CN111004629A - 一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法 - Google Patents
一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法 Download PDFInfo
- Publication number
- CN111004629A CN111004629A CN201911375423.0A CN201911375423A CN111004629A CN 111004629 A CN111004629 A CN 111004629A CN 201911375423 A CN201911375423 A CN 201911375423A CN 111004629 A CN111004629 A CN 111004629A
- Authority
- CN
- China
- Prior art keywords
- cspbbr
- solution
- quantum dot
- improving
- inorganic perovskite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006641 stabilisation Effects 0.000 title claims description 5
- 238000011105 stabilization Methods 0.000 title claims description 5
- 239000002096 quantum dot Substances 0.000 claims abstract description 48
- 229920000128 polypyrrole Polymers 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 23
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims abstract description 14
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 229910052724 xenon Inorganic materials 0.000 claims abstract description 9
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims abstract description 9
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 claims abstract description 7
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims abstract description 6
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims abstract description 6
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims abstract description 6
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000005642 Oleic acid Substances 0.000 claims abstract description 6
- 229910052792 caesium Inorganic materials 0.000 claims abstract description 6
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000005119 centrifugation Methods 0.000 claims abstract description 6
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims abstract description 6
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims abstract description 6
- 239000002243 precursor Substances 0.000 claims abstract description 6
- 239000011248 coating agent Substances 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims abstract description 5
- 239000003960 organic solvent Substances 0.000 claims abstract description 5
- 239000005457 ice water Substances 0.000 claims abstract description 4
- 238000001291 vacuum drying Methods 0.000 claims abstract description 4
- 238000001556 precipitation Methods 0.000 claims abstract description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 238000005286 illumination Methods 0.000 claims description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 230000000087 stabilizing effect Effects 0.000 claims 4
- 239000000463 material Substances 0.000 abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 12
- 239000011241 protective layer Substances 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract description 2
- 230000005693 optoelectronics Effects 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/66—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
- C09K11/664—Halogenides
- C09K11/665—Halogenides with alkali or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法,其特征在于,将PbBr2和十八烯混合,得到溶液Ⅰ;再加入油胺和油酸,得到溶液Ⅱ;加热,并将铯前驱体溶液加入到溶液Ⅱ中,用冰水浴降温,再经离心、沉淀后,将量子点分散于有机溶剂中,得到CsPbBr3量子点溶液;将吡咯和苯醌加入到CsPbBr3量子点溶液中,再加入氯仿,得到反应体系;采用氙灯为光源,进行光照,最后离心、真空干燥即可。本发明通过在CsPbBr3量子点表面包覆聚吡咯保护层,大大提高了CsPbBr3量子点在水中的稳定性。由于聚吡咯具有优异的电荷传输特性,还能提高材料的导电性能,可应用于高性能器件的光电材料。
Description
技术领域
本发明属于材料学领域,具体涉及一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法。
背景技术
全无机钙钛矿量子点以其较高的量子产率、发光波长可覆盖整个可见光谱、半高宽相对较窄等优点,被广泛应用于太阳能电池组件、发光二极管、传感器等领域。
全无机钙钛矿量子点CsPbBr3由于其优异的光电特性,在光伏、光电领域具有广泛的应用,取得了突破性的研究成果。但是CsPbBr3量子点材料遇水分解,极其不稳定,该问题严重制约了该材料在以上应用领域的发展,因此增强钙钛矿量子点的水稳定性成为了研究热点。因此,开发水稳定的钙钛矿量子点,从而实现钙钛矿量子点光电器件的稳定性能,进一步拓展全无机钙钛矿量子点在水环境中的一些应用如生物检测、荧光标记等具有重要的意义。聚吡咯是一种广泛应用的导电高分子材料,具有很好的可见光吸收特性、较高的载流子迁移率、以及优异的热稳定性和化学稳定性。因此,在CsPbBr3量子点外面包覆聚吡硌的保护层,可以极大地提高CsPbBr3量子点在水中的稳定性,同时还能保持良好的电荷传输特性。
发明内容
本发明所要解决的技术问题是:如何提高全无机钙钛矿量子点CsPbBr3的稳定性。
为了解决上述技术问题,本发明提供了一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法,其特征在于,在CsPbBr3量子点外面包覆一层导电高分子聚合物聚吡咯,包括以下步骤:
步骤1):将PbBr2和十八烯混合,得到溶液Ⅰ;
步骤2):在惰性环境下,向溶液Ⅰ中加入油胺和油酸,得到溶液Ⅱ;
步骤3):将溶液Ⅱ的温度升至130-170℃,然后将铯前驱体溶液迅速加入到溶液Ⅱ中,保持此温度5-10秒钟,然后用冰水浴降温,再经离心、沉淀后,将量子点分散于有机溶剂中,得到CsPbBr3量子点溶液;
步骤4):将吡咯和苯醌加入到CsPbBr3量子点溶液中,然后再加入氯仿,得到反应体系;
步骤5):采用氙灯为光源,安装截止滤光片去除氙灯中的紫外光部分,并将光源置于步骤4)制得的反应体系的上方,进行光照;
步骤6):将光照后的反应体系离心、真空干燥,即得具有高稳定性的聚吡咯/CsPbBr3。
优选地,所述步骤1)中PbBr2和十八烯的摩尔比为0.007:1。
优选地,所述步骤2)中油胺和油酸的体积比为1:1。
优选地,所述步骤3)中PbBr2和铯前驱体溶液的摩尔比为2.4:1。
优选地,所述步骤3)中的有机溶剂为正己烷、甲苯或乙酸乙酯。
优选地,所述步骤4)中吡咯、苯醌、CsPbBr3量子点溶液、氯仿的比例为(6-8)g:(7-9)g:4L:(4-5)L。
优选地,所述步骤5)中氙灯的功率为500W,截止滤光片的规格为420nm,光照时间为90-120min。
优选地,所述步骤6)中离心的速率为8000-10000r/min,时间为10min;干燥的温度为60-80℃,时间为8-12h。
与现有技术相比,本发明的有益效果在于:
本发明通过在CsPbBr3量子点表面包覆聚吡咯保护层,大大提高了CsPbBr3量子点在水中的稳定性。将聚吡咯/CsPbBr3材料在水中浸泡一个月,该材料的结构没有明显的改变。同时,由于聚吡咯具有优异的电荷传输特性,利用其对CsPbBr3进行包覆还能提高材料的导电性能,可应用于高性能器件的光电材料。该方法操作简单,可控性强,容易实现规模化生产。
附图说明
图1为实施例1得到的聚吡咯/CsPbBr3样品的XRD衍射图谱;
图2为实施例1得到的聚吡咯/CsPbBr3样品的透射电子显微镜(TEM)照片;
图3为实施例1得到的聚吡咯/CsPbBr3样品和纯CsPbBr3量子点的光电流对比;
图4为实施例1中得到的聚吡咯/CsPbBr3样品在水中浸泡30天后的XRD衍射图谱。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例中涉及到的原料均从泰坦科技股份有限公司购得。
实施例1
一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法,具体包括以下步骤:
步骤1:将PbBr2和十八烯以摩尔比为0.007:1的比例混合,得到溶液Ⅰ;
步骤2:在惰性环境下,向步骤1得到的溶液Ⅰ中加入体积比为1:1的油胺和油酸,得到溶液Ⅱ;
步骤3:将溶液Ⅱ的反应温度升温至160℃,然后将铯前驱体溶液迅速加入到溶液Ⅱ中,保持此温度5秒钟,然后用冰水浴降温,离心、沉淀后,将量子点分散于20mL甲苯中,得到CsPbBr3量子点溶液;
步骤4:将35mg吡咯和40mg苯醌加入到步骤三中得到的CsPbBr3量子点溶液中,然后再加入20mL氯仿,得到反应体系;
步骤5:采用500W氙灯为光源,安装420nm截止滤光片去除氙灯中的紫外光部分,并将光源置于步骤四制备的反应体系的正上方,光照100min;
步骤6:将光照后的反应体系以8000r/min的速率离心10min,将所得的沉淀在70℃下真空干燥10h,即得到具有高稳定性的聚吡咯/CsPbBr3样品;
采用X射线衍射仪(D/max2200PC,日本理学株式会社)对上述所得的聚吡咯/CsPbBr3样品进行测定,所得的XRD图谱如图1所示,从图1中可以看出,所得的聚吡咯/CsPbBr3样品为单斜相结构的CsPbBr3,因聚吡咯为非晶态的高分子,XRD图谱未表现出其衍射峰。
采用场发射透射电子显微镜(FEI tecnaiG2F30,美国FEI公司)对上述所得的聚吡咯/CsPbBr3样品进行形貌和微结构表征,所得的透射电镜图如图2所示。从图2中可以看出,所得的聚吡咯/CsPbBr3样品为聚吡硌高分子保护层包覆在CsPbBr3量子点外面。
采用电化学工作站(CHI 650E,上海辰华)对上述所得的聚吡咯/CsPbBr3样品进行光电流测试,所得的实验结果如图3所示。从图3中可以看出,聚吡咯/CsPbBr3样品在相同条件下的光电流密度是单纯CsPbBr3量子点的2.3倍,说明该材料具有较高的导电性能。
将上述所得的聚吡咯/CsPbBr3样品在水中浸泡30天,将粉末离心干燥之后,采用X射线衍射仪对其物相进行测定,所得的XRD图谱如图4所示。从图4中可以看出,在水中浸泡30天后,所得的聚吡咯/CsPbBr3样品的物相没有发生明显的改变,仍为单斜相结构的CsPbBr3,说明该材料具有非常高的水稳定性。
实施例2
本实施例与实施例1的不同之处仅在于:吡咯的加入量为30mg,其余内容均与实施例1中所述完全相同。经检测分析得知:本实施例所获得的聚吡咯
/CsPbBr3样品在相同条件下的光电流密度为单纯CsPbBr3量子点的1.5倍,比实施例1所获材料的光电流密度有所下降。
实施例3
本实施例与实施例1的不同之处仅在于:苯醌的加入量为35mg,其余内容均与实施例1中所述完全相同。经检测分析得知:本实施例所获得的聚吡咯
/CsPbBr3样品在相同条件下的光电流密度为单纯CsPbBr3量子点的1.9倍,比实施例1所获材料的光电流密度有所下降。
Claims (8)
1.一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法,其特征在于,在CsPbBr3量子点外面包覆一层导电高分子聚合物聚吡咯,包括以下步骤:
步骤1):将PbBr2和十八烯混合,得到溶液Ⅰ;
步骤2):在惰性环境下,向溶液Ⅰ中加入油胺和油酸,得到溶液Ⅱ;
步骤3):将溶液Ⅱ的温度升至130-170℃,然后将铯前驱体溶液迅速加入到溶液Ⅱ中,保持此温度5-10秒钟,然后用冰水浴降温,再经离心、沉淀后,将量子点分散于有机溶剂中,得到CsPbBr3量子点溶液;
步骤4):将吡咯和苯醌加入到CsPbBr3量子点溶液中,然后再加入氯仿,得到反应体系;
步骤5):采用氙灯为光源,安装截止滤光片去除氙灯中的紫外光部分,并将光源置于步骤4)制得的反应体系的上方,进行光照;
步骤6):将光照后的反应体系离心、真空干燥,即得具有高稳定性的聚吡咯/CsPbBr3。
2.如权利要求1所述的提高全无机钙钛矿量子点CsPbBr3稳定性的方法,其特征在于,所述步骤1)中PbBr2和十八烯的摩尔比为0.007:1。
3.如权利要求1所述的提高全无机钙钛矿量子点CsPbBr3稳定性的方法,其特征在于,所述步骤2)中油胺和油酸的体积比为1:1。
4.如权利要求1所述的提高全无机钙钛矿量子点CsPbBr3稳定性的方法,其特征在于,所述步骤3)中PbBr2和铯前驱体溶液的摩尔比为2.4:1。
5.如权利要求1所述的提高全无机钙钛矿量子点CsPbBr3稳定性的方法,其特征在于,所述步骤3)中的有机溶剂为正己烷、甲苯或乙酸乙酯。
6.如权利要求1所述的提高全无机钙钛矿量子点CsPbBr3稳定性的方法,其特征在于,所述步骤4)中吡咯、苯醌、CsPbBr3量子点溶液、氯仿的比例为(6-8)g:(7-9)g:4L:(4-5)L。
7.如权利要求1所述的提高全无机钙钛矿量子点CsPbBr3稳定性的方法,其特征在于,所述步骤5)中氙灯的功率为500W,截止滤光片的规格为420nm,光照时间为90-120min。
8.如权利要求1所述的提高全无机钙钛矿量子点CsPbBr3稳定性的方法,其特征在于,所述步骤6)中离心的速率为8000-10000r/min,时间为10min;干燥的温度为60-80℃,时间为8-12h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911375423.0A CN111004629B (zh) | 2019-12-27 | 2019-12-27 | 一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911375423.0A CN111004629B (zh) | 2019-12-27 | 2019-12-27 | 一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111004629A true CN111004629A (zh) | 2020-04-14 |
CN111004629B CN111004629B (zh) | 2022-07-12 |
Family
ID=70118757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911375423.0A Active CN111004629B (zh) | 2019-12-27 | 2019-12-27 | 一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111004629B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111584717A (zh) * | 2020-05-15 | 2020-08-25 | 浙江大学 | 光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法 |
CN111849457A (zh) * | 2020-07-16 | 2020-10-30 | 上海应用技术大学 | 一种提高全无机钙钛矿量子点CsPbBr3电荷分离效率的方法 |
CN113976182A (zh) * | 2021-10-27 | 2022-01-28 | 陕西科技大学 | 一种聚吡咯包覆无铅钙钛矿的光催化材料及其制备方法 |
CN114162852A (zh) * | 2021-11-26 | 2022-03-11 | 苏州大学 | 一种应用于LCD背光显示的新型全无机CsPbBr3钙钛矿及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106905960A (zh) * | 2017-02-23 | 2017-06-30 | 吉林师范大学 | 一种调控全无机钙钛矿量子点发光波长的方法 |
US20180312754A1 (en) * | 2015-11-08 | 2018-11-01 | King Abdullah University Of Science And Technology | Air-stable surface-passivated perovskite quantum dots (qds), methods of making these qds, and methods of using these qds |
US20190203113A1 (en) * | 2018-01-04 | 2019-07-04 | National Tsing Hua University | Perovskite quantum dot, method of preparing the same and quantum dot film including the same |
-
2019
- 2019-12-27 CN CN201911375423.0A patent/CN111004629B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180312754A1 (en) * | 2015-11-08 | 2018-11-01 | King Abdullah University Of Science And Technology | Air-stable surface-passivated perovskite quantum dots (qds), methods of making these qds, and methods of using these qds |
CN106905960A (zh) * | 2017-02-23 | 2017-06-30 | 吉林师范大学 | 一种调控全无机钙钛矿量子点发光波长的方法 |
US20190203113A1 (en) * | 2018-01-04 | 2019-07-04 | National Tsing Hua University | Perovskite quantum dot, method of preparing the same and quantum dot film including the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111584717A (zh) * | 2020-05-15 | 2020-08-25 | 浙江大学 | 光热组合外场辅助提高有机-无机杂化钙钛矿太阳电池效率的方法 |
CN111584717B (zh) * | 2020-05-15 | 2022-05-10 | 浙江大学 | 光热组合外场辅助提高杂化钙钛矿太阳电池效率的方法 |
CN111849457A (zh) * | 2020-07-16 | 2020-10-30 | 上海应用技术大学 | 一种提高全无机钙钛矿量子点CsPbBr3电荷分离效率的方法 |
CN113976182A (zh) * | 2021-10-27 | 2022-01-28 | 陕西科技大学 | 一种聚吡咯包覆无铅钙钛矿的光催化材料及其制备方法 |
CN114162852A (zh) * | 2021-11-26 | 2022-03-11 | 苏州大学 | 一种应用于LCD背光显示的新型全无机CsPbBr3钙钛矿及其制备方法 |
CN114162852B (zh) * | 2021-11-26 | 2024-02-02 | 苏州大学 | 一种应用于LCD背光显示的全无机CsPbBr3钙钛矿及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111004629B (zh) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | High-performance CsPbBr3@ Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication | |
CN111004629A (zh) | 一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法 | |
Silva Filho et al. | Perovskite thin film synthesised from sputtered lead sulphide | |
US10566104B2 (en) | Metal nanowire having core-shell structure coated with graphene, and manufacturing method therefor | |
Xue et al. | Controllable synthesis of doped graphene and its applications | |
Zhu et al. | High photoresponse sensitivity of lithium-doped ZnO (LZO) thin films for weak ultraviolet signal photodetector | |
Abd Malek et al. | Ultra-thin MoS2 nanosheet for electron transport layer of perovskite solar cells | |
Chavan et al. | Organic Ligand‐Free ZnO Quantum Dots for Efficient and Stable Perovskite Solar Cells | |
Cai et al. | Controlled self-assembly and photovoltaic characteristics of porphyrin derivatives on a silicon surface at solid–liquid interfaces | |
US20150228371A1 (en) | Method for producing electrically conductive thin film, and electrically conductive thin film produced by said method | |
Spalenka et al. | Electron mobility enhancement in ZnO thin films via surface modification by carboxylic acids | |
David Prabu et al. | Investigation of molar concentration effect on structural, optical, electrical, and photovoltaic properties of spray‐coated Cu2O thin films | |
Zhang et al. | Large‐area flexible, transparent, and highly luminescent films containing lanthanide (III) complex‐doped ionic liquids for efficiency enhancement of silicon‐based heterojunction solar cell | |
Dixit et al. | Influence of potassium permanganate on the anisotropic growth and enhanced UV emission of ZnO nanostructures using hydrothermal process for optoelectronic applications | |
Li et al. | Hydrogen-bonding-facilitated dimethylammonium extraction for stable and efficient CsPbI3 solar cells with environmentally benign processing | |
He et al. | Ultrasensitive all-solution-processed field-effect transistor based perovskite photodetectors with sol-gel SiO2 as the dielectric layer | |
Pelicano et al. | Accelerated growth of nanostructured ZnO films via low temperature microwave-assisted H2O oxidation for solar cell applications | |
Choudhary et al. | Tailoring the properties of 2-D rGO-PPy-ZnS nanocomposite as emissive layer for OLEDs | |
Zhao et al. | Air-processed and mixed-cation single crystal engineering-based perovskite films for efficient and air-stable perovskite solar cells | |
Xu et al. | Low temperature-processed stable and high-efficiency carbon-based CsPbI2Br perovskite solar cells by additive strategy | |
EP3343656B1 (en) | Photoelectric conversion element | |
Yang et al. | Surface molecular engineering of CsPbBr3 perovskite nanosheets for high-performance photodetector | |
Dhatchinamurthy et al. | Synthesis and characterization of cadmium sulfide (CdS) thin film for solar cell applications grown by dip coating method | |
Azam et al. | Insights on the correlation of precursor solution, morphology of the active layer and performance of the pervoskite solar cells | |
Akgun et al. | Hydrothermal zinc oxide nanowire growth with different zinc salts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |