CN111933751A - 一种硅片局部沉积非晶硅的方法 - Google Patents

一种硅片局部沉积非晶硅的方法 Download PDF

Info

Publication number
CN111933751A
CN111933751A CN202010804397.5A CN202010804397A CN111933751A CN 111933751 A CN111933751 A CN 111933751A CN 202010804397 A CN202010804397 A CN 202010804397A CN 111933751 A CN111933751 A CN 111933751A
Authority
CN
China
Prior art keywords
amorphous silicon
silicon wafer
laser
silicon
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010804397.5A
Other languages
English (en)
Other versions
CN111933751B (zh
Inventor
沈梦超
符黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Shichuang Energy Co Ltd
Original Assignee
Changzhou Shichuang Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Shichuang Energy Co Ltd filed Critical Changzhou Shichuang Energy Co Ltd
Priority to CN202010804397.5A priority Critical patent/CN111933751B/zh
Publication of CN111933751A publication Critical patent/CN111933751A/zh
Application granted granted Critical
Publication of CN111933751B publication Critical patent/CN111933751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Recrystallisation Techniques (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种硅片局部沉积非晶硅的方法,采用背面覆盖有非晶硅层的透明载板作为靶材,将靶材置于待沉积非晶硅的硅片附近,靶材背面的非晶硅层朝向硅片,使用激光照射靶材正面的特定区域,与该特定区域相对应的背面非晶硅层吸收激光能量并蒸发,背面蒸发的非晶硅脱离靶材并转移至硅片表面,实现硅片局部沉积非晶硅。本发明具有操作简单、效果稳定、局部非晶硅沉积精度高、应用空间大的优点。

Description

一种硅片局部沉积非晶硅的方法
技术领域
本发明涉及一种硅片局部沉积非晶硅的方法。
背景技术
在晶硅太阳电池技术领域,非晶硅是一种具有应用前景的半导体材料,常作为晶硅太阳电池PN结的形成材料以及钝化接触材料。在高效晶硅太阳电池制造中,经常需要在电池中制作特定的的电路结构来提高器件的性能,就需要在器件指定的局部区域制作非晶硅,如HJT-IBC电池、钝化接触电池等。
目前常用的非晶硅沉积方法有APCVD(常压化学气相沉积),LPCVD(低压化学气相沉积),PECVD(等离子体增强化学气相沉积)等,这些方法都可以在半导体器件表面形成的非晶硅层。
但是,以上方法所形成的非晶硅层均是均匀覆盖在器件表面,想要得到特定的局部非晶硅图案就需要额外的后处理步骤以去除不需要的部分,常用到激光烧蚀法,光刻法等,这些方法都有极高的硬件要求和复杂的处理步骤,增加了器件的制作难度。
发明内容
为解决现有技术中的缺陷,本发明提供一种硅片局部沉积非晶硅的方法,采用背面覆盖有非晶硅层的透明载板作为靶材,将靶材置于待沉积非晶硅的硅片附近,靶材背面的非晶硅层朝向硅片,使用激光照射靶材正面的特定区域,与该特定区域相对应的背面非晶硅层吸收激光能量并蒸发,背面蒸发的非晶硅脱离靶材并按照特定路径(该特定路径与激光照射路径相对应)转移至硅片表面,实现硅片局部沉积非晶硅。
优选的,所述透明载板的正面也覆盖有非晶硅层,且使用激光照射靶材正面的特定区域后,位于该特定区域的正面非晶硅层先吸收激光能量并蒸发至环境中,然后与该特定区域相对应的背面非晶硅层吸收激光能量并蒸发,背面蒸发的非晶硅脱离靶材并按照特定路径(该特定路径与激光照射路径相对应)转移至硅片表面,实现硅片局部沉积非晶硅。
优选的,所述透明载板为高纯石英板。
优选的,所述高纯石英板中SiO2的质量含量不小于99.99%,金属杂质的质量含量不大于15ppm。
优选的,所述高纯石英板的厚度均匀性要求为:石英板各位置厚度差小于5um;高纯石英板的表面平滑度要求为:石英板单侧表面高度差小于0.2um。
优选的,所述高纯石英板的厚度为0.2~2mm。
优选的,所述非晶硅层的厚度为10~2000nm。
优选的,所述靶材背面与硅片的间距为0.2~2mm。
优选的,所述激光照射所用激光的波长为535~1064nm。
优选的,所述激光照射采用脉冲激光扫描,脉冲激光的光斑为能量均匀分布的矩形光斑,且相邻光斑之间互不重叠。
优选的,相邻光斑之间的间距为1~20um。
本发明的优点和有益效果在于:提供一种硅片局部沉积非晶硅的方法,该方法具有操作简单、效果稳定、局部非晶硅沉积精度高、应用空间大的优点。
非晶硅对光有很高的吸收系数,把非晶硅覆盖在高透光的靶材上,使用特定的激光照射靶材,激光能量的绝大部分将被非晶硅层吸收,吸收能量的非晶硅产生热能后蒸发脱离靶材表面,在非晶硅面附近放置的的硅片表面接收蒸发的非晶硅,蒸发的非晶硅移动路径与激光照射路径具有很高的一致性,因此可以通过激光编程将激光扫描路径图形化,在硅片表面局部沉积图形化的非晶硅薄膜。激光扫描完成后,硅片表面实现局部覆盖非晶硅,且非晶硅所在区域与激光扫描区域完全对应。
高纯石英板中SiO2的质量含量不小于99.99%,金属杂质的质量含量不大于15ppm;这样可最大程度地避免激光照射过程中石英板中的杂质进入非晶硅中进而对硅片造成污染。
高纯石英板的厚度均匀性要求为:石英板各位置厚度差小于5um;这样可最大程度地避免激光照射过程中因石英板厚度不均使激光路径发生偏移进而导致非晶硅沉积图形发生形变。
高纯石英板的表面平滑度要求为:石英板单侧表面高度差小于0.2um;这样可最大程度地减小非晶硅在石英板表面的附着力,便于非晶硅在激光作用下均匀彻底的脱离石英板表面。
高纯石英板的厚度为0.2~2mm,厚度过薄会导致载板易碎,厚度过厚会导致激光路径在载板中发生偏移。
靶材背面与硅片的间距为0.2~2mm,间距大小可根据实际效果进行调整,但须保证一定的间距,使靶材背面的非晶硅在蒸发并转移至硅片表面时,能够有足够的距离发散,进而保证硅片上非晶硅的连续。间距如果过大,会导致非晶硅在到达硅片表面之前,就因温度降低而冷却,无法附着在硅片表面。
激光的波长为535~1064nm,激光波长过短会导致非晶硅蒸发不均匀且对载板造成损伤。
脉冲激光扫描过程中,光斑不能重叠,故需要使用矩形光斑;若光斑重叠,连续的两个光斑中后打的光斑在重叠区域将穿透载板打在硅片上,导致硅片损伤。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明具体实施的技术方案是:
实施例1
本发明提供一种硅片局部沉积非晶硅的方法,采用背面覆盖有非晶硅层的透明载板作为靶材,将靶材置于待沉积非晶硅的硅片附近(靶材背面与硅片的间距为0.2~2mm),靶材背面的非晶硅层朝向硅片,使用激光照射靶材正面的特定区域,与该特定区域相对应的背面非晶硅层吸收激光能量并蒸发,背面蒸发的非晶硅脱离靶材并按照特定路径(该特定路径与激光照射路径相对应)转移至硅片表面,实现硅片局部沉积非晶硅。
实施例2
本发明还提供另一种硅片局部沉积非晶硅的方法,采用正背面都覆盖有非晶硅层的透明载板作为靶材,将靶材置于待沉积非晶硅的硅片附近(靶材背面与硅片的间距为0.2~2mm),靶材背面的非晶硅层朝向硅片,使用激光照射靶材正面的特定区域,位于该特定区域的正面非晶硅层先吸收激光能量并蒸发至环境中,然后与该特定区域相对应的背面非晶硅层吸收激光能量并蒸发,背面蒸发的非晶硅脱离靶材并按照特定路径(该特定路径与激光照射路径相对应)转移至硅片表面,实现硅片局部沉积非晶硅。
上述实施例1和实施例2中:
透明载板优选高纯石英板;高纯石英板中SiO2的质量含量不小于99.99%,金属杂质的质量含量不大于15ppm;高纯石英板的厚度均匀性要求为:石英板各位置厚度差小于5um;高纯石英板的表面平滑度要求为:石英板单侧表面高度差小于0.2um;高纯石英板的厚度为0.2~2mm。
非晶硅层的厚度为10~2000nm。
激光照射所用激光的波长为535~1064nm。
激光照射采用脉冲激光扫描,脉冲激光的光斑为能量均匀分布的矩形光斑,且相邻光斑之间互不重叠,可将相邻光斑之间的间距控制在1~20um。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

1.一种硅片局部沉积非晶硅的方法,其特征在于,采用背面覆盖有非晶硅层的透明载板作为靶材,将靶材置于待沉积非晶硅的硅片附近,靶材背面的非晶硅层朝向硅片表面,使用激光照射靶材正面的特定区域,与该特定区域相对应的背面非晶硅层吸收激光能量并蒸发,背面蒸发的非晶硅脱离靶材并转移至硅片表面,实现硅片局部沉积非晶硅。
2.根据权利要求1所述的硅片局部沉积非晶硅的方法,其特征在于,所述透明载板的正面也覆盖有非晶硅层,且使用激光照射靶材正面的特定区域后,位于该特定区域的正面非晶硅层先吸收激光能量并蒸发至环境中,然后与该特定区域相对应的背面非晶硅层吸收激光能量并蒸发,背面蒸发的非晶硅脱离靶材并转移至硅片表面,实现硅片局部沉积非晶硅。
3.根据权利要求1或2所述的硅片局部沉积非晶硅的方法,其特征在于,所述透明载板为高纯石英板。
4.根据权利要求3所述的硅片局部沉积非晶硅的方法,其特征在于,所述高纯石英板中SiO2的质量含量不小于99.99%,金属杂质的质量含量不大于15ppm。
5.根据权利要求3所述的硅片局部沉积非晶硅的方法,其特征在于,所述高纯石英板的厚度均匀性要求为:石英板各位置厚度差小于5um;高纯石英板的表面平滑度要求为:石英板单侧表面高度差小于0.2um。
6.根据权利要求3所述的硅片局部沉积非晶硅的方法,其特征在于,所述高纯石英板的厚度为0.2~2mm。
7.根据权利要求1或2所述的硅片局部沉积非晶硅的方法,其特征在于,所述非晶硅层的厚度为10~2000nm。
8.根据权利要求1或2所述的硅片局部沉积非晶硅的方法,其特征在于,所述靶材背面与硅片的间距为0.2~2mm。
9.根据权利要求1或2所述的硅片局部沉积非晶硅的方法,其特征在于,所述激光照射所用激光的波长为535~1064nm。
10.根据权利要求1或2所述的硅片局部沉积非晶硅的方法,其特征在于,所述激光照射采用脉冲激光扫描,脉冲激光的光斑为能量均匀分布的矩形光斑,且相邻光斑之间互不重叠。
11.根据权利要求10所述的硅片局部沉积非晶硅的方法,其特征在于,相邻光斑之间的间距为1~20um。
CN202010804397.5A 2020-08-12 2020-08-12 一种硅片局部沉积非晶硅的方法 Active CN111933751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010804397.5A CN111933751B (zh) 2020-08-12 2020-08-12 一种硅片局部沉积非晶硅的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010804397.5A CN111933751B (zh) 2020-08-12 2020-08-12 一种硅片局部沉积非晶硅的方法

Publications (2)

Publication Number Publication Date
CN111933751A true CN111933751A (zh) 2020-11-13
CN111933751B CN111933751B (zh) 2022-10-04

Family

ID=73311196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010804397.5A Active CN111933751B (zh) 2020-08-12 2020-08-12 一种硅片局部沉积非晶硅的方法

Country Status (1)

Country Link
CN (1) CN111933751B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066716A (zh) * 2021-03-26 2021-07-02 常州时创能源股份有限公司 激光转印方法
CN113097107A (zh) * 2021-03-26 2021-07-09 常州时创能源股份有限公司 非晶硅靶材承载装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172421A (ja) * 1987-01-12 1988-07-16 Mitsubishi Electric Corp 薄膜形成装置
WO1993017451A1 (en) * 1992-02-28 1993-09-02 Lasa Industries, Inc. Laser generated i.c. pattern
CN103568614A (zh) * 2012-07-20 2014-02-12 株式会社日立高新技术 激光转印方法和该方法使用的激光转印装置
EP2843079A1 (en) * 2013-08-30 2015-03-04 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Process and donor carrier for manufacturing a semi-conductor device using light induced transfer.
CN107430981A (zh) * 2015-03-13 2017-12-01 奈特考尔技术公司 激光加工的背触异质结太阳能电池
CN111009590A (zh) * 2019-10-14 2020-04-14 中建材浚鑫科技有限公司 一种hjt太阳电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172421A (ja) * 1987-01-12 1988-07-16 Mitsubishi Electric Corp 薄膜形成装置
WO1993017451A1 (en) * 1992-02-28 1993-09-02 Lasa Industries, Inc. Laser generated i.c. pattern
CN103568614A (zh) * 2012-07-20 2014-02-12 株式会社日立高新技术 激光转印方法和该方法使用的激光转印装置
EP2843079A1 (en) * 2013-08-30 2015-03-04 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Process and donor carrier for manufacturing a semi-conductor device using light induced transfer.
CN107430981A (zh) * 2015-03-13 2017-12-01 奈特考尔技术公司 激光加工的背触异质结太阳能电池
CN111009590A (zh) * 2019-10-14 2020-04-14 中建材浚鑫科技有限公司 一种hjt太阳电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. TOET等: "Laser-assisted transfer of silicon by explosive hydrogen release", 《APPLIED PHYSICS LETTERS》 *
M. COLINA等: "Laser Induced Forward Transfer for front contact improvement in silicon heterojunction solar cells", 《APPLIED SURFACE SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066716A (zh) * 2021-03-26 2021-07-02 常州时创能源股份有限公司 激光转印方法
CN113097107A (zh) * 2021-03-26 2021-07-09 常州时创能源股份有限公司 非晶硅靶材承载装置
CN113097107B (zh) * 2021-03-26 2023-12-15 常州时创能源股份有限公司 非晶硅靶材承载装置
CN113066716B (zh) * 2021-03-26 2024-02-13 常州时创能源股份有限公司 激光转印方法

Also Published As

Publication number Publication date
CN111933751B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US7517709B1 (en) Method of forming backside point contact structures for silicon solar cells
CN111933751B (zh) 一种硅片局部沉积非晶硅的方法
US4870031A (en) Method of manufacturing a semiconductor device
US8546172B2 (en) Laser polishing of a back contact of a solar cell
US8536054B2 (en) Laser polishing of a solar cell substrate
CN104412393A (zh) 太阳能电池元件以及太阳能电池元件的制造方法
JP2011056514A (ja) 光電変換素子の製造方法
JP2011109052A (ja) 薄膜型光吸収層製造方法、これを用いた薄膜太陽電池製造方法、および薄膜太陽電池
JP5305431B2 (ja) 太陽光発電に用いられる半導体への不純物導入方法
EP2086014B1 (en) Method for producing conductive oxide-deposited substrate and MIS laminated structure
US8173483B2 (en) Method of manufacturing solar cell
JPH0851229A (ja) 集積型太陽電池およびその製造方法
US20100255630A1 (en) Sodium-incorporation in solar cell substrates and contacts
KR101630932B1 (ko) 전자소자용 기판, 그의 제조방법 및 그를 포함하는 박막형 태양전지
JP2001176334A (ja) 透明導電膜及びその製造方法
TWI485868B (zh) 薄膜太陽能電池及其製造方法
KR100916199B1 (ko) 단결정 기판 및 이를 이용한 태양전지 형성방법
KR20220100542A (ko) 페로브스카이트 태양전지의 고속화 공정을 위한 메니스커스 솔루션 시어링 가시화 장치 및 이를 이용한 메니스커스 솔루션 시어링 장치
JP2000022187A (ja) CdS/CdTe太陽電池およびその製造方法
CN117241594A (zh) 一种钙钛矿太阳能电池组件及大面积均匀钙钛矿薄膜的制备方法
Guo et al. The Effect of Interfacial Humidity on the Printing of Highly Reproducible Perovskite Solar Cells in the Air
JP2024504761A (ja) 太陽電池及び太陽電池の製造方法
KR102065148B1 (ko) 태양전지용 탄소섬유상의 실리콘층 및 그 제조방법
JP2001320071A (ja) 集積型薄膜太陽電池の製造方法およびパターニング装置
CN1614741A (zh) 制作低温多晶硅薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant