CN111940145A - 一种铅锌萤石矿的分离方法 - Google Patents

一种铅锌萤石矿的分离方法 Download PDF

Info

Publication number
CN111940145A
CN111940145A CN202010680347.0A CN202010680347A CN111940145A CN 111940145 A CN111940145 A CN 111940145A CN 202010680347 A CN202010680347 A CN 202010680347A CN 111940145 A CN111940145 A CN 111940145A
Authority
CN
China
Prior art keywords
fluorite
zinc
lead
concentrate
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010680347.0A
Other languages
English (en)
Other versions
CN111940145B (zh
Inventor
张渊
邓冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Multipurpose Utilization of Mineral Resources Chinese Academy of Geological Sciences
Original Assignee
Institute of Multipurpose Utilization of Mineral Resources Chinese Academy of Geological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Multipurpose Utilization of Mineral Resources Chinese Academy of Geological Sciences filed Critical Institute of Multipurpose Utilization of Mineral Resources Chinese Academy of Geological Sciences
Priority to CN202010680347.0A priority Critical patent/CN111940145B/zh
Publication of CN111940145A publication Critical patent/CN111940145A/zh
Application granted granted Critical
Publication of CN111940145B publication Critical patent/CN111940145B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B1/00Conditioning for facilitating separation by altering physical properties of the matter to be treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及铅锌萤石矿浮选技术领域,公开了一种铅锌萤石矿的分离方法,包括以下步骤:S1.磨矿:对所述铅锌萤石矿进行磨矿,得到粒度‑0.074mm的矿物含量为75~80wt%的入浮矿物;S2.铅矿浮选:从所述入浮矿物中浮选铅矿,得到铅精矿和脱铅尾矿;S3.锌矿浮选:从所述脱铅尾矿中浮选锌矿,得到锌精矿和脱锌尾矿;S4.萤石矿浮选:从所述脱锌尾矿中浮选萤石矿,得到萤石总精矿和尾矿;本发明所述分离方法使所得萤石总精矿中的CaF2的含量≥98%,同时所得铅精矿中Pb的含量以及所得锌精矿中Zn的含量符合质量要求;并且以铅锌矿物基本解离为原则对磨矿细度进行控制,克服了萤石精矿中铅锌含量超标的问题,同时避免了萤石矿物过磨的问题,最大限度的回收利用了铅锌萤石资源。

Description

一种铅锌萤石矿的分离方法
技术领域
本发明涉及铅锌萤石矿浮选技术领域,具体是一种铅锌萤石矿的分离方法。
背景技术
我国铅锌矿产资源主要分布在滇西兰坪地区、滇川地区、南岭地区、秦岭-祁连山地区以及内蒙古狼山-渣尔泰地区,分布广泛且储量比较丰富。从省际比较来看,云南的铅矿资源储量占全国总储量的17%,位居全国榜首;内蒙古、广东、甘肃、江西、湖南、四川、陕西次之,其资源储量均在200万吨以上。全国锌储量以云南最多,占全国的25.68%;甘肃和内蒙古次之,占全国的20%以上;其他如内蒙古、甘肃、广西、湖南、广东、四川、河北等省(区)的锌矿资源储量也较丰富,均在400万吨以上。
我国铅锌矿的资源特点以及开发利用的总体条件是:大中型矿多,特大型矿较少,在已发现的矿产地中,大中型矿床占有的铅和锌储量分别达72%和88%;矿石中铅少锌多,铅锌比约为l:2.6,而国外为1:1.2;贫矿多,富矿少,易选,矿山中铅锌的品位之和多在5%~10%之间,品位之和大于10%的矿石仅占总储量的15%,而国外矿山品位一般都比较高,铅锌的品位之和大都在10%以上;硫化矿占绝大多数,90%的储量为原生硫化矿矿石,只有云南的兰坪、会泽,广西的泗顶,辽宁的紫河和陕西的铅峒山等少数几个氧化铅锌矿床。
我国铅锌矿石类型复杂,共伴生组分多达50余种,其中主要有铜、银、金、锡、锑、镉、铋、镓、铟、锗、汞、硫、萤石及分散元素等,具有极大的综合利用价值,但同时也给我国选冶生产增加了一定的难度。铅锌矿中的一些共生组分,如Cu、S、Sn、Bi、Mo、CaF2等,在选矿过程中可以分离出单独的精矿产品,而其他元素一般都在选矿时进入铅或锌精矿,在冶炼过程中回收。
从实际情况看,我国绝大多数铅锌矿山资源综合利用工作已开展,但仍然存在发展不平衡的问题。多次调查的结果都表明,铅锌矿山伴生银的选矿回收率较高,达58%~75%,伴生银和伴生金的冶炼回收率达到了95%以上。但是,开展资源综合利用的科研工作深度、广度不够,多数矿山对资源的综合回收,还没有形成系统的科学管理体系,缺乏从矿物原料到加工利用各环节的综合利用研究。
萤石的用途广泛,主要用于冶金、化工和建材三大行业,其次用于轻工、光学、雕刻和国防工业;此外,萤石也广泛应用于玻璃、陶瓷、水泥等建材工业中。
铅锌萤石矿中是铅锌矿与萤石矿等几种矿物共生,由于矿石中方铅矿和萤石矿均性碎容易泥化,而选矿过程中的磨矿又是以铅锌矿是否单体解离为依据进行磨矿,因此在该过程中有可能导致萤石矿过磨,从而影响萤石精矿的品位和回收率。
因此,我们亟需一种既能让铅锌矿的解离达到选别分离,又能够提高所得萤石精矿的品位和回收率,从而使所得萤石精矿的选矿指标最佳的铅锌萤石矿的分离方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种铅锌萤石矿的分离方法,以至少达到既能让铅锌矿的解离达到选别分离,又能够提高所得萤石精矿的品位和回收率,从而使所得萤石精矿的选矿指标最佳的效果。
本发明的目的是通过以下技术方案来实现的:一种铅锌萤石矿的分离方法,包括以下步骤:
S1.磨矿:对所述铅锌萤石矿进行磨矿,得到粒度-0.074mm的矿物含量为75~80wt%的入浮矿物;
S2.铅矿浮选:从所述入浮矿物中浮选铅矿,得到铅精矿和脱铅尾矿;
S3.锌矿浮选:从所述脱铅尾矿中浮选锌矿,得到锌精矿和脱锌尾矿;
S4.萤石矿浮选:从所述脱锌尾矿中浮选萤石矿,得到萤石总精矿和尾矿。
进一步的,S2中,所述浮选铅矿包括铅粗选、铅扫选和铅精选;
优选的,所述铅粗选,是向所述入浮矿物中加入粗选药剂Ⅰ,进行粗选,得到铅粗精矿和铅粗选尾矿;
所述铅扫选,是向所述铅粗选尾矿中加入扫选药剂Ⅰ,进行扫选,得到铅扫选中矿和脱铅尾矿,所述铅扫选中矿返回前一作业;
所述铅精选,是向所述铅粗精矿中加入精选药剂Ⅰ,进行精选,精选次数≥3,每次精选得到各自的铅精选中矿,最后一次精选得到铅精选中矿和铅精矿,每次精选得到的所述铅精选中矿顺序返回前一作业。
进一步的,所述粗选药剂Ⅰ和所述扫选药剂Ⅰ均包括抑制剂、捕收剂和起泡剂,所述精选药剂Ⅰ包括抑制剂;
优选的,所述抑制剂包括硫酸锌和亚硫酸钠,所述捕收剂包括丁基黄药,所述起泡剂包括2号油。
进一步的,所述粗选药剂Ⅰ中各组分的用量具体为:硫酸锌1400~1600g/t·原矿、亚硫酸钠700~900g/t·原矿、丁基黄药200~250g/t·原矿和2号油80~100g/t·原矿;
所述扫选药剂Ⅰ中各组分的用量具体为:硫酸锌700g/t·原矿、亚硫酸钠400g/t·原矿、丁基黄药100g/t·原矿和2号油30g/t·原矿;
所述精选药剂Ⅰ中各组分的用量具体为:第一次精选时,加入硫酸锌500g/t·原矿和亚硫酸钠300g/t·原矿,随着精选次数的增加,每一次硫酸锌和亚硫酸钠的用量均在上次的基础上减半。
进一步的,S3中,所述浮选锌矿包括锌粗选、锌扫选和锌精选;
优选的,所述锌粗选,是向所述脱铅尾矿中加入粗选药剂Ⅱ,进行粗选,得到锌粗精矿和锌粗选尾矿;
所述锌扫选,是向所述锌粗选尾矿中加入扫选药剂Ⅱ,进行扫选,得到锌扫选中矿和脱锌尾矿,所述锌扫选中矿返回前一作业;
所述锌精选,是对所述锌粗精矿进行精选,精选次数≥4,每次精选得到各自的锌精选中矿,最后一次精选得到锌精选中矿和锌精矿,每次精选得到的所述锌精选中矿顺序返回前一作业。
进一步的,所述粗选药剂Ⅱ包括活化剂、捕收剂和起泡剂;所述扫选药剂Ⅱ包括捕收剂和起泡剂;
优选的,所述活化剂包括硫酸铜,所述捕收剂包括丁基黄药,所述起泡剂包括2号油。
进一步的,所述粗选药剂Ⅱ中各组分的用量具体为:硫酸铜700~800g/t·原矿、丁基黄药100~150g/t·原矿和2号油60~70g/t·原矿;
所述扫选药剂Ⅱ中各组分的用量具体为:丁基黄药70~80g/t·原矿和2号油20~30g/t·原矿。
进一步的,S4中,所述浮选萤石矿包括萤石粗选、萤石扫选和萤石精选;
优选的,所述萤石粗选,是向所述脱锌尾矿中加入粗选药剂Ⅲ,进行粗选,得到萤石粗精矿和萤石粗选尾矿;
所述萤石扫选,是向所述萤石粗选尾矿中加入扫选药剂Ⅲ,进行扫选,得到萤石扫选中矿和尾矿,所述萤石扫选中矿返回前一作业;
所述萤石精选,是向所述萤石粗精矿中加入精选药剂Ⅲ,进行精选,精选次数≥6,每次精选得到各自的萤石精选中矿,最后一次精选得到萤石精选中矿和萤石精矿;每次精选得到的所述萤石精选中矿合并进行扫选和精选,精选次数≥2,得到萤石次精矿;将所述萤石精矿与萤石次精矿合并,得到所述萤石总精矿。
进一步的,所述所述粗选药剂Ⅲ包括分散剂和捕收剂,所述扫选药剂Ⅲ包括捕收剂,所述精选药剂Ⅲ包括分散剂;
优选的,所述分散剂包括硅酸钠,所述捕收剂包括油酸钠。
进一步的,所述粗选药剂Ⅲ中各组分的用量具体为:硅酸钠1000~1500g/t·原矿和油酸钠200~260g/t·原矿;
所述扫选药剂Ⅲ中各组分的用量具体为:油酸钠80~150g/t·原矿;
所述精选药剂Ⅲ中各组分的用量具体为:硅酸钠200~300g/t·原矿。
进一步的,所述铅精矿中Pb的重量百分比≥55%。
进一步的,所述锌精矿中Zn的重量百分比≥50%。
进一步的,所述萤石总精矿中CaF2的重量百分比≥98%。
值得注意的是,本发明通过创造性地对分离方法中的浮选顺序、药剂选择以及条件参数进行优化,以铅锌矿物基本解离为原则对所述铅锌萤石矿的磨矿细度进行控制,同时借助对浮选顺序以及各浮选药剂的限定所起到的协同作用,达到了既能让铅锌矿的解离达到选别分离,又能够提高所得萤石总精矿的品位和回收率的效果。
应当理解的是,尽管现有技术中已经存在对铅锌萤石矿进行分离的方法,但本发明中所述分离方法所达到的效果远远优于现有技术。具体来说,现有技术中对铅锌萤石矿的分离大多药剂成分复杂、用量大且步骤繁多,例如萤石的精选次数为至少8次,才能使其中CaF2的含量达到97%;而根据本发明的实施例记载,所得萤石总精矿中CaF2的含量≥98%,但此时所述萤石精选的次数仅仅为6次,由此可知,本发明在减少了药剂成分和分离步骤的情况下,却提高了所述萤石总精矿中CaF2的含量。因此,现有技术对于本发明不存在借鉴作用。
本发明的有益效果是:
1.本发明的一种铅锌萤石矿的分离方法,以铅锌矿物基本解离为原则对磨矿细度进行控制,克服了萤石精矿中铅锌含量超标的问题,同时避免了萤石矿物过磨的问题,最大限度的回收利用了铅锌萤石资源。
2.本发明的一种铅锌萤石矿的分离方法,所得萤石总精矿中的CaF2的含量≥98%,同时所得铅精矿中Pb的含量以及所得锌精矿中Zn的含量符合质量要求。
附图说明
图1为本发明所述分离方法的流程示意图。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
以下实施例1~3所用铅锌萤石矿成分按质量分数为:1.96%Pb、3.02%Zn、44.55%SiO2、6.14%Al2O3、19.30%CaF2、0.97%MgO、2.10%S、0.18%Na2O、2.20%K2O、0.01%Cu、0.18%BaSO4、0.022%Cd、0.048%P、1.98%TFe、0.0025%As、0.1g/tAu、65.2g/tAg。
实施例1
一种铅锌萤石矿的分离方法,如图1所示,包括以下步骤:
S1.磨矿:对铅锌萤石矿进行磨矿,得到粒度-0.074mm的矿物含量为75wt%的入浮矿物;
S2.铅矿浮选,具体包括以下步骤:
1)铅粗选:向入浮矿物中加入硫酸锌1500g/t·原矿、亚硫酸钠800g/t·原矿、丁基黄药200g/t·原矿和2号油80g/t·原矿,进行粗选,得到铅粗精矿和铅粗选尾矿;
2)铅扫选:向铅粗选尾矿中加入硫酸锌700g/t·原矿、亚硫酸钠400g/t·原矿、丁基黄药100g/t·原矿和2号油30g/t·原矿,进行扫选,得到铅扫选中矿和脱铅尾矿,其中的铅扫选中矿返回前一作业;
3)铅精选:向铅粗精矿中加入硫酸锌和亚硫酸钠,进行精选,精选次数=3,每次精选得到各自的铅精选中矿,最后一次精选得到铅精选中矿和铅精矿,每次精选得到的铅精选中矿顺序返回前一作业;其中,第一次精选时硫酸锌的用量为500g/t·原矿,亚硫酸钠的用量为300g/t·原矿,随着精选次数的增加,每一次硫酸锌和亚硫酸钠的用量均在上一次的基础上减半;
S3.锌矿浮选,具体包括以下步骤:
1)锌粗选:向脱铅尾矿中加入石灰1500g/t·原矿、硫酸铜750g/t·原矿、丁基黄药150g/t·原矿和2号油60g/t·原矿,进行粗选,得到锌粗精矿和锌粗选尾矿;
2)锌扫选:向锌粗选尾矿中加入丁基黄药80g/t·原矿和2号油20g/t·原矿,进行扫选,得到锌扫选中矿和脱锌尾矿,其中的锌扫选中矿返回前一作业;
3)锌精选:对锌粗精矿进行精选,精选次数=4,每次精选得到各自的锌精选中矿,最后一次精选得到锌精选中矿和锌精矿,每次精选得到的锌精选中矿顺序返回前一作业;
S4.萤石矿浮选,具体包括以下步骤:
1)萤石粗选:向脱锌尾矿中加入硅酸钠1000g/t·原矿和油酸钠200g/t·原矿,进行粗选,得到萤石粗精矿和萤石粗选尾矿;
2)萤石扫选:向萤石粗选尾矿中加入油酸钠100g/t·原矿,进行扫选,得到萤石扫选中矿和尾矿,其中的萤石扫选中矿返回前一作业;
3)萤石精选:向萤石粗精矿中加入硅酸钠,进行精选,精选次数=6,每次精选得到各自的萤石精选中矿,最后一次精选得到萤石精选中矿和萤石精矿;每次精选得到的萤石精矿中矿合并进行扫选和精选,精选次数=2,得到萤石次精矿;将萤石精矿与萤石次精矿合并,得到萤石总精矿;其中,每次精选时硅酸钠的用量均为300g/t·原矿。
结果显示:铅精矿中Pb的含量为59.66%,Pb的回收率为82.68%;
锌精矿中Zn的含量为58.93%,Zn的回收率为76.65%;
萤石总精矿中CaF2的含量为98.26%,CaF2的回收率为61.44%。
实施例2
一种铅锌萤石矿的分离方法,如图1所示,包括以下步骤:
S1.磨矿:对铅锌萤石矿进行磨矿,得到粒度-0.074mm的矿物含量为78wt%的入浮矿物;
S2.铅矿浮选,具体包括以下步骤:
1)铅粗选:向入浮矿物中加入硫酸锌1500g/t·原矿、亚硫酸钠800g/t·原矿、丁基黄药220g/t·原矿和2号油100g/t·原矿,进行粗选,得到铅粗精矿和铅粗选尾矿;
2)铅扫选:向铅粗选尾矿中加入硫酸锌700g/t·原矿、亚硫酸钠400g/t·原矿、丁基黄药100g/t·原矿和2号油30g/t·原矿,进行扫选,得到铅扫选中矿和脱铅尾矿,其中的铅扫选中矿返回前一作业;
3)铅精选:向铅粗精矿中加入硫酸锌和亚硫酸钠,进行精选,精选次数=3,每次精选得到各自的铅精选中矿,最后一次精选得到铅精选中矿和铅精矿,每次精选得到的铅精选中矿顺序返回前一作业;其中,第一次精选时硫酸锌的用量为500g/t·原矿,亚硫酸钠的用量为300g/t·原矿,随着精选次数的增加,每一次硫酸锌和亚硫酸钠的用量均在上一次的基础上减半;
S3.锌矿浮选,具体包括以下步骤:
1)锌粗选:向脱铅尾矿中加入石灰1500g/t·原矿、硫酸铜750g/t·原矿、丁基黄药150g/t·原矿和2号油70g/t·原矿,进行粗选,得到锌粗精矿和锌粗选尾矿;
2)锌扫选:向锌粗选尾矿中加入丁基黄药70g/t·原矿和2号油20g/t·原矿,进行扫选,得到锌扫选中矿和脱锌尾矿,其中的锌扫选中矿返回前一作业;
3)锌精选:对锌粗精矿进行精选,精选次数=4,每次精选得到各自的锌精选中矿,最后一次精选得到锌精选中矿和锌精矿,每次精选得到的锌精选中矿顺序返回前一作业;
S4.萤石矿浮选,具体包括以下步骤:
1)萤石粗选:向脱锌尾矿中加入硅酸钠1200g/t·原矿和油酸钠230g/t·原矿,进行粗选,得到萤石粗精矿和萤石粗选尾矿;
2)萤石扫选:向萤石粗选尾矿中加入油酸钠100g/t·原矿,进行扫选,得到萤石扫选中矿和尾矿,其中的萤石扫选中矿返回前一作业;
3)萤石精选:向萤石粗精矿中加入硅酸钠,进行精选,精选次数=6,每次精选得到各自的萤石精选中矿,最后一次精选得到萤石精选中矿和萤石精矿;每次精选得到的萤石精矿中矿合并进行扫选和精选,精选次数=2,得到萤石次精矿;将萤石精矿与萤石次精矿合并,得到萤石总精矿;其中,每次精选时硅酸钠的用量均为300g/t·原矿。
结果显示:铅精矿中Pb的含量为61.23%,Pb的回收率为80.34%;
锌精矿中Zn的含量为59.83%,Zn的回收率为75.62%;
萤石总精矿中CaF2的含量为98.36%,CaF2的回收率为59.35%。
实施例3
一种铅锌萤石矿的分离方法,如图1所示,包括以下步骤:
S1.磨矿:对铅锌萤石矿进行磨矿,得到粒度-0.074mm的矿物含量为80wt%的入浮矿物;
S2.铅矿浮选,具体包括以下步骤:
1)铅粗选:向入浮矿物中加入硫酸锌1500g/t·原矿、亚硫酸钠800g/t·原矿、丁基黄药250g/t·原矿和2号油100g/t·原矿,进行粗选,得到铅粗精矿和铅粗选尾矿;
2)铅扫选:向铅粗选尾矿中加入硫酸锌700g/t·原矿、亚硫酸钠400g/t·原矿、丁基黄药100g/t·原矿和2号油30g/t·原矿,进行扫选,得到铅扫选中矿和脱铅尾矿,其中的铅扫选中矿返回前一作业;
3)铅精选:向铅粗精矿中加入硫酸锌和亚硫酸钠,进行精选,精选次数=3,每次精选得到各自的铅精选中矿,最后一次精选得到铅精选中矿和铅精矿,每次精选得到的铅精选中矿顺序返回前一作业;其中,第一次精选时硫酸锌的用量为500g/t·原矿,亚硫酸钠的用量为300g/t·原矿,随着精选次数的增加,每一次硫酸锌和亚硫酸钠的用量均在上一次的基础上减半;
S3.锌矿浮选,具体包括以下步骤:
1)锌粗选:向脱铅尾矿中加入石灰1500g/t·原矿、硫酸铜750g/t·原矿、丁基黄药150g/t·原矿和2号油70g/t·原矿,进行粗选,得到锌粗精矿和锌粗选尾矿;
2)锌扫选:向锌粗选尾矿中加入丁基黄药70g/t·原矿和2号油20g/t·原矿,进行扫选,得到锌扫选中矿和脱锌尾矿,其中的锌扫选中矿返回前一作业;
3)锌精选:对锌粗精矿进行精选,精选次数=4,每次精选得到各自的锌精选中矿,最后一次精选得到锌精选中矿和锌精矿,每次精选得到的锌精选中矿顺序返回前一作业;
S4.萤石矿浮选,具体包括以下步骤:
1)萤石粗选:向脱锌尾矿中加入硅酸钠1500g/t·原矿和油酸钠260g/t·原矿,进行粗选,得到萤石粗精矿和萤石粗选尾矿;
2)萤石扫选:向萤石粗选尾矿中加入油酸钠100g/t·原矿,进行扫选,得到萤石扫选中矿和尾矿,其中的萤石扫选中矿返回前一作业;
3)萤石精选:向萤石粗精矿中加入硅酸钠,进行精选,精选次数=6,每次精选得到各自的萤石精选中矿,最后一次精选得到萤石精选中矿和萤石精矿;每次精选得到的萤石精矿中矿合并进行扫选和精选,精选次数=2,得到萤石次精矿;将萤石精矿与萤石次精矿合并,得到萤石总精矿;其中,每次精选时硅酸钠的用量均为300g/t·原矿。
结果显示:铅精矿中Pb的含量为57.67%,Pb的回收率为84.59%;
锌精矿中Zn的含量为56.37%,Zn的回收率为76.87%;
萤石总精矿中CaF2的含量为98.03%,CaF2的回收率为57.32%。
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (10)

1.一种铅锌萤石矿的分离方法,其特征在于,包括以下步骤:
S1.磨矿:对所述铅锌萤石矿进行磨矿,得到粒度-0.074mm的矿物含量为75~80wt%的入浮矿物;
S2.铅矿浮选:从所述入浮矿物中浮选铅矿,得到铅精矿和脱铅尾矿;
S3.锌矿浮选:从所述脱铅尾矿中浮选锌矿,得到锌精矿和脱锌尾矿;
S4.萤石矿浮选:从所述脱锌尾矿中浮选萤石矿,得到萤石总精矿和尾矿。
2.根据权利要求1所述的一种铅锌萤石矿的分离方法,其特征在于,S2中,所述浮选铅矿包括铅粗选、铅扫选和铅精选;
优选的,所述铅粗选,是向所述入浮矿物中加入粗选药剂Ⅰ,进行粗选,得到铅粗精矿和铅粗选尾矿;
所述铅扫选,是向所述铅粗选尾矿中加入扫选药剂Ⅰ,进行扫选,得到铅扫选中矿和脱铅尾矿,所述铅扫选中矿返回前一作业;
所述铅精选,是向所述铅粗精矿中加入精选药剂Ⅰ,进行精选,精选次数≥3,每次精选得到各自的铅精选中矿,最后一次精选得到铅精选中矿和铅精矿,每次精选得到的所述铅精选中矿顺序返回前一作业。
3.根据权利要求2所述的一种铅锌萤石矿的分离方法,其特征在于,所述粗选药剂Ⅰ和所述扫选药剂Ⅰ均包括抑制剂、捕收剂和起泡剂,所述精选药剂Ⅰ包括抑制剂;
优选的,所述抑制剂包括硫酸锌和亚硫酸钠,所述捕收剂包括丁基黄药,所述起泡剂包括2号油。
4.根据权利要求1所述的一种铅锌萤石矿的分离方法,其特征在于,S3中,所述浮选锌矿包括锌粗选、锌扫选和锌精选;
优选的,所述锌粗选,是向所述脱铅尾矿中加入粗选药剂Ⅱ,进行粗选,得到锌粗精矿和锌粗选尾矿;
所述锌扫选,是向所述锌粗选尾矿中加入扫选药剂Ⅱ,进行扫选,得到锌扫选中矿和脱锌尾矿,所述锌扫选中矿返回前一作业;
所述锌精选,是对所述锌粗精矿进行精选,精选次数≥4,每次精选得到各自的锌精选中矿,最后一次精选得到锌精选中矿和锌精矿,每次精选得到的所述锌精选中矿顺序返回前一作业。
5.根据权利要求4所述的一种铅锌萤石矿的分离方法,其特征在于,所述粗选药剂Ⅱ包括活化剂、捕收剂和起泡剂;所述扫选药剂Ⅱ包括捕收剂和起泡剂;
优选的,所述活化剂包括硫酸铜,所述捕收剂包括丁基黄药,所述起泡剂包括2号油。
6.根据权利要求1所述的一种铅锌萤石矿的分离方法,其特征在于,S4中,所述浮选萤石矿包括萤石粗选、萤石扫选和萤石精选;
优选的,所述萤石粗选,是向所述脱锌尾矿中加入粗选药剂Ⅲ,进行粗选,得到萤石粗精矿和萤石粗选尾矿;
所述萤石扫选,是向所述萤石粗选尾矿中加入扫选药剂Ⅲ,进行扫选,得到萤石扫选中矿和尾矿,所述萤石扫选中矿返回前一作业;
所述萤石精选,是向所述萤石粗精矿中加入精选药剂Ⅲ,进行精选,精选次数≥6,每次精选得到各自的萤石精选中矿,最后一次精选得到萤石精选中矿和萤石精矿;每次精选得到的所述萤石精选中矿合并进行扫选和精选,精选次数≥2,得到萤石次精矿;将所述萤石精矿与萤石次精矿合并,得到所述萤石总精矿。
7.根据权利要求6所述的一种铅锌萤石矿的分离方法,其特征在于,所述所述粗选药剂Ⅲ包括分散剂和捕收剂,所述扫选药剂Ⅲ包括捕收剂,所述精选药剂Ⅲ包括分散剂;
优选的,所述分散剂包括硅酸钠,所述捕收剂包括油酸钠。
8.根据权利要求1所述的一种铅锌萤石矿的分离方法,其特征在于,所述铅精矿中Pb的重量百分比≥55%。
9.根据权利要求1所述的一种铅锌萤石矿的分离方法,其特征在于,所述锌精矿中Zn的重量百分比≥50%。
10.根据权利要求1所述的一种铅锌萤石矿的分离方法,其特征在于,所述萤石总精矿中CaF2的重量百分比≥98%。
CN202010680347.0A 2020-07-15 2020-07-15 一种铅锌萤石矿的分离方法 Active CN111940145B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010680347.0A CN111940145B (zh) 2020-07-15 2020-07-15 一种铅锌萤石矿的分离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010680347.0A CN111940145B (zh) 2020-07-15 2020-07-15 一种铅锌萤石矿的分离方法

Publications (2)

Publication Number Publication Date
CN111940145A true CN111940145A (zh) 2020-11-17
CN111940145B CN111940145B (zh) 2022-11-08

Family

ID=73340921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010680347.0A Active CN111940145B (zh) 2020-07-15 2020-07-15 一种铅锌萤石矿的分离方法

Country Status (1)

Country Link
CN (1) CN111940145B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1374873A (en) * 1971-11-10 1974-11-20 Montedison Spa Flotation of fluorite
CN87105202A (zh) * 1987-07-22 1988-08-10 广州有色金属研究院 浮选萤石的方法
SU1627257A1 (ru) * 1988-10-11 1991-02-15 Ленинабадский Ботанический Сад Института Ботаники Ан Таджсср Способ флотации флюоритовых руд
CN102513219A (zh) * 2011-12-19 2012-06-27 云南澜沧铅矿有限公司 从含碳铅锌硫化矿中分离铅锌矿的选矿药剂和选矿方法
CN105709940A (zh) * 2016-01-29 2016-06-29 长沙矿冶研究院有限责任公司 一种从多金属矿浮选尾矿中回收萤石的方法
CN106076605A (zh) * 2016-08-05 2016-11-09 中国地质科学院郑州矿产综合利用研究所 一种萤石矿扫精选脱泥分选方法
CN107029870A (zh) * 2017-06-20 2017-08-11 湖南临武嘉宇矿业有限责任公司 一种尾矿综合回收铅、锌、锡、萤石的方法
CN107999267A (zh) * 2017-12-12 2018-05-08 西部矿业股份有限公司 一种高浓度环境下高硫铅锌矿浮选分离工艺
CN108296026A (zh) * 2017-12-28 2018-07-20 三明学院 一种铅低锌高型难选铅锌矿的浮选方法
CN108405191A (zh) * 2018-02-11 2018-08-17 广西华洋矿源材料有限公司 一种硫化铅锌矿的选取方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1374873A (en) * 1971-11-10 1974-11-20 Montedison Spa Flotation of fluorite
CN87105202A (zh) * 1987-07-22 1988-08-10 广州有色金属研究院 浮选萤石的方法
SU1627257A1 (ru) * 1988-10-11 1991-02-15 Ленинабадский Ботанический Сад Института Ботаники Ан Таджсср Способ флотации флюоритовых руд
CN102513219A (zh) * 2011-12-19 2012-06-27 云南澜沧铅矿有限公司 从含碳铅锌硫化矿中分离铅锌矿的选矿药剂和选矿方法
CN105709940A (zh) * 2016-01-29 2016-06-29 长沙矿冶研究院有限责任公司 一种从多金属矿浮选尾矿中回收萤石的方法
CN106076605A (zh) * 2016-08-05 2016-11-09 中国地质科学院郑州矿产综合利用研究所 一种萤石矿扫精选脱泥分选方法
CN107029870A (zh) * 2017-06-20 2017-08-11 湖南临武嘉宇矿业有限责任公司 一种尾矿综合回收铅、锌、锡、萤石的方法
CN107999267A (zh) * 2017-12-12 2018-05-08 西部矿业股份有限公司 一种高浓度环境下高硫铅锌矿浮选分离工艺
CN108296026A (zh) * 2017-12-28 2018-07-20 三明学院 一种铅低锌高型难选铅锌矿的浮选方法
CN108405191A (zh) * 2018-02-11 2018-08-17 广西华洋矿源材料有限公司 一种硫化铅锌矿的选取方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐朝刚等: "云南某低品位铅锌萤石矿选矿试验研究", 《矿冶工程》 *

Also Published As

Publication number Publication date
CN111940145B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN102029220B (zh) 低品位复杂铅锑锌分离浮选的方法
CN103433149B (zh) 一种提高锌指标的多金属硫化矿浮选工艺
CN100515576C (zh) 超细贫铅锑锌絮凝载体浮选的方法
CN104689913B (zh) 一种多晶系硫铁矿混合回收的方法
CN109127115B (zh) 一种从高硫铅锌矿尾矿中回收铅锌矿物的方法
CN110013913B (zh) 一种分级筛分预排碳酸钙的萤石联合浮选工艺
CN109821661A (zh) 一种高硫铅锌矿低碱无硫酸浮选工艺
CN108672101B (zh) 一种硫化铜硫矿选铜尾矿中硫活化浮选的方法
CN105618273A (zh) 一种锡石多金属硫化矿选矿方法
CN105327771A (zh) 一种含铜硫精矿的细磨及综合回收利用选矿工艺方法
CN111495608A (zh) 一种高效回收多金属硫化矿中铅锌硫的浮选工艺
CN107971127A (zh) 一种铋硫精矿中铋硫分离的选矿方法
CN110882834A (zh) 一种从铜冶炼渣中高效回收铜的选矿方法
CN111229473B (zh) 一种铋硫分离过程中银导向回收选矿方法
CN111167613A (zh) 一种从铅锌分选后的硫精矿中综合回收铅锌的方法
CN111940145B (zh) 一种铅锌萤石矿的分离方法
CN116967003A (zh) 一种低品位硫化铅锌矿选矿方法
CN106540813A (zh) 一种高碳高泥铜铅硫化矿的选矿方法
CN109865600A (zh) 一种使用混合捕收剂在硫化铅锌矿浮选中优先浮铅的方法
CN116689139A (zh) 一种铜锡重选工艺
CN102784721B (zh) 从有毒冶炼烟尘中富集回收硒汞的方法
CN112934475A (zh) 一种从铜钨多金属矿石中回收铜铅锌的选矿方法
CN112221719A (zh) 一种低品位铜硫矿石提高伴生金回收率的方法
CN109772589A (zh) 一种含铟高铁闪锌矿的组合捕收剂及其应用
CN110813523A (zh) 从选铁尾矿中回收微细粒低品位钼的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant