CN111916531B - 一种用于光电探测的复合材料制备方法 - Google Patents

一种用于光电探测的复合材料制备方法 Download PDF

Info

Publication number
CN111916531B
CN111916531B CN202010835436.8A CN202010835436A CN111916531B CN 111916531 B CN111916531 B CN 111916531B CN 202010835436 A CN202010835436 A CN 202010835436A CN 111916531 B CN111916531 B CN 111916531B
Authority
CN
China
Prior art keywords
solution
zinc oxide
mixed solution
graphene
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010835436.8A
Other languages
English (en)
Other versions
CN111916531A (zh
Inventor
秦鹏超
付永启
冯双龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010835436.8A priority Critical patent/CN111916531B/zh
Publication of CN111916531A publication Critical patent/CN111916531A/zh
Application granted granted Critical
Publication of CN111916531B publication Critical patent/CN111916531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种用于光电探测的复合材料制备方法,属于材料制备技术领域。本发明在石墨烯薄膜上引入了氧化锌量子点,用于制造促进晶核生长的缺陷,有助于硫化铅薄膜的沉积。同时氧化锌作为宽禁带半导体材料具有优异的透光性与电学性,形成的异质结可以有效提高光电探测的增益与响应度。

Description

一种用于光电探测的复合材料制备方法
技术领域
本发明属于新材料制备技术领域,特别是涉及一种氧化锌/石墨烯/硫化铅复合材料及其制备方法。
背景技术
光电探测器在包括军事、民用、天文、医药等众多领域有广泛应用,对于光电探测器进行深入研究的重要意义首先在于其作为现代战争广泛使用的核心技术在军事方面的重要应用,如夜间探测、光电侦察、导航和搜索功能、导弹制导和跟踪等多种功能。尤其是新一代光电探测器的发展使武器具有更长作用距离和多目标探测能力。
石墨烯具有优异的光学、电学、热学和力学的性能,并迅速成为材料、物理、电子领域的研究热点,石墨烯表现出的优异特性为零带隙、超高载流子迁移率、高透光率、宽吸收光谱和室温下的量子霍尔效应,其中高光电响应具有非常重要的研究价值。
硫化铅红外探测器是一种非制冷红外探测器,现有技术中,可以利用电化学沉积将石墨烯与硫化铅吸光层相结合,形成复合结构,石墨烯的电子移动能够填补硫化铅的光生空穴,实现光生载流子的分离,提高光电探测的响应度与增益或光电响应度与增益,但目前在石墨烯薄膜上使用电化学沉积法沉积硫化铅薄膜很难实现均匀、致密的特点。
发明内容
针对背景技术中存在的问题,本发明在石墨烯薄膜与硫化铅薄膜之间,引入了氧化锌量子点,用于制造促进晶核生长的缺陷,有助于硫化铅的沉积。氧化锌作为宽禁带半导体材料具有优异的透光性与电学性,形成的异质结可以有效提高光电探测的增益与响应度。
本发明采用的技术方案如下:
一种用于光电探测的复合材料的制备方法,其特征在于,包括以下步骤:
S1.将硝酸锌溶解于超纯水中,得到浓度为0.04-0.07mol/l的硝酸锌溶液。
S2.在硝酸锌溶液中加入能够使硝酸锌完全反应的氨水,并磁力搅拌进行反应,得到氢氧化锌混合溶液。
S3.将石墨烯薄膜利用湿法技术转移到硅片基底上,然后置于氢氧化锌混合溶液中,水浴沉积,分离,得到前置样品。
S4.将前置样品预加热0.5h-3h,加热温度为90℃—150℃;然后采用化学气相沉积法,在保护气体氛围下,对前置样品加热,其中加热时间为1-5min,微波功率为700W,得到氧化锌/石墨烯样品。
S5.采用电化学沉积法,将氧化锌/石墨烯样品置于前驱体混合溶液中,在氧化锌/石墨烯样品上沉积硫化铅薄膜;所述前驱体混合溶液为乙酸铅、乙二胺四乙酸二钠、硫化钠的混合溶液。
S6.沉积完成后,获得硫化铅/氧化锌/石墨烯的复合材料。
进一步地,步骤S4中所述保护气体为氩气。
进一步地,步骤S5中,所述的前驱体混合溶液的制备方法为:依次倒入乙酸铅混合溶液、乙二胺四乙酸二钠溶液、硫化钠溶液;其中:乙酸铅溶液浓度为20mmol/l,乙二胺四乙酸二钠溶液浓度为10mmol/l,硫化钠溶液浓度为0.15mmol/l,乙酸铅溶液:乙二胺四乙酸二钠溶液:硫化钠溶液的体积比为2:2:1。
进一步地,步骤S5中,电化学沉积法选择恒电位沉积,其中沉积电位的选择由线性循环伏安分析来确定,沉积电位选择范围为-0.75v~-0.95v,沉积时间范围为10min-60min。
本发明将不同性质的材料进行优化合成为新的材料。利用氢氧化锌在空气中的高温脱水反应,然后在微波等离子体的反应室进行辉光放电,通入氩气,在微波的激励下,分子离化,产生等离子体,使得氧化锌薄膜烧结的同时被破坏,不再连续,形成量子点缺陷,有助于改善石墨烯的疏水性,促进硫化铅的电化学沉积,最终形成异质结。
本发明通过在等离子体反应的区域加热得到氧化锌量子点,制备方法简单有效,利用微波等离子体刻蚀薄膜,既可以保证氢氧化锌完全转化为氧化锌,同时完成了对氧化锌薄膜的破坏。然后采用电化学沉积法,在氧化锌量子点表面沉积硫化铅薄膜,氧化锌量子点既有促进硫化铅沉积的作用,又可以形成异质结。本发明制备的氧化锌/石墨烯/硫化铅的三明治结构可以使自由电子的行动能力加快,自由电子的迁移率可以大大增加,能够有效提高光电响应。
附图说明
图1为在硅片基底上做出氧化锌/石墨烯/硫化铅复合材料的示意图;
图2为实施例1制备得到的复合材料图;
图3为实施例2制备得到的复合材料图;
图4为实施例3制备得到的复合材料图;
图中:硅片基底(1)、石墨烯(2)、硫化铅(3)、氧化锌(4)。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1:
本实施例中,氧化锌/石墨烯/硫化铅复合材料的制备方法,包括以下步骤:
S1.将17g六水合硝酸锌(Zn(NO3)2.6H2O)溶解于100ml超纯水中,得到硝酸锌溶液。
S2.在硝酸锌溶液中加入5ml氨水(浓度为13.33mol/l),并磁力搅拌进行反应,转速为65rpm,温度为85℃,得到氢氧化锌混合溶液。
S3.将石墨烯薄膜利用湿法技术转移到硅片基底上,然后置于氢氧化锌混合溶液中,水浴沉积1min,分离,得到前置样品。
S4.将前置样品放置于加热板上预加热3h,加热温度为120℃。
S5.然后再放置于微波等离子体化学气相沉积装置中,采用化学气相沉积法,在氩气氛围下,对前置样品加热。其中氩气的流速为120sccm,加热时间为3min,微波功率为700W,得到氧化锌/石墨烯样品。
S6.采用电化学沉积法,将氧化锌/石墨烯样品固定在电化学反应工作站的工作电极上,对比电极为铂片,参比电极为氯化钾电极,然后将三相电极的反应端置于前驱体混合溶液中,还原反应电压为-0.75v,沉积时间为30min,在氧化锌/石墨烯样品上沉积硫化铅薄膜。所述前驱体混合溶液为乙酸铅、乙二胺四乙酸二钠、硫化钠的混合溶液,调节混合溶液,PH值为9.0;乙酸铅溶液浓度为20mmol/l,乙二胺四乙酸二钠溶液浓度为10mmol/l,硫化钠溶液浓度为0.15mmol/l,乙酸铅溶液:乙二胺四乙酸二钠溶液:硫化钠溶液的体积比为2:2:1。
S7.沉积完成后,获得如图2所示的硫化铅/氧化锌/石墨烯的复合材料。
实施例2:
本实施例与实施例1的不同点在于:步骤S6中,还原反应电压为-0.85v,获得的硫化铅/氧化锌/石墨烯的复合材料如图3所示。
实施例3:
本实施例与实施例1的不同点在于:步骤S6中,还原反应电压为-0.95v,获得的硫化铅/氧化锌/石墨烯的复合材料如图4所示的。
参考附图2-4,随着沉积电位往负方向移动,沉积的硫化铅薄膜致密性较好,颗粒变大,其中实施例1中得到的复合材料均匀度最好。

Claims (4)

1.一种用于光电探测的复合材料的制备方法,其特征在于,包括以下步骤:
S1.将硝酸锌溶解于超纯水中,得到浓度为0.04-0.07mol/l的硝酸锌溶液;
S2.在硝酸锌溶液中加入能够使硝酸锌完全反应的氨水,并磁力搅拌进行反应,得到氢氧化锌混合溶液;
S3.将石墨烯薄膜利用湿法技术转移到硅片基底上,然后置于氢氧化锌混合溶液中,水浴沉积,分离,得到前置样品;
S4.将前置样品预加热0.5h-3h,加热温度为90℃—150℃;然后采用化学气相沉积法,在保护气体氛围下,对前置样品加热,其中加热时间为1-5min,微波功率为700W,得到氧化锌/石墨烯样品;
S5.采用电化学沉积法,将氧化锌/石墨烯样品置于前驱体混合溶液中,在氧化锌/石墨烯样品上沉积硫化铅薄膜;所述前驱体混合溶液为乙酸铅、乙二胺四乙酸二钠、硫化钠的混合溶液;
S6.沉积完成后,获得硫化铅/氧化锌/石墨烯的复合材料。
2.如权利要求1所述的一种用于光电探测的复合材料的制备方法,其特征在于,步骤S5中所述的前驱体混合溶液的制备方法为:在乙酸铅混合溶液中依次倒入乙二胺四乙酸二钠溶液、硫化钠溶液,其中:乙酸铅溶液浓度为20mmol/l,乙二胺四乙酸二钠溶液浓度为10mmol/l,硫化钠溶液浓度为0.15mmol/l;乙酸铅溶液:乙二胺四乙酸二钠溶液:硫化钠溶液的体积比为2:2:1。
3.如权利要求1或2所述的一种用于光电探测的复合材料的制备方法,其特征在于,步骤S5中电化学沉积法选择恒电位沉积,其中沉积电位的选择由线性循环伏安分析来确定,沉积电位选择范围为-0.75v~-0.95v,沉积时间范围为10min-60min。
4.如权利要求3所述的一种用于光电探测的复合材料的制备方法,其特征在于,步骤S4中所述保护气体为氩气。
CN202010835436.8A 2020-08-19 2020-08-19 一种用于光电探测的复合材料制备方法 Active CN111916531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010835436.8A CN111916531B (zh) 2020-08-19 2020-08-19 一种用于光电探测的复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010835436.8A CN111916531B (zh) 2020-08-19 2020-08-19 一种用于光电探测的复合材料制备方法

Publications (2)

Publication Number Publication Date
CN111916531A CN111916531A (zh) 2020-11-10
CN111916531B true CN111916531B (zh) 2022-03-15

Family

ID=73279424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010835436.8A Active CN111916531B (zh) 2020-08-19 2020-08-19 一种用于光电探测的复合材料制备方法

Country Status (1)

Country Link
CN (1) CN111916531B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114520266A (zh) * 2021-10-22 2022-05-20 中国科学院重庆绿色智能技术研究院 硫化铅光电导探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522219A (zh) * 2011-12-15 2012-06-27 东南大学 一种量子点敏化太阳能电池及其制备方法
CN108067217A (zh) * 2017-12-19 2018-05-25 长沙理工大学 一种硫化物量子点改性的石墨烯/氧化锌纳米微球光催化材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2369953B1 (es) * 2011-08-02 2012-10-09 Fundació Institut De Ciències Fotòniques Plataforma optoelectrónica con conductor a base de carbono y puntos cuánticos y fototransistor que comprende una plataforma de este tipo
KR102446410B1 (ko) * 2015-09-17 2022-09-22 삼성전자주식회사 광전소자 및 이를 포함하는 전자장치
EP3223319A1 (en) * 2016-03-24 2017-09-27 Nokia Technologies Oy A quantum dot photodetector apparatus and associated methods
US20200067002A1 (en) * 2018-08-23 2020-02-27 Nanoco 2D Materials Limited Photodetectors Based on Two-Dimensional Quantum Dots

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522219A (zh) * 2011-12-15 2012-06-27 东南大学 一种量子点敏化太阳能电池及其制备方法
CN108067217A (zh) * 2017-12-19 2018-05-25 长沙理工大学 一种硫化物量子点改性的石墨烯/氧化锌纳米微球光催化材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
All-Printable ZnO Quantum Dots/Graphene van der Waals Heterostructures for Ultrasensitive Detection of Ultraviolet Light;Maogang Gong;《ACS Nano》;20170331;全文 *
Three-dimensional graphene electrode;Mohammad Mahdi Tavakoli;《ScienceDirect》;20161231;全文 *
新型石墨烯量子点及其在有机太阳能电池中的应用;张淑瑶;《桂林电子科技大学学报》;20190831;全文 *

Also Published As

Publication number Publication date
CN111916531A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
He et al. Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range
CN107369763B (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
CN108400244B (zh) 一种基于无铅双钙钛矿薄膜的深紫外光探测器及制备方法
Afsal et al. Highly sensitive metal–insulator–semiconductor UV photodetectors based on ZnO/SiO 2 core–shell nanowires
Tang et al. ZnO nanowalls grown at low-temperature for electron collection in high-efficiency perovskite solar cells
Sharma et al. Solution processed Li 5 AlO 4 dielectric for low voltage transistor fabrication and its application in metal oxide/quantum dot heterojunction phototransistors
CN104152868A (zh) 一种利用原子层沉积技术制作微通道板功能层的方法
CN111916531B (zh) 一种用于光电探测的复合材料制备方法
Zhao et al. Comprehensive investigation of sputtered and spin-coated zinc oxide electron transport layers for highly efficient and stable planar perovskite solar cells
CN108832012A (zh) 一种自发性Ag掺杂与钝化的钙钛矿量子点LED及制备方法
Liu et al. Self-powered, high response and fast response speed metal–insulator–semiconductor structured photodetector based on 2D MoS 2
Ding et al. Synthesis of Bi2S3 thin films based on pulse-plating bismuth nanocrystallines and its photoelectrochemical properties
TW201907574A (zh) 二維電子元件與相關製造方法
CN111004629A (zh) 一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法
CN103031596B (zh) 基于铝镓氮材料的日盲型紫外光电阴极的外延生长方法
Yang et al. Magnetron-sputtered nickel oxide films as hole transport layer for planar heterojunction perovskite solar cells
CN106898664B (zh) 一种高灵敏度半导体纳米紫外光探测器的制备方法
Lee et al. Electrochemical approach for preparing conformal methylammonium lead iodide layer
CN112993075A (zh) 一种含有插层的石墨烯/硅肖特基结光电探测器及制备工艺
CN101692468B (zh) 金刚石薄膜的光敏晶体管的制备方法
Fix et al. Preparation of β-CuGaO2 thin films by ion-exchange of β-NaGaO2 film fabricated by a solgel method
Yang et al. The effect of Ga doping concentration on the low-frequency noise characteristics and photoresponse properties of ZnO nanorods-based UV photodetectors
Córdoba et al. Electroluminescence transients and correlation with steady-state solar output in solution-prepared CH3NH3PbI3 perovskite solar cells using different contact materials
CN111312851A (zh) 一种AlN纳米线日盲区探测器的制备方法
CN105552237A (zh) 一种有机无机杂化钙钛矿薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant