CN111921562B - 一种非均相光催化剂g-C3N4@α-FOD的制备方法及其降解有机污染物的应用 - Google Patents

一种非均相光催化剂g-C3N4@α-FOD的制备方法及其降解有机污染物的应用 Download PDF

Info

Publication number
CN111921562B
CN111921562B CN202010885987.5A CN202010885987A CN111921562B CN 111921562 B CN111921562 B CN 111921562B CN 202010885987 A CN202010885987 A CN 202010885987A CN 111921562 B CN111921562 B CN 111921562B
Authority
CN
China
Prior art keywords
fod
alpha
temperature
preparation
heterogeneous photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010885987.5A
Other languages
English (en)
Other versions
CN111921562A (zh
Inventor
刘晓薇
邹飞林
韩博宇
李斌
孙振杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010885987.5A priority Critical patent/CN111921562B/zh
Publication of CN111921562A publication Critical patent/CN111921562A/zh
Application granted granted Critical
Publication of CN111921562B publication Critical patent/CN111921562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种非均相光催化剂g‑C3N4@α‑FOD的制备方法及其降解有机污染物的应用,该催化剂采用难溶于水的α‑草酸亚铁二水合物(α‑FOD)作为载体、以质子化石墨相氮化碳(g‑C3N4)为附载材料,通过简单的“静电吸附沉淀法+溶剂热法”制得,α‑FOD中的大量羰基与g‑C3N4三嗪环之间的π‑π相互作用以及两种材料间的静电作用,促进其形成稳定的结构以及高效的电子转移,进而表现出较好的光催化活性,同时材料结构的稳定性也使得其表现出较优的循环重复利用性。通过构建g‑C3N4@α‑FOD非均相类芬顿反应体系,可以实现对医药、食品和印染等行业废水中的有机污染物的有效降解。

Description

一种非均相光催化剂g-C3N4@α-FOD的制备方法及其降解有机 污染物的应用
技术领域
本发明属于光催化复合材料技术和环境材料技术领域,具体涉及一种非均相光催化剂 g-C3N4@α-FOD的制备方法及其对有机污染物降解的应用。
背景技术
光催化技术是一种高效的污染物降解新兴技术,因其可借助太阳光的能量促进非自发反应的发生,具有反应条件温和、处理负荷量大以及处理污染物范围广等独特优势,近年来在环保领域引起了广泛关注。由于大部分光催化材料的有效作用波段很窄且波长较短,往往只能紫外光照射下发挥作用,这极大地遏制了光催化材料的应用。尤其在水处理方面,如何开发出一种有效作用波段宽且稳定性强的光催化材料是目前的研究热点。
石墨相氮化碳(g-C3N4)是一种典型的二维共轭聚合物材料,具有优异的电子能带结构、富电子性质、表面官能化修饰、高理化稳定性、无毒以及原料丰富等特点,被广泛应用于可见光催化裂解水制氢、光催化降解污染物、传感、成像及能源转换等诸多领域。然而,g-C3N4的低比表面积、较窄的带隙和电子-空穴的高复合率大大地限制了其在催化领域的应用。目前,一些研究者尝试通过调整其微观形貌来增大其比表面积,然而更多的研究专注于通过引入金属/非金属元素或半导体来构建复合材料,以制备出同时满足高比表面积、电子空穴迁移快、吸收波长宽等条件的高效光催化复合材料。
金属有机骨架(MOFs)材料代表了一类杂合的有机—无机超分子材料,是通过有机桥联配体和无机的金属离子的结合构成的有序网络结构。独特的结构使其可以实现一些特殊的应用,包括气体的存储和分离、对污染物的吸附、催化降解以及药物缓释等。α-草酸亚铁二水合物 (α-FOD)作为一种一维铁基MOFs,在芬顿反应体系中具有良好的催化活性。在α-FOD的结构中,草酸盐基团起着四齿桥联配体的作用,并与亚铁阳离子连接建立无限的链排列。近年来,Zhao-JiaLiu等(Materials Letters,178(2016),83-86.)研究发现可见光驱动下α-FOD在不添加H2O2的情况下能有效降解罗丹明B(RhB)。在降解RhB反应体系中,存在着两种催化降解途径:一种是传统的光催化氧化,α-FOD中光生空穴的氧化电位足够大,可见光下足以将RhB溶液中的OH-氧化为·OH;另一种是光引发的芬顿氧化,水中的溶解氧和H+在导带处的光生电子引发下反应生成H2O2,进而形成了Fe2+/H2O2芬顿反应体系,在酸性条件下生成大量的·OH。两种途径生成的·OH与RhB发生有效的氧化降解反应。α-FOD的独特组成使其成为一种具有类芬顿效应的光催化剂。
综合g-C3N4和α-FOD各自的特点,本发明制备出廉价的具有协同性能的可见光驱动的光催化复合材料g-C3N4@α-FOD。g-C3N4@α-FOD中形成的二元异质结扩展了g-C3N4的可见光利用区域,提高了其光生电子-空穴的分离率,并且增加了材料整体的光催化活性位点。此外,材料表面疏松多孔的结构有益于增加材料的表面积,增强材料对污染物质的吸附能力,进而可促进其光催化反应,提高光催化性能。材料整体光催化性能的提升增强了有机污染物降解途径中的光催化氧化效果,进而为芬顿氧化途径提供了更多的H2O2,促进了芬顿氧化的效果。g-C3N4和α-FOD的性能互补促进了材料整体的催化氧化性能的提升,使得其在降解医药、食品和印染等行业产生的废水中的有机污染物表现出较佳的效果。
发明内容
本发明提供了一种非均相光催化剂g-C3N4@α-FOD的制备方法,旨在利用α-FOD拓宽g-C3N4的可见光吸收范围,并提高光诱导电子空穴的分离率,从而提高材料整体的光催化性能和稳定性。材料结构的稳定性使得其具备良好的重复使用性,能较好地用于处理废水中的有机污染物。
为了实现上述目的,本发明提供如下技术方案:
一种非均相光催化剂g-C3N4@α-FOD的制备方法,是以α-FOD作为载体、以质子化石墨相氮化碳g-C3N4为附载材料,结合静电吸附沉淀法和溶剂热法,制得非均相光催化剂 g-C3N4@α-FOD。α-FOD中的大量羰基与g-C3N4三嗪环之间的π-π相互作用以及两种材料间的静电作用,促进其形成稳定的结构以及高效的电子转移,进而表现出较好的光催化活性。同时材料结构的稳定性也使得其表现出较优的循环重复利用性。
本发明的制备方法,具体包括如下步骤:
步骤1、石墨相氮化碳g-C3N4纳米片的制备
(11)取10~30g尿素溶解于50mL去离子水中,在65±5℃下敞口蒸发过夜;
(12)将步骤(11)所得产物充分研磨并均匀平铺在坩埚内,加盖,置于马弗炉中进行程序升温煅烧,然后冷却至室温后充分研磨;
(13)将步骤(12)所得产物再次置于马弗炉中煅烧,得到g-C3N4纳米片;
步骤2、质子化的g-C3N4纳米片的制备
取1.0g g-C3N4纳米片分散于100mL 3~6mol/L的盐酸中,然后转移到含有聚四氟乙烯内衬的不锈钢反应釜中,在130℃下加热4~6h;冷却至室温并超声振荡1h,抽滤干燥,研磨,得到质子化的g-C3N4纳米片;
步骤3、α-草酸亚铁二水合物(α-FOD)的制备和活化
(31)将20mmol C2H2O4x2H2O和20mmol K2C2O4xH2O溶解于100mL超纯水中,然后转移至250mL的三颈烧瓶,置于恒温油浴磁力搅拌器内,设定温度为95±5℃、搅拌转速2000rpm;
(32)待步骤(31)的混合物温度稳定在95±5℃时,将10mmol FeSO4x7H2O溶解于40mL 超纯水中,逐滴加入到步骤(31)所得混合溶液中,加超纯水使反应液体积为200mL,并在氩气保护氛围中于95±5℃下恒温油浴4~6h;
(33)将步骤(32)所得产物进行离心分离,离心转速控制为6000~8000rpm、单次离心时间为10min,然后依次用去离子水和乙醇各洗涤三遍,再在65±5℃下真空干燥6~8h,研磨成粉末;
(34)将步骤(33)所得α-FOD粉末分散在无水乙醇中,并转移至反应釜内,在105±5℃下保温2.5±0.5h;自然冷却后,洗涤干燥、研磨成粉末,获得活化的α-FOD,装袋密封并存放于干燥皿内备用;
步骤4、非均相光催化剂g-C3N4@α-FOD的制备
(41)取2g活化的α-FOD分散于100mL DMF中,超声搅拌30min;同时将60mg质子化的g-C3N4纳米片在超声的作用下分散于80mL DMF中;
(42)将步骤(41)中分散均匀的质子化的g-C3N4纳米片溶液缓慢加入到α-FOD分散液中,在180W的功率水平下超声搅拌1h;
(43)将步骤(42)中所得混合物均匀分装于3个100mL的Teflon高压反应釜中,在105±5℃下保温2~3h;
(44)真空抽滤步骤(3)的产物,然后依次用乙醇和去离子水各清洗三次,再在65±5℃下真空干燥6~8h,研磨后即获得非均相光催化剂g-C3N4@α-FOD,装袋密封并存放于干燥皿内。
优选的,步骤(12)中,煅烧的升温程序为:以8℃/min的升温速率升温到520℃,保温 90min,再以10℃/min的升温速率升温至560℃,保温90min。
优选的,步骤(13)中,煅烧的升温程序为以12℃/min的升温速率升温到550℃,保温 120min。
本发明进一步公开了上述制备方法所制备的非均相光催化剂g-C3N4@α-FOD及其对有机污染物的降解应用,所述光催化剂具有高催化活性、强稳定性,可用于降解医药、食品和印染等行业产生的废水中的有机污染物。25mg所述的g-C3N4@α-FOD在λ>420nm的可见光下用于降解50mL浓度为20mg/L、pH=5、T=25℃的磺胺甲噁唑(SMX)溶液,120min内去除率达86%。
本发明的有益效果体现在:
本发明从复合材料的角度出发,将质子化的石墨相氮化碳g-C3N4负载到α-FOD上,利用α-FOD在可见光区域表现出宽吸收范围的特性扩展了g-C3N4的可见光吸收范围,两者形成的异质结能有效地加速界面电子的转移,提高了光诱导电子空穴的分离率,从而提高了材料整体的光催化性能和稳定性。本发明制得的光催化剂对有机废水中的污染物表现出较佳的降解性能,且易于溶液分离,可通过自然沉降或过滤快速回收再利用。
附图说明
图1为本发明实施例所制备的g-C3N4纳米片的透射电镜(TEM)图;
图2为本发明实施例所制备的α-FOD的扫描电镜(SEM)图;
图3和图4为本发明实施例所制备的复合光催化材料在不同放大倍数下的扫描电镜 (SEM)图;
图5为本发明实施例的光催化剂降解抗生素SMX的效果图。
具体实施方式
下面将对本发明实施例中的技术方案进行详细描述,所描述的实施例仅是本发明的部分实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
制备实施例1
本实施例提供了一种非均相光催化剂g-C3N4@α-FOD的制备方法,包括如下步骤:
步骤1、石墨相氮化碳g-C3N4纳米片的制备
取30g尿素置于装有50mL去离子水的100mL烧杯中,在45℃下加热溶解,待全部溶解完置于电热恒温鼓风干燥箱中,在65℃下敞口恒温蒸发过夜(约10-12h);将烘干物质充分研磨再均匀平铺在方形坩埚内,加盖,置于马弗炉中以8℃/min的升温速率升温到520℃,保温90min,再以10℃/min的升温速率升温至560℃,保温90min。冷却至室温研磨,再将其置于马弗炉中以12℃/min的升温速率升温到550℃,保温120min,冷却后充分研磨,得到石墨相氮化碳(g-C3N4)纳米片,其TEM图如图1所示。
步骤2、质子化石墨相氮化碳纳米片的制备
取1.0g g-C3N4纳米片加入100mL 3mol/L的盐酸中,将得到的混合物转移到含有聚四氟乙烯内衬的不锈钢反应釜中,在130℃下加热5h。冷却至室温,进行超声振荡1h,真空抽滤,再置于65℃下真空干燥5h,研磨,得到质子化的g-C3N4纳米片。
步骤3、α-FOD的制备和活化
准确称取2.7801g FeSO4x7H2O(10mmol)、2.5214g C2H2O4x2H2O(20mmol)和3.6846gK2C2O4xH2O(20mmol)。
将C2H2O4x2H2O和K2C2O4xH2O溶解于100mL超纯水中,然后转移至250mL的三颈烧瓶,置于恒温油浴磁力搅拌器内,设定温度为95℃,搅拌转速2000rpm。待混合物温度稳定在95℃时,将FeSO4x7H2O溶解于40mL超纯水中,用胶头滴管吸取硫酸亚铁溶液,逐滴加入混合溶液中,加超纯水使反应液体积为200mL,并在氩气保护氛围中于95℃下恒温油浴4h。将产物进行离心分离,转速为7500rpm、单次离心时间10min,然后依次用去离子水和乙醇各洗涤三遍;再将其置于真空恒温干燥箱内,在65℃下干燥6h;将产物充分研磨,分散在无水乙醇中,并转移至反应釜内,在105℃下保温2.5h;自然冷却后,过滤洗涤并干燥,充分研磨,得到活化的α-FOD,装袋密封并存放于干燥皿内备用。
步骤4、非均相光催化剂g-C3N4@α-FOD的制备
取2g活化的α-FOD分散于100mL二甲基甲酰胺(DMF)中,超声搅拌30min;同时将60mg质子化的g-C3N4纳米片在超声的作用下分散于80mL DMF中;将分散均匀的质子化的 g-C3N4溶液缓慢加入到α-FOD分散液中,在180W的功率水平下进行超声加搅拌处理60min;将混合物均匀分装于3个100mL的Teflon高压反应釜中,在105℃下保温2h,真空抽滤后依次用乙醇和去离子水各清洗三次,将收集的产品置于真空干燥箱中,在65℃下干燥8h后充分研磨,得到g-C3N4@α-FOD复合光催化材料。
图2为本实施例制备的α-FOD的SEM图,图3和图4为本实施例制备的g-C3N4@α-FOD在不同放大倍数下的SEM图。对比可知,g-C3N4被成功负载到α-FOD上,加速了α-FOD与 g-C3N4纳米薄片之间的界面电荷转移,从而提高了光催化性能。此外,g-C3N4@α-FOD催化剂表面呈现出许多微孔结构,这有利于增强对有机污染物的吸附,进而增强光催化效率。
应用实施例1
g-C3N4@α-FOD光催化剂的可见光催化降解有机污染物:
将实施例1中制得的光催化剂(25mg)分散至50mL的20mg/L SMX溶液中,在pH=5、温度25℃条件下,先黑暗搅拌30min,后在可见光(λ>420nm)下光催化反应2小时,过滤掉催化剂,测定溶液浓度。如图5,120min内,g-C3N4(3wt.%)@α-FOD、g-C3N4、α-FOD对 SMX的去除率分别为86%、64%、39%。
本发明通过上述实施例来说明本发明的光催化材料制备方法及其对抗生素降解应用,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均在本发明的保护范围和公开范围之内。

Claims (5)

1.一种非均相光催化剂g-C3N4@α-FOD的制备方法,其特征在于:是以α-FOD作为载体、以质子化g-C3N4为附载材料,结合静电吸附沉淀法和溶剂热法,制得非均相光催化剂g-C3N4@α-FOD,具体包括如下步骤:
步骤1、g-C3N4纳米片的制备
(11)取10~30g尿素溶解于50mL去离子水中,在65±5℃下敞口过夜;
(12)将步骤(11)所得产物充分研磨并均匀平铺在坩埚内,加盖,置于马弗炉中进行程序升温煅烧,然后冷却至室温后充分研磨;
(13)将步骤(12)所得产物再次置于马弗炉中煅烧,得到g-C3N4纳米片;
步骤2、质子化的g-C3N4纳米片的制备
取1.0g g-C3N4纳米片分散于100mL 3~6mol/L的盐酸中,然后转移到含有聚四氟乙烯内衬的不锈钢反应釜中,在130℃下加热4~6h;冷却至室温并超声振荡1h,抽滤干燥,研磨,得到质子化的g-C3N4纳米片;
步骤3、α-FOD的制备和活化
(31)将20mmol C2H2O4·2H2O和20mmol K2C2O4·H2O溶解于100mL超纯水中,然后转移至三颈烧瓶,置于恒温油浴磁力搅拌器内,设定温度为95±5℃、搅拌转速2000rpm;
(32)待步骤(31)的混合物温度稳定在95±5℃时,将10mmol FeSO4·7H2O溶解于40mL超纯水中,逐滴加入到步骤(31)所得混合溶液中,加超纯水使反应液体积为200mL,在氩气保护氛围中于95±5℃下恒温油浴4~6h;
(33)将步骤(32)所得产物进行离心分离,离心转速控制为6000~8000rpm、单次离心时间为10min,然后依次用去离子水和乙醇各洗涤三遍,再在65±5℃下真空干燥6~8h,研磨成粉末;
(34)将步骤(33)所得α-FOD粉末分散在无水乙醇中,并转移至反应釜内,在105±5℃下保温2.5±0.5h;自然冷却后,洗涤干燥、研磨成粉末,获得活化的α-FOD,装袋密封并存放于干燥皿内备用;
步骤4、非均相光催化剂g-C3N4@α-FOD的制备
(41)取2g活化的α-FOD分散于100mL DMF中,超声搅拌30min;同时将60mg质子化的g-C3N4纳米片在超声的作用下分散于80mL DMF中;
(42)将步骤(41)中分散均匀的质子化的g-C3N4纳米片溶液缓慢加入到α-FOD分散液中,在180W的功率水平下超声搅拌1h;
(43)将步骤(42)中所得混合物均匀分装于3个100mL的Teflon高压反应釜中,在105±5℃下保温2~3h;
(44)真空抽滤步骤(43)的产物,然后依次用乙醇和去离子水各清洗三次,再在65±5℃下真空干燥6~8h,研磨后即获得非均相光催化剂g-C3N4@α-FOD,装袋密封并存放于干燥皿内。
2.根据权利要求1所述的一种非均相光催化剂g-C3N4@α-FOD的制备方法,其特征在于:步骤(12)中,煅烧的升温程序为:以8℃/min的升温速率升温到520℃,保温90min,再以10℃/min的升温速率升温至560℃,保温90min 。
3.根据权利要求1所述的一种非均相光催化剂g-C3N4@α-FOD的制备方法,其特征在于:步骤(13)中,煅烧的升温程序为:以12℃/min的升温速率升温到550℃,保温120min 。
4.一种权利要求1~3中任意一项所述制备方法所制备的非均相光催化剂g-C3N4@α-FOD。
5.一种权利要求4所述非均相光催化剂g-C3N4@α-FOD的应用,其特征在于:用于降解废水中的有机污染物。
CN202010885987.5A 2020-08-28 2020-08-28 一种非均相光催化剂g-C3N4@α-FOD的制备方法及其降解有机污染物的应用 Active CN111921562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010885987.5A CN111921562B (zh) 2020-08-28 2020-08-28 一种非均相光催化剂g-C3N4@α-FOD的制备方法及其降解有机污染物的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010885987.5A CN111921562B (zh) 2020-08-28 2020-08-28 一种非均相光催化剂g-C3N4@α-FOD的制备方法及其降解有机污染物的应用

Publications (2)

Publication Number Publication Date
CN111921562A CN111921562A (zh) 2020-11-13
CN111921562B true CN111921562B (zh) 2022-12-02

Family

ID=73308502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010885987.5A Active CN111921562B (zh) 2020-08-28 2020-08-28 一种非均相光催化剂g-C3N4@α-FOD的制备方法及其降解有机污染物的应用

Country Status (1)

Country Link
CN (1) CN111921562B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114100665B (zh) * 2021-12-06 2024-03-29 合肥工业大学 一种羰基官能化石墨相氮化碳的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105503958A (zh) * 2015-08-28 2016-04-20 浙江理工大学 乙二胺修饰的mil-101及其制备方法
CN108722486A (zh) * 2017-04-24 2018-11-02 扬州天辰精细化工有限公司 一种窄带氮化碳修饰铁基金属有机骨架复合光催化剂的制备方法
CN109590022A (zh) * 2018-12-13 2019-04-09 常州大学 层状UiO-66/g-C3N4/Ag复合材料的制备方法及应用
CN110776049A (zh) * 2019-11-18 2020-02-11 湖南大学 功能化锆基金属有机骨架/质子化氮化碳复合材料活化过一硫酸盐处理有机废水的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745404B (zh) * 2018-06-14 2020-12-04 苏州大学 基于黑磷/金属有机框架修饰的氮化碳膜复合材料及其制备方法与在废气处理中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105503958A (zh) * 2015-08-28 2016-04-20 浙江理工大学 乙二胺修饰的mil-101及其制备方法
CN108722486A (zh) * 2017-04-24 2018-11-02 扬州天辰精细化工有限公司 一种窄带氮化碳修饰铁基金属有机骨架复合光催化剂的制备方法
CN109590022A (zh) * 2018-12-13 2019-04-09 常州大学 层状UiO-66/g-C3N4/Ag复合材料的制备方法及应用
CN110776049A (zh) * 2019-11-18 2020-02-11 湖南大学 功能化锆基金属有机骨架/质子化氮化碳复合材料活化过一硫酸盐处理有机废水的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"α-Ferrous oxalate dihydrate: a simple coordination polymer featuring photocatalytic and photo-initiated Fenton oxidations";Xiangqian Fan et al.;《Sci. China Mater.》;20160722;第59卷;574-580 *

Also Published As

Publication number Publication date
CN111921562A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
Wang et al. The precursor-guided hydrothermal synthesis of CuBi2O4/WO3 heterostructure with enhanced photoactivity under simulated solar light irradiation and mechanism insight
Hao et al. Controllable electrostatic self-assembly of sub-3 nm graphene quantum dots incorporated into mesoporous Bi 2 MoO 6 frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation
Dong et al. Construction of BiOCl/g-C3N4/kaolinite composite and its enhanced photocatalysis performance under visible-light irradiation
Jin et al. The construction of g-C3N4/Sm2+ doped Bi2WO6 2D/2D Z-scheme heterojunction for improved visible-light excited photocatalytic efficiency
US20220355286A1 (en) P-n heterojunction composite material supported on surface of nickel foam, preparation method therefor and application thereof
CN112156803B (zh) 光催化复合材料及其制备方法和应用
CN113663693B (zh) 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用
Li et al. Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching
Du et al. Construction of dual Z-scheme Bi2WO6/g-C3N4/black phosphorus quantum dots composites for effective bisphenol A degradation
CN111185210B (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
CN111151285B (zh) 一种氮掺杂多孔碳负载ZnS纳米复合材料及其制备方法和应用
CN111992255B (zh) 用于去除水中双酚A的片状g-C3N4/ZIF-8/AgBr复合材料及其制备方法
CN111659453B (zh) 一种可见光-臭氧协同催化的催化剂及其制备方法
Chen et al. Fabrication of a novel carbon quantum Dots-Modified 2D heterojunction for highly efficient sunlight photocatalysis
Ma et al. Effects of primary nanobuilding blocks on the photocatalytic performance of TiO2 hierarchical hollow microspheres
CN111686770B (zh) 一种金属离子共掺杂BiOBr微球、制备方法及其应用
Hu et al. Ultrathin graphitic carbon nitride modified PbBiO2Cl microspheres with accelerating interfacial charge transfer for the photodegradation of organic contaminants
CN112619682A (zh) 一种双金属氧化物量子点和氮化碳纳米片的复合材料和制备方法及其应用
Chen et al. Synthesis of micro-nano Ag3PO4/ZnFe2O4 with different organic additives and its enhanced photocatalytic activity under visible light irradiation
CN111921562B (zh) 一种非均相光催化剂g-C3N4@α-FOD的制备方法及其降解有机污染物的应用
Jing et al. Enhanced photocatalytic hydrogen production under visible light of an organic-inorganic hybrid material based on enzo [1, 2-b: 4, 5-b'] dithiophene polymer and TiO2
Kang et al. Preparation of Zn2GeO4 nanosheets with MIL-125 (Ti) hybrid photocatalyst for improved photodegradation of organic pollutants
CN113101980A (zh) 一种具有可见光催化活性的TiO2/UiO-66复合材料的制备方法和应用
CN111085230B (zh) 一种氮掺杂污泥堆肥可见光光催化材料的制备方法及其应用
CN108940314B (zh) 一种水体综合处理BiVO4/CdS复合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant