摩尔百分比为6mol%的CaCO3、占Sr1-xBixTiO3的摩尔百分比为 4mol%的BaCO3、占Sr1-xBixTiO3的摩尔百分比为2mol%ZnO和占Sr1-xBixTiO3的质量百分比为0.5wt%的ZnO-B2O3玻璃按配比装入料斗;步骤(2)中,向煅烧后的烧块中按配比加入占Sr1-xBixTiO3的质量百分比为0.03wt%的MnCO3和占 Sr1-xBixTiO3的质量百分比为0.49wt%的Re2O3
实施例7
本实施例提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,具体方法可参照实施例4,不同之处在于:步骤(1)中,将Sr1-xBixTiO3、占 Sr1-xBixTiO3的摩尔百分比为6mol%的CaCO3、占Sr1-xBixTiO3的摩尔百分比为2mol%ZnO和占Sr1-xBixTiO3的质量百分比为0.4wt%的ZnO-B2O3玻璃按配比装入料斗;步骤(2)中,向煅烧后的烧块中按配比加入占Sr1-xBixTiO3的质量百分比为0.56wt%的Re2O3
实施例8
本实施例提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,包括:(1)取x=0.17,将Sr1-xBixTiO3、占Sr1-xBixTiO3的摩尔百分比为7mol%的 CaCO3、占Sr1- xBixTiO3的摩尔百分比为1mol%的BaCO3、占Sr1-xBixTiO3的摩尔百分比为2.5mol%ZnO和占Sr1-xBixTiO3的质量百分比为0.4wt%的ZnO-B2O3玻璃按配比装入料斗,按照料:球:水=1:5:2.3的比例进行球磨7h后,烘干过筛,然后在1050℃下煅烧得到所需烧块;(2)向煅烧后的烧块中按配比加入占 Sr1-xBixTiO3的质量百分比为0.49wt%的Re2O3,按料:球:水=1:5:1.3的比例球磨28h,烘干后过筛得到陶瓷产品;(3)向瓷料加入7-12wt%石蜡造粒,压成圆片,然后以2℃/min的速度升至450℃排出胶合剂,后以3℃/min的速度升至 1120-1160℃,烧结3.5h后随炉冷却,制得陶瓷圆片,将圆片表面涂覆并烧制电极,用于圆片性能的测试。
实施例9
本实施例提供了一种中温烧结的高介低损耗负温度补偿型瓷料的制备方法,具体方法可参照实施例8,不同之处在于:步骤(1)中,将Sr1-xBixTiO3、占Sr1-xBixTiO3的摩尔百分比为6mol%的CaCO3、占Sr1-xBixTiO3的摩尔百分比为 2mol%ZnO和占Sr1-xBixTiO3的质量百分比为0.2wt%的ZnO-B2O3玻璃按配比装入料斗;步骤(2)中,向煅烧后的烧块中按配比加入占Sr1-xBixTiO3的质量百分比为0.02wt%的MnCO3和占Sr1-xBixTiO3的质量百分比为0.29wt%的Re2O3
实施例1-9的配方对比如表1:
表1
Figure BDA0002569197060000091
实验例1
实验方法:将实施例1-9制备得到的高介低损耗负温度补偿型瓷料,采用Agilient8722ET网络分析仪测试其介电常数(εr)、介质损耗因数(tgδ)和容量温度系数(αc),测试结果见表2:
表2
Figure BDA0002569197060000092
Figure BDA0002569197060000101
由表2数据可知,根据本实施例1-9的制备方法制备得到的高介低损耗负温度补偿型瓷料,其介电常数≥900,介质损耗≤4.8×10-4,容量温度系数可达国标中-2200±500ppm/℃的KL组别,且该介质陶瓷产品不含铅等有害物质,符合 RoHS指令;烧结温度1120-1160℃。
综上所述,采用本发明提供的高介低损耗负温度补偿型瓷料;该负温度补偿型瓷料的介电常数≥900,可用于制备得到更小尺寸的电容器;介质损耗≤4.8 ×10-4,可减少因损耗导致的发热,延长使用寿命;可在中温下烧结而成,能耗低,节约生产成本;抗脉冲性强,能用于交流或脉冲工作环境;该制备方法过程简单,易于产业化生产。
以上所述仅为本发明的优选实施例而已,不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种中温烧结的高介低损耗负温度补偿型瓷料,其特征在于:其原料包括基料、改性剂和烧结助剂;所述基料的化学式为Sr1-xBixTiO3,其中,0.14≤x≤0.18;所述改性剂包括CaCO3和Re2O3,所述烧结助剂包括ZnO和ZnO-B2O3玻璃;
所述CaCO3占所述Sr1-xBixTiO3的摩尔百分比为5-8mol%,所述Re2O3占所述Sr1-xBixTiO3的质量百分比为0.21-0.61wt%,所述ZnO占所述Sr1-xBixTiO3的摩尔百分比为1.5-3mol%,所述ZnO-B2O3玻璃占所述Sr1-xBixTiO3的质量百分比为0.2-0.75wt%。
2.根据权利要求1所述的中温烧结的高介低损耗负温度补偿型瓷料,其特征在于:所述改性剂还包括BaCO3;所述BaCO3占所述Sr1-xBixTiO3的摩尔百分比小于或等于4mol%。
3.根据权利要求1或2所述的中温烧结的高介低损耗负温度补偿型瓷料,其特征在于:所述改性剂还包括MnCO3;所述MnCO3占所述Sr1-xBixTiO3的质量百分比小于或等于0.03wt%。
4.根据权利要求1所述的中温烧结的高介低损耗负温度补偿型瓷料,其特征在于:所述ZnO-B2O3玻璃包括:质量百分比为75-85 wt%的ZnO和质量百分比为15-25 wt%的 B2O3
5.根据权利要求4所述的中温烧结的高介低损耗负温度补偿型瓷料,其特征在于:所述ZnO-B2O3玻璃由ZnO和B2O3球磨混合后于800-870℃下烧结而成。
6.一种如权利要求1所述的中温烧结的高介低损耗负温度补偿型瓷料的制备方法,其特征在于:包括:
(1)将所述Sr1-xBixTiO3、所述CaCO3、所述ZnO和所述ZnO-B2O3玻璃按配比混合、球磨、烘干、过筛后在(1060±20)℃下煅烧得到所需烧块;
(2)向煅烧后的烧块中按配比加入Re2O3,球磨、烘干后过筛得到瓷料;
(3)将所述瓷料压制成圆片,排胶后升温至1120-1160℃,烧结3-4h后随炉冷却,制得陶瓷圆片,将圆片表面涂覆并烧制电极,用于圆片性能的测试。
7.根据权利要求6所述的中温烧结的高介低损耗负温度补偿型瓷料的制备方法,其特征在于:步骤(1)中,还包括向料斗中装入占所述Sr1-xBixTiO3的摩尔百分比小于或等于4mol%的BaCO3
8.根据权利要求6所述的中温烧结的高介低损耗负温度补偿型瓷料的制备方法,其特征在于:步骤(2)中,还包括向所述烧块中装入所述MnCO3
CN202010631800.9A 2020-07-03 2020-07-03 一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法 Active CN111943668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010631800.9A CN111943668B (zh) 2020-07-03 2020-07-03 一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010631800.9A CN111943668B (zh) 2020-07-03 2020-07-03 一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法

Publications (2)

Publication Number Publication Date
CN111943668A CN111943668A (zh) 2020-11-17
CN111943668B true CN111943668B (zh) 2022-09-13

Family

ID=73337027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010631800.9A Active CN111943668B (zh) 2020-07-03 2020-07-03 一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法

Country Status (1)

Country Link
CN (1) CN111943668B (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB860019A (en) * 1956-08-14 1961-02-01 British Ceramic Res Ass Improvements relating to titanate materials suitable for dielectrics in ceramic capac
SU460271A1 (ru) * 1972-08-28 1975-02-15 Предприятие П/Я М-5457 Стеклокерамический материал
US4058404A (en) * 1973-12-10 1977-11-15 Tdk Electronics Co., Ltd. Sintered ceramic dielectric body
US4119554A (en) * 1976-05-06 1978-10-10 Tdk Electronics Co., Ltd. Ceramic dielectric composition containing alkali metal oxide
JP3020493B1 (ja) * 1999-03-19 2000-03-15 ティーディーケイ株式会社 圧電セラミックス
WO2003021606A1 (fr) * 2001-08-28 2003-03-13 Tdk Corporation Composition pour dispositif capacitif a couches minces, couche isolante a constante dielectrique elevee, dispositif capacitif a couches minces et condensateur ceramique multicouche a couches minces
WO2006060191A2 (en) * 2004-11-19 2006-06-08 The University Of Akron Lead-free ferroelectric/electrostrictive ceramic material
CN101172849A (zh) * 2007-10-26 2008-05-07 华南理工大学 一种低温烧结的高介电常数电介质陶瓷及其制备方法
CN101400624A (zh) * 2006-03-16 2009-04-01 株式会社友华 介电陶瓷组合物
CN102267721A (zh) * 2011-04-11 2011-12-07 山东建筑大学 化学式为Ca0.4Sr0.6Bi4Ti4O15的钙钛矿结构多晶纳米粉体快速制备方法
CN102557618A (zh) * 2010-12-15 2012-07-11 颜欢 一种微调陶瓷电容器用瓷介材料
CN103204677A (zh) * 2013-03-12 2013-07-17 西北大学 一种高介电性能x8r型陶瓷电容器介质材料及其制备方法
CN106278251A (zh) * 2016-07-30 2017-01-04 桂林理工大学 温度稳定型微波介电陶瓷SrBi3GaTi2O11
CN109970446A (zh) * 2019-04-24 2019-07-05 北京元六鸿远电子科技股份有限公司 一种用于中温烧结的锶铋钛基储能介质材料及制备方法
CN110078495A (zh) * 2019-04-25 2019-08-02 北京元六鸿远电子科技股份有限公司 介电常数可调的宽温域介质陶瓷材料
CN110357419A (zh) * 2019-07-18 2019-10-22 成都宏科电子科技有限公司 一种玻璃组合物和毫米波低温共烧陶瓷材料及其制备方法
CN110642617A (zh) * 2019-10-31 2020-01-03 西南大学 一种耐高电场的高储能密度钛酸钡基弛豫铁电陶瓷材料及其制备方法
CN111233462A (zh) * 2020-03-21 2020-06-05 东莞市钧鹏电子科技有限公司 一种中介微波介质陶瓷粉料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB834076A (en) * 1957-09-11 1960-05-04 Plessey Co Ltd Improvements in or relating to heat resistant dielectrics
US4900702A (en) * 1987-10-27 1990-02-13 Nippon Ferrite, Ltd. Dielectric ceramic composition
TW201119974A (en) * 2009-10-16 2011-06-16 Nippon Chemical Ind Composition for forming dielectric ceramic and dielectric ceramic material
CN103274685A (zh) * 2013-06-14 2013-09-04 龚建良 一种电介质陶瓷及其制备方法
US20150245547A1 (en) * 2014-02-24 2015-08-27 William L. Robinson, Jr. Method and use of organic and mineral admixtures for EMI and radioisotope shielding of air filtration media and building materials, for absorption of airborne particulates and for climate change mitigation
CN109180181B (zh) * 2018-09-28 2020-10-27 西安交通大学 一种无铅弛豫反铁电陶瓷储能材料及其制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB860019A (en) * 1956-08-14 1961-02-01 British Ceramic Res Ass Improvements relating to titanate materials suitable for dielectrics in ceramic capac
SU460271A1 (ru) * 1972-08-28 1975-02-15 Предприятие П/Я М-5457 Стеклокерамический материал
US4058404A (en) * 1973-12-10 1977-11-15 Tdk Electronics Co., Ltd. Sintered ceramic dielectric body
US4119554A (en) * 1976-05-06 1978-10-10 Tdk Electronics Co., Ltd. Ceramic dielectric composition containing alkali metal oxide
JP3020493B1 (ja) * 1999-03-19 2000-03-15 ティーディーケイ株式会社 圧電セラミックス
WO2003021606A1 (fr) * 2001-08-28 2003-03-13 Tdk Corporation Composition pour dispositif capacitif a couches minces, couche isolante a constante dielectrique elevee, dispositif capacitif a couches minces et condensateur ceramique multicouche a couches minces
WO2006060191A2 (en) * 2004-11-19 2006-06-08 The University Of Akron Lead-free ferroelectric/electrostrictive ceramic material
CN101400624A (zh) * 2006-03-16 2009-04-01 株式会社友华 介电陶瓷组合物
CN101172849A (zh) * 2007-10-26 2008-05-07 华南理工大学 一种低温烧结的高介电常数电介质陶瓷及其制备方法
CN102557618A (zh) * 2010-12-15 2012-07-11 颜欢 一种微调陶瓷电容器用瓷介材料
CN102267721A (zh) * 2011-04-11 2011-12-07 山东建筑大学 化学式为Ca0.4Sr0.6Bi4Ti4O15的钙钛矿结构多晶纳米粉体快速制备方法
CN103204677A (zh) * 2013-03-12 2013-07-17 西北大学 一种高介电性能x8r型陶瓷电容器介质材料及其制备方法
CN106278251A (zh) * 2016-07-30 2017-01-04 桂林理工大学 温度稳定型微波介电陶瓷SrBi3GaTi2O11
CN109970446A (zh) * 2019-04-24 2019-07-05 北京元六鸿远电子科技股份有限公司 一种用于中温烧结的锶铋钛基储能介质材料及制备方法
CN110078495A (zh) * 2019-04-25 2019-08-02 北京元六鸿远电子科技股份有限公司 介电常数可调的宽温域介质陶瓷材料
CN110357419A (zh) * 2019-07-18 2019-10-22 成都宏科电子科技有限公司 一种玻璃组合物和毫米波低温共烧陶瓷材料及其制备方法
CN110642617A (zh) * 2019-10-31 2020-01-03 西南大学 一种耐高电场的高储能密度钛酸钡基弛豫铁电陶瓷材料及其制备方法
CN111233462A (zh) * 2020-03-21 2020-06-05 东莞市钧鹏电子科技有限公司 一种中介微波介质陶瓷粉料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Bi2O3掺杂Sr(0.92)Ca(0.08)TiO_3基陶瓷结构与介电性能的研究;刘杨琼等;《人工晶体学报》;20200315;第49卷(第03期);第555-559页 *
Direct and indirect measurement of large electrocaloric effect in b2o3-zno glass modified ba0.65sr0.35tio3 bulk ceramics;Wang SB等;《script materialia》;20210301;第193卷;第59-63页 *
First principle calculations of electronic,band structural,and optical properties of bixsr1-xtio3 perovskite;Fang,yz等;《JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS》;20190430;第127卷;第107-114页 *
structural,electrical and magnetic properties of sr1-xbixtio3-delta ceramics;El-Sayed,S等;《PHILOSOPHICAL MAGAZINE》;20191231;第100卷(第1期);第1-9页 *

Also Published As

Publication number Publication date
CN111943668A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
Qu et al. Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering
CN109354492B (zh) 铋基无铅高储能密度陶瓷材料及其制备方法
CN111763082B (zh) 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用
CN109336588B (zh) 一种高温稳定高介低损耗高绝缘无铅陶瓷电容器材料及制备
CN102674832B (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN113582683B (zh) 一种X8R MLCC用BaTiO3基陶瓷材料的制备方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN103172364B (zh) 一种微波介质陶瓷材料的制备方法
CN103011805B (zh) 一种BaTiO3 基无铅X8R 型陶瓷电容器介质材料及其制备方法
CN115448716A (zh) 一种钛酸钡基储能陶瓷材料及其制备方法
CN114242454B (zh) 一种钛酸铋钠基四元系高温稳定的高介无铅陶瓷电容器介质材料及制备
CN111410530A (zh) 一种抗还原BaTiO3基介质陶瓷及其制备方法
CN113666738A (zh) 一种钛酸钡基x9r型多层陶瓷电容器用介质材料及制备方法
CN107445616B (zh) 一种钛酸锶基无铅耐高压储能陶瓷材料及其制备方法
CN111943668B (zh) 一种中温烧结的高介低损耗负温度补偿型瓷料及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN116425543A (zh) 作为电介质材料的具有高储能和充放电性能的b位高熵陶瓷及制备方法
CN115947598A (zh) 一种可与贱金属内电极共烧的反铁电材料及其制备方法
CN115368132A (zh) 一种钛酸钡基陶瓷材料及制备方法
CN107746206B (zh) 一种高储能密度介质材料及其制备方法
CN111960817A (zh) 高介低损耗耐高压电容器用陶瓷介质材料及其制备方法
JP2022529859A (ja) ドープされたペロブスカイト型スズ酸バリウム材料及びその製造方法、並びにその用途
CN106145932A (zh) 一种高介电常数的多层陶瓷电容器介质材料及其制备方法
CN110171965B (zh) 一种npo电容器介质材料及其制备方法
CN114591079B (zh) 一种高压低损陶瓷电容器介质及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant