CN111921486A - 纳米碳酸钙及其制备方法和应用 - Google Patents

纳米碳酸钙及其制备方法和应用 Download PDF

Info

Publication number
CN111921486A
CN111921486A CN202010654263.XA CN202010654263A CN111921486A CN 111921486 A CN111921486 A CN 111921486A CN 202010654263 A CN202010654263 A CN 202010654263A CN 111921486 A CN111921486 A CN 111921486A
Authority
CN
China
Prior art keywords
calcium carbonate
adsorption
nano
preparation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010654263.XA
Other languages
English (en)
Inventor
翟好英
刘符明
刘义武
周文俊
邹自力
宋佳宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neijiang Normal University
Original Assignee
Neijiang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neijiang Normal University filed Critical Neijiang Normal University
Priority to CN202010654263.XA priority Critical patent/CN111921486A/zh
Publication of CN111921486A publication Critical patent/CN111921486A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明提供的纳米碳酸钙及其制备方法和应用,将8g废弃鸡蛋壳与50mL3mol L‑1的盐酸溶液充分反应至没有气泡冒出后;将反应后的溶液与0.1mol L‑1的碳酸钠溶液按照不同的体积比进行反应,在30℃条件下磁力搅拌0.5h,用UP水洗涤沉淀物3次,离心;在55℃烘箱内烘干至恒重,最终得到碳酸钙纳米材料。本发明是以废弃鸡蛋壳为钙源运用共沉淀法合成花生壳形貌的碳酸钙纳米材料,碳酸钙材料短时间内对VB吸附效果较好,该吸附基本符合等温吸附Langmuir模型。吸附过程遵循准二级动力学模型,可以再生并循环使用。该吸附剂具有去除水溶液中VB的潜力。

Description

纳米碳酸钙及其制备方法和应用
技术领域
本发明属于废水处理技术领域,具体涉及一种纳米碳酸钙及其制备方法和应用。
背景技术
随着工业的发展,有机染料被广泛应用于纺织、皮革、造纸、油墨、橡胶和塑料等工业生产中,所产生的大量染料废水最终被排放到环境水体中。由于染料废水中具有成分复杂、毒性强、色度深、难降解的有机物,对环境造成较严重的危害。因此,染料废水处理成为解决环境的一大难题。目前,染料废水的处理方法主要有:吸附法、光催化降解、混凝法等,其中吸附法具有去除效率高、处理工艺简单、无二次污染等优点,是一种很有前途的处理低浓度染料废水的方法。常用的吸附剂如活性炭、金属氧化物、生物质材料等常存在一些缺点,如成本高、吸附能力低、合成步骤多、不能再生和回收等。因此,有必要开发一种低成本、易合成、高吸附量、可再生的吸附材料。
碳酸钙(CaCO3)是自然界最丰富的生物材料之一,广泛用于橡胶、塑料、纸张、牙膏、药物等工业的填料。普通碳酸钙作为填料仅起到增容、降低成本的作用,而纳米碳酸钙由于其特殊的尺寸使其产生特殊的性质,如表面效应、量子尺寸效应、宏观量子隧道效应等,使得纳米碳酸钙在磁性、催化性、力学性能等方面显示较优越的性能,在橡胶、塑料、高级油墨和涂料中领域中具有更广阔的应用前景。但以废弃鸡蛋壳为碳源,采用共沉淀法合成具有花生壳形貌的纳米碳酸钙,并将其作为一种高效吸附剂的研究则尚未见报道。
发明内容
针对上述技术问题,本发明提供一种纳米碳酸钙及其制备方法和应用。
具体的技术方案为:
纳米碳酸钙,由以下原料按照以下的物质比例制备,包括以下步骤:
将8g废弃鸡蛋壳与50mL3mol L-1的盐酸溶液充分反应至没有气泡冒出后;
将反应后的溶液与0.1mol L-1的碳酸钠溶液按照不同的体积比进行反应,在30℃条件下磁力搅拌0.5h,用UP水洗涤沉淀物3次,离心;
在55℃烘箱内烘干至恒重,最终得到碳酸钙纳米材料。
本发明的纳米碳酸钙的应用,作为含有维多利亚蓝B(VB)染料的废水处理吸附剂。
本发明提供的纳米碳酸钙及其制备方法和应用,是以废弃鸡蛋壳为钙源运用共沉淀法合成花生壳形貌的碳酸钙纳米材料,研究了在不同条件下碳酸钙纳米材料对有机染料VB的吸附性能,利用吸附热力学和吸附动力学讨论了其吸附行为,碳酸钙材料短时间内对VB吸附效果较好,该吸附基本符合等温吸附Langmuir模型。吸附过程遵循准二级动力学模型。在不显著降低该吸附剂的吸附性能的前提下,其可以再生并循环使用。因此,该吸附剂具有去除水溶液中VB的潜力。
附图说明
图1a为实施例的氯化钙和碳酸钠体积比对碳酸钙材料吸附效果影响;
图1b为实施例的反应温度对碳酸钙材料吸附效果的影响;
图1c为实施例的反应时间对碳酸钙材料吸附效果的影响;
图2a为实施例的CaCO3材料的SEM图像之一;
图2b为实施例的CaCO3材料的SEM图像之二;
图2c为实施例的CaCO3材料的SEM图像之三;
图2d为实施例的CaCO3材料的SEM图像之四;
图3a为实施例所合成的碳酸钙材料的XRD谱图;
图3b为实施例所合成的碳酸钙材料的FT-IR谱图;
图4a为实施例的方解石型碳酸钙的典型XPS全谱;
图4b为实施例的方解石型碳酸钙Ca 2pXPS的谱图;
图4c为实施例的方解石型碳酸钙C1sXPS谱图
图4d为实施例的方解石型碳酸钙O1s XPS谱图
图5a为染料初始浓度对碳酸钙材料吸附性能的影响;
图5b为吸附时间对碳酸钙材料吸附性能的影响
图5c为温度对碳酸钙材料吸附性能的影响;
图5d为pH值对碳酸钙材料吸附性能的影响;
图6a为准一级速率方程拟合曲线;
图6b为准二级速率方程拟合曲线;
图6c为颗粒内扩散方程拟合曲线;
图7a为对Langmuir吸附等温模型的实验数据拟合结果;
图7b为对Freundlich吸附等温模型的实验数据拟合结果;
图7c为对Temkin吸附等温模型的实验数据拟合结果;
图8a为热力学线性拟合;
图8b为吸附剂的循环使用指标。
具体实施方式
结合实施例说明本发明的具体技术方案。
1主要仪器和试剂
U-3010紫外可见分光光度计(日本日立);傅里叶红外光谱仪WQF-510A(北分瑞利分析仪器有限责任公司);高速台式离心机TGL-10C(上海安亭科学仪器厂);DF-101S集热式恒温加热磁力搅拌器(上海兴创科学仪器设备有限公司);TGL-10C高速台式离心机(上海安亭科学仪器厂)。
废弃鸡蛋壳;无水碳酸钠(Na2CO3)、盐酸等分析纯(AR)化学试剂均购自四川省成都市科龙化工试剂厂;维多利亚蓝B(VB,生化试剂)购自天津市光复精细化工研究所。实验用水均为超纯水(UP)(R≈18.25MΩ)。
2实验方法
2.1材料的合成
将8g废弃鸡蛋壳与50mL3mol L-1的盐酸溶液充分反应至没有气泡冒出后,将反应后的溶液与0.1mol L-1的碳酸钠溶液按照不同的体积比进行反应,在30℃条件下磁力搅拌0.5h,用UP水洗涤沉淀物3次,离心。在55℃烘箱内烘干至恒重,最终得到碳酸钙纳米材料。
2.2结构表征
利用DX-2700型X射线衍射仪(XRD)对碳酸钙材料的结构进行表征;利用Sigma 300扫描电子显微镜(SEM)表征碳酸钙材料的形貌;运用Escalab 250Xi X射线光电子能谱仪(XPS)确定碳酸钙材料的表面元素的形态和化学行为,运用傅立叶红外光谱(FTIR)对碳酸钙材料的特征基团进行表征。
2.3吸附实验
称取5mg碳酸钙纳米材料,加入适量VB(770mg L-1)溶液中,分别对吸附时间和吸附温度采用单一变量进行吸附脱色。当吸附达到平衡时,离心,测得平衡后溶液的吸光度,并根据吸附前后溶液浓度的变化计算吸附率,并计算吸附量。计算公式如下:
Figure BDA0002576120870000031
式中,qe(mg g-1)为平衡吸附量,C0和Ce(mg L-1)分别为VB的初始浓度和平衡浓度,V(L)为VB的体积,m(g)为碳酸钙材料的质量。
3结果与讨论
3.1碳酸钙材料的合成
利用共沉淀法合成了碳酸钙纳米材料,分别考察了材料比、反应温度和反应时间的影响。如图1a随着氯化钙和碳酸钠体积比增加,所得碳酸钙材料对VB的吸附效果先增加后减少。当体积比为10:25时,吸附量达到最大,故最佳材料比选择10:25。如图1b,随着水浴温度的升高,所得碳酸钙材料对VB的吸附量先增加后减少。当水浴温度达到30℃时,其对应的吸附量最大,之后随着温度升高,吸附量则下降,故最佳反应温度为30℃。图1c为反应时间对碳酸钙材料的影响。当反应时间达到30min时,所制得的碳酸钙材料对VB染料的吸附量最大,且随反应时间的增加,吸附量反而下降。故最佳制碳酸钙材料的时间为30min。
3.2碳酸钙材料的表征
3.2.1 SEM图像
图2a到图2d为CaCO3材料的SEM图像。CaCO3材料是由六面体颗粒组装成的表面粗糙的空心小球,继而空心小球堆积成具有花生壳状的不规则形貌的CaCO3材料。与常规吸附材料相比,具有球形形貌的吸附剂在质量扩散和传输方面具有更大的优势,此外,由于所合成的碳酸钙材料表面粗糙,可提供较多的吸附活性位点,有利于碳酸钙材料与吸附质充分接触,提高了碳酸钙的吸附能力。
3.2.2 X射线衍射(XRD)分析
图3a为所合成的碳酸钙材料的XRD谱图。碳酸钙材料分别在29.4°、31.4°、39.4°、43.1°、47.1°、48.5°出现几个较强的特征衍射峰,分别对应碳酸钙的(104)(006)(113)(202)(024)(116)晶面,其衍射峰的位置、强度和晶面指数均与方解石的XRD标准谱图(01-071-3699)相一致。这说明所合成的碳酸钙材料为具有典型的斜方六面体结构的方解石晶体,且图中没有其它杂峰存在,证明产物的纯度特别的高。
3.2.3傅立叶变换红外光谱(FT-IR)分析
利用FT-IR分析研究所合成的碳酸钙材料的分子的结构和化学键。如图3b,在1461,1078,875,746和712cm-1处有明显的吸收峰,为方解石型碳酸钙材料的特征峰,尤其是712cm-1处的吸收峰为方解石的特征峰。由此,进一步证明了所合成的碳酸钙材料为方解石晶相,与XRD分析结果基本吻合。
3.2.4 X射线光电子能谱(XPS)分析
为了确定所合成的碳酸钙材料的化学组成,采用XPS分析技术对碳酸钙材料表面元素的组成和结合状态进行测定。图4a为方解石型碳酸钙的典型XPS全谱,含有Ca、C和O元素。Ca 2pXPS的拟合谱图在347.18和350.68eV处有两个峰(图4b),分别归属于Ca 2p3/2和Ca2p1/2,说明有CaCO3存在。C1s谱(图4c)分别在285.38、287.68和289.68eV处有三个拟合峰,分别属于O-C=O、O-C-O和CO3基团。O1s XPS谱图(图4d)在531.58eV处有一个峰,为Ca-O键。
3.3吸附性能
3.3.1 VB初始浓度的影响
固定吸附剂用量、染料初始浓度和吸附时间,分别考察了碳酸钙材料对刚果红(CR1)、甲基橙(MO)、甲酚红(CR2)、结晶紫(CV)、罗丹明B(RhB)和VB的吸附性能,并与商用活性碳(CAC)对VB的吸附比较,结果表明,碳酸钙材料对VB有选择性吸附(图5a内插图)。为了实现碳酸钙材料对VB的最佳吸附,VB的起始浓度是最大限度地增强VB与碳酸钙吸附位点相互作用的重要因素。随着VB初始浓度增大,吸附量随之增大,当VB初始浓度为840mg L-1时,基本达到吸附平衡(图5a)。这可能是由于VB与吸附剂碳酸钙之间的VB浓度梯度增加所致。此外,在VB初始浓度较高时,吸附剂的吸附活性位点已饱和,VB从本体溶液向吸附剂表面的扩散减小。
3.3.2吸附时间的影响
图5b为吸附时间对碳酸钙材料对VB吸附能力的影响。随着吸附时间的增加,VB吸附量随之增大。当吸附时间达到60min后,吸附达平衡。碳酸钙材料对VB的吸附量在前60min内迅速增加,吸附初期的快速吸附可能是由于碳酸钙材料表面未覆盖及其活性位点有剩余。
3.3.3温度的影响
考察不同温度对碳酸钙材料吸附VB的影响(图5c),结果表明,在25℃~35℃范围内,碳酸钙对VB的吸附量随着温度的升高而增加,这可能是由于在高温条件下,溶剂粘度较低,VB的平均动能较高,增强了VB与碳酸钙活性位点之间的键合作用。而在35℃过后,吸附量随着温度升高而降低,这是由于吸附过程中存在物理吸附。本文选择在35℃下进行后续实验。
3.3.4 pH的影响
在吸附过程中,pH值是影响吸附剂的表面电荷、染料的结构和离子化程度的重要参数。考察了不同pH值下碳酸钙材料对VB的吸附效果的影响,如图5d,在pH值2-6范围内,随着pH值的增大,吸附量随之增大,在pH6时吸附效果达到最好。在较低的pH值条件下,碳酸钙材料与酸发生了反应导致吸附材料减少,所以吸附量较少。并且阳离子染料VB与H+在碳酸钙活性位点上竞争吸附,从而导致吸附量较低。在碱性环境中,随着碱性的增加,材料的吸附量减小,这是由于在碱性条件下,染料的颜色发生了变化。
3.4吸附动力学
为了解释吸附过程中固液之间的传质过程和所涉及的化学反应,利用准一级方程、准二级方程等吸附动力学模型进行研究。
准一级线性方程:
ln(qe-qt)=lnqe-k1t (1)
式中,qe(mgg-1)表示最大吸附量,qt(mgg-1)表示吸附平衡时的吸附量,k1(min-1)是准一级吸附方程的速率常数,t(min-1)是吸附时间。
准二级线性方程:
Figure BDA0002576120870000061
式中,k2(g mg-1min-1)是准二级吸附方程的速率常数。
颗粒内扩散方程:
qt=kit1/2+c(3)
式中,ki(mg g-1min-1/2)为颗粒内扩散速率常数,c(mgg-1)是表示边界层厚度的常数。
准一级速率方程和准二级速率方程拟合曲线如图6a和图6b,动力学参数qe、k1、k2和相关系数R2由线性回归方程得到,并列于表1。在不同浓度下,准一级动力学模型的R2小于准二级动力学模型的R2(R2≥0.99),且准二级动力学模型拟合得到的平衡吸附量与实验测得的平衡吸附量基本吻合,说明准二级动力学模型更适合用来描述碳酸钙材料对VB的吸附行为。图6c和表2分别为颗粒内扩散方程拟合曲线和相应参数。根据颗粒内扩散方程,qt对t1/2的曲线应是条直线,且若这些直线经过原点,则颗粒内扩散是唯一的速控步。如图6c,这些曲线在整个时间范围内均不是线性的,而是可以被分成多线性曲线,说明吸附过程涉及多个阶段。即所合成的碳酸钙材料吸附VB涉及两个过程,且颗粒内扩散不是决速步。
表1
Figure BDA0002576120870000062
注:C0是染料初始浓度,qe(exp)实验测定的最大吸附量,qe(cal),1是准一级动力学方程拟合出的平衡吸附量,qe(cal),2是准二级动力学方程拟合出的平衡吸附量。
表2
Figure BDA0002576120870000063
3.5吸附等温线和热力学研究
吸附等温线表明吸附过程达到平衡时吸附质在固相和液相间的分布情况。本文主要利用Langmuir、Freundlich和Temkin三个吸附等温模型,对碳酸钙材料吸附VB染料进行数据分析,其等温方程如下:
Figure BDA0002576120870000071
Figure BDA0002576120870000072
Temkin:qe=Alnce+B (6)
式中,Ce(mg L-1)为溶液中VB的平衡浓度,qe为平衡吸附量(mgg-1),KL为Langmuir吸附常数(Lmg-1),qm(mgg-1)为单层吸附的最大吸附量。Kf[mg g-1(mg L-1)-1/n]和n为Freundlich等温常数,分别描述多层吸附能力和强度。A和B是Temkin方程常数。
对Langmuir、Freundlich和Temkin三个吸附等温模型的实验数据进行拟合,拟合结果和相关参数如图7a到图7c和表3。由三个等温吸附模型的线性相关系数R2比较,可以得出Langmuir等温吸附理论更适合吸附过程。这说明碳酸钙材料对VB吸附受单层覆盖的限制,且表面相对均匀。并且在25-35℃范围内随着温度升高,qm随之增大,说明在此温度范围内该吸附过程为吸热过程,且为化学吸附。
表3
Figure BDA0002576120870000073
碳酸钙材料吸附VB的热力学行为可以通过吉布斯自由能变(ΔG)、焓变(ΔH)、熵变(ΔS)等热力学参数来评价。这些参数可由下列方程式计算:
Figure BDA0002576120870000074
ΔG=-RTlnKC (8)
Figure BDA0002576120870000075
式中,KC为热力学平衡常数(Lg-1),R为通用气体常数(8.314J mol-1K-1),T为温度(K)。KC根据式(7)计算,ΔG由式(8)计算,而ΔH和ΔS可以分别根据KC对1/T关系图的斜率和截距得到的。
热力学线性拟合如图8a,ΔG、ΔH和ΔS值如表4所示。在25、30和35℃下,ΔG值分别为-19.71、-26.82和-28.71kJ mol-1,说明吸附过程的可行性和自发性。并且ΔG值随温度升高而减小,说明VB吸附过程的自发性和可行性呈增加的趋势。ΔH值为129.8kJ mol-1,表明碳酸钙材料吸附VB是吸热过程。此外,由于ΔH值介于20-400kJ mol-1,说明碳酸钙吸附VB为化学吸附。ΔS值为515.4J mol-1K-1,说明吸附过程中固液界面的自由度增加。
表4
Figure BDA0002576120870000081
3.6可再生性
吸附剂的循环使用是降低材料成本的一个重要经济方面。如图8b,开始时,碳酸钙材料对VB的去除率是92.3%,循环5次后,碳酸钙材料对VB的去除率为88.5%,与初次吸附的去除率相比较,降低了3.8%,说明所合成的碳酸钙纳米材料具有一定的再生能力,具有从水溶液中去除VB的潜力。
4结论
以废鸡蛋壳为钙源采用共沉淀法合成了具有花生壳形貌的碳酸钙纳米材料。所合成的碳酸钙材料对VB染料有较好的吸附性能。在35℃时,碳酸钙材料吸附VB 60min达平衡,且其平衡吸附量可高达1387mgg-1。碳酸钙材料对VB的吸附过程遵循准二级动力学模型和Langmuir等温模型。由热力学参数可知,碳酸钙材料吸附VB的过程为吸热、熵增、自发的,并且该吸附过程为主要为化学吸附。吸附-解吸实验表明所合成的碳酸钙对VB可以再生使用,有望成为一种去除水溶液中VB的高效吸附剂。

Claims (3)

1.纳米碳酸钙的制备方法,其特征在于,由以下原料按照以下的物质比例制备,包括以下步骤:
将8g废弃鸡蛋壳与50mL3mol L-1的盐酸溶液充分反应至没有气泡冒出后;
将反应后的溶液与0.1mol L-1的碳酸钠溶液按照不同的体积比进行反应,在30℃条件下磁力搅拌0.5h,用UP水洗涤沉淀物3次,离心;
在55℃烘箱内烘干至恒重,最终得到碳酸钙纳米材料。
2.纳米碳酸钙,其特征在于,由权利要求1所述的制备方法制备所得。
3.根据权利要求2所述的纳米碳酸钙的应用,其特征在于,作为含有维多利亚蓝B染料的废水处理吸附剂。
CN202010654263.XA 2020-07-09 2020-07-09 纳米碳酸钙及其制备方法和应用 Pending CN111921486A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010654263.XA CN111921486A (zh) 2020-07-09 2020-07-09 纳米碳酸钙及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010654263.XA CN111921486A (zh) 2020-07-09 2020-07-09 纳米碳酸钙及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111921486A true CN111921486A (zh) 2020-11-13

Family

ID=73312659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010654263.XA Pending CN111921486A (zh) 2020-07-09 2020-07-09 纳米碳酸钙及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111921486A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115215363A (zh) * 2022-05-25 2022-10-21 华中农业大学 高效制备蛋壳源微细碳酸钙的方法及其应用
CN115814748A (zh) * 2022-12-09 2023-03-21 广西科技师范学院 以碳酸钙和尿素为原料的刚果红吸附剂的制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063062A (ja) * 2005-08-31 2007-03-15 Institute Of National Colleges Of Technology Japan 貝殻から球状の炭酸カルシウムを製造する方法
CN103274439A (zh) * 2013-07-01 2013-09-04 广东海洋大学 一种牡蛎壳再生循环制取纳米碳酸钙的方法
CN103496772A (zh) * 2013-10-18 2014-01-08 长安大学 一种去除维多利亚蓝b的方法
US20150099308A1 (en) * 2013-10-09 2015-04-09 King Fahd University Of Petroleum And Minerals Determination of polycyclic aromatic hydrocarbons in water using nanoporous material prepared from waste avian egg shell
CN106315922A (zh) * 2016-10-18 2017-01-11 青岛大学 一种黑色印花废水污染物提取及利用的方法
JP2017206498A (ja) * 2016-05-16 2017-11-24 御木本製薬株式会社 バテライト型炭酸カルシウム
CN108910929A (zh) * 2018-08-28 2018-11-30 中国环境管理干部学院 一种用于废水中铅去除的微纳米碳酸钙的制备方法
CN110482584A (zh) * 2018-05-14 2019-11-22 广西大学 一种用鸡蛋壳制备球形碳酸钙的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063062A (ja) * 2005-08-31 2007-03-15 Institute Of National Colleges Of Technology Japan 貝殻から球状の炭酸カルシウムを製造する方法
CN103274439A (zh) * 2013-07-01 2013-09-04 广东海洋大学 一种牡蛎壳再生循环制取纳米碳酸钙的方法
US20150099308A1 (en) * 2013-10-09 2015-04-09 King Fahd University Of Petroleum And Minerals Determination of polycyclic aromatic hydrocarbons in water using nanoporous material prepared from waste avian egg shell
CN103496772A (zh) * 2013-10-18 2014-01-08 长安大学 一种去除维多利亚蓝b的方法
JP2017206498A (ja) * 2016-05-16 2017-11-24 御木本製薬株式会社 バテライト型炭酸カルシウム
CN106315922A (zh) * 2016-10-18 2017-01-11 青岛大学 一种黑色印花废水污染物提取及利用的方法
CN110482584A (zh) * 2018-05-14 2019-11-22 广西大学 一种用鸡蛋壳制备球形碳酸钙的方法
CN108910929A (zh) * 2018-08-28 2018-11-30 中国环境管理干部学院 一种用于废水中铅去除的微纳米碳酸钙的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘琬: ""多孔碳酸钙及以其为模板高分子吸附剂的制备"", 《万方硕士论文数据库》 *
周绿山等: "多孔碳酸钙的制备及对阿莫西林的吸附性能", 《化工新型材料》 *
杨小红等: ""简易模板法仿生合成碳酸钙纳米球"", 《池州师专学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115215363A (zh) * 2022-05-25 2022-10-21 华中农业大学 高效制备蛋壳源微细碳酸钙的方法及其应用
CN115814748A (zh) * 2022-12-09 2023-03-21 广西科技师范学院 以碳酸钙和尿素为原料的刚果红吸附剂的制备方法和应用

Similar Documents

Publication Publication Date Title
Bai et al. Adsorption of Cr (III) and Pb (II) by graphene oxide/alginate hydrogel membrane: Characterization, adsorption kinetics, isotherm and thermodynamics studies
Ramasamy et al. Fabrication of carbon nanotubes reinforced silica composites with improved rare earth elements adsorption performance
Bu et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution
Zhou et al. One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater
Zhang et al. A solid-state chemical method for synthesizing MgO nanoparticles with superior adsorption properties
Sun et al. Biotemplated fabrication of a 3D hierarchical structure of magnetic ZnFe2O4/MgAl-LDH for efficient elimination of dye from water
CN100369666C (zh) 含硅纳米氧化钙高温二氧化碳吸附剂和该吸附剂的制备方法以及在制氢工艺中的应用
Wu et al. Removal of Cu (II) ions from aqueous water by l-arginine modifying magnetic chitosan
CN111921486A (zh) 纳米碳酸钙及其制备方法和应用
Zhang et al. A stiff ZnO/carbon foam composite with second-level macroporous structure filled ZnO particles for heavy metal ions removal
Liu et al. Novel amino-functionalized carbon material derived from metal organic framework: a characteristic adsorbent for U (VI) removal from aqueous environment
Tang et al. One-pot preparation of layered double oxides-engineered biochar for the sustained removal of tetracycline in water
Wang et al. Eco-friendly synthesis of self-existed magnesium oxide supported nanorod-like palygorskite for enhanced and simultaneous recovery of nutrients from simulated wastewater through adsorption and in-situ struvite formation
Zhang et al. The preparation of organophosphorus ligand-modified SBA-15 for effective adsorption of Congo red and Reactive red 2
Gao et al. Preparation and characterization of ZSM-5 molecular sieve using coal gangue as a raw material via solvent-free method: Adsorption performance tests for heavy metal ions and methylene blue
Wang et al. A novel graphene oxide decorated with halloysite nanotubes (HNTs/GO) composite used for the removal of levofloxacin and ciprofloxacin in a wide pH range
CN105503958A (zh) 乙二胺修饰的mil-101及其制备方法
Li et al. Utilization of electrolytic manganese residue to synthesize zeolite A and zeolite X for Mn ions adsorption
Ansari et al. Synthesis of nano-NaX zeolite by microwave heating method for removal of lead, copper, and cobalt ions from aqueous solution
Wang et al. Modification of the crosslinked hyperbranched polyamide-amines by thiourea and its selective adsorption for Cu (II)
Panezai et al. Kinetic evaluation of dehydration in MxNa96-xLSX (M= Li+, Ca2+ and Ag+) zeolites and resulting effects on selective adsorption of N2 and O2
Xiong et al. Superior adsorption of Re (VII) by anionic imprinted chitosan-silica composite: Adsorption performance, selectivity and mechanism study
Hu et al. Amine-functionalized MOF-derived carbon materials for efficient removal of Congo red dye from aqueous solutions: simulation and adsorption studies
Zhang et al. Efficient magnesium recovery from seawater desalination brine via CO2 mineralization to synthesize hydromagnesite for uranium extraction
Huang et al. Enhanced adsorption capacity of tetracycline on porous graphitic biochar with an ultra-large surface area

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201113