CN111908507B - 一种MoS2纳米片及电催化产氢复合膜的制备方法 - Google Patents

一种MoS2纳米片及电催化产氢复合膜的制备方法 Download PDF

Info

Publication number
CN111908507B
CN111908507B CN202010827201.4A CN202010827201A CN111908507B CN 111908507 B CN111908507 B CN 111908507B CN 202010827201 A CN202010827201 A CN 202010827201A CN 111908507 B CN111908507 B CN 111908507B
Authority
CN
China
Prior art keywords
carbon cloth
mos
solution
polyallylamine hydrochloride
distilled water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010827201.4A
Other languages
English (en)
Other versions
CN111908507A (zh
Inventor
张以河
许立男
安琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN202010827201.4A priority Critical patent/CN111908507B/zh
Publication of CN111908507A publication Critical patent/CN111908507A/zh
Application granted granted Critical
Publication of CN111908507B publication Critical patent/CN111908507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/53Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with hydrogen sulfide or its salts; with polysulfides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明总体地属于无机材料制备技术领域,提供了一种MoS2纳米片的制备方法,具体步骤为:S1、分别配制聚丙烯酸和聚烯丙基胺盐酸盐溶液,调节各自的pH值;S2、对碳布进行前处理;S3、将步骤S2的碳布置入聚丙烯酸溶液中静置,然后进行洗涤吹干;S4、将步骤S3得到的碳布置入聚烯丙基胺盐酸盐溶液中静置,然后进行洗涤吹干;S5、重复步骤S3~S4,得到聚电解质层修饰的碳布表面;S6、将MoS2前驱体分散于水溶液中得到前驱体分散液;S7将步骤S5得到的碳布和前驱体分散液转移至水热釜中,水热制备碳布负载的MoS2;S8、用蒸馏水洗涤,再进行超声处理,得到MoS2纳米片。

Description

一种MoS2纳米片及电催化产氢复合膜的制备方法
技术领域
本发明总体地涉及自组装制备、无机材料制备技术领域,具体地涉及一种MoS2纳米片及电催化产氢复合膜的制备方法。
背景技术
MoS2是由S-Mo-S结构单元组成的典型片层状结构,层间为范德华力,层内为Mo、S化学键相结合。当固体颗粒的尺寸达到纳米级别,会表现特定性质。研究表明,当MoS2从体材料转变为纳米尺度的结构时,能带结构会从间接带隙转变为直接带隙,突出表现为优良的电子迁移率、光电性能以及催化活性等。目前纳米级MoS2在析氢反应电催化剂、光催化剂、超级电容器及离子电池等能源材料方向上具有极大的应用价值,因此对纳米级MoS2的研究具有重要的科学意义。
MoS2纳米片的制备主要包含两种方法,一种是“自上而下”的制备方法(例如机械剥离、液相剥离),这种方法主要是借助超声辅助剥离MoS2粉末,在超声过程中加入小分子、离子及表面活性剂等,利用分子、离子插层或者表面活性剂亲油亲水的特性,辅助超声过程中MoS2块体剥离成纳米片层。另一种是“自下而上”的合成方法,在制备过程使用能够溶于水的钼酸盐,利用水热合成法,使表面能控制在较小的范围;再者利用化学气相沉积法(CVD),直接在基底上负载薄层MoS2。这些方法均能有效的制备得到单层或少层MoS2,但也存在不足之处,例如,机械剥离或是CVD技术能够制备高纯度材料,但耗时较长且对设备要求高;超声波剥落不仅能耗大,而且会带来噪声污染。
目前MoS2纳米片的制备还缺乏一种易于操作、适合大规模制造、在仪器和时间上有效配置的简便制造策略。
纳米级厚度MoS2纳米片凭借其高比例暴露的特定催化晶面、高的原子利用率、高效的传质与电子传输优势有望成为具有最佳性能的能源材料。
发明内容
本发明的目的是为了克服现有技术中硫化钼等二维材料制备过程中耗时较长、设备要求高且能耗大等不足,提供一种二硫化钼(MoS2)纳米片的制备方法,该方法工艺简单、操作简单、对设备要求简单、平衡能量损耗、重复性强,制备所得的MoS2纳米片粒径范围为100-200nm,厚度约为10-20nm。此发明制备工艺简单,本发明方法可扩展到其他二维材料的制备。
本申请中,PAA为聚丙烯酸,PAH为聚烯丙基胺盐酸盐。
本发明的技术方案是,一种MoS2纳米片的制备方法,以聚电解质层修饰的碳布为基底材料,以MoS2前驱体为原料,在基底材料上水热法负载形成 MoS2纳米片结构,再利用超声法辅助剥落得到MoS2纳米片,其中所述聚电解质层修饰的碳布是以聚丙烯酸和聚烯丙基胺盐酸盐为聚电解质层基质材料在碳布表面交替进行层层自组装所得。
进一步的,本发明方法包括以下步骤:
S1、分别配制聚丙烯酸和聚烯丙基胺盐酸盐溶液,调节各自的pH值;
S2、对碳布进行前处理,除去碳布表面杂质,以备后续聚电解质层的组装修饰;
S3、将步骤S2的碳布置入聚丙烯酸溶液中静置,然后用去离子水洗涤,氮气吹干;
S4、将步骤S3得到的碳布置入聚烯丙基胺盐酸盐溶液中静置,然后去离子水洗涤,氮气吹干;
S5、重复步骤S3~S4,得到聚电解质层修饰的碳布表面,为二硫化钼前驱体的沉积提供空间限制网络结构;
S6、称取一定质量的MoS2前驱体,分散于水溶液中得到前驱体分散液;
S7、将步骤S5得到的碳布和步骤S6配制的前驱体分散液转移至水热釜中,水热制备碳布负载的MoS2
S8、将步骤S7得到的负载MoS2的碳布用蒸馏水洗涤,再进行超声处理,得到MoS2纳米片,此过程使用蒸馏水洗涤MoS2负载的碳布,目的就是除区松散的MoS2颗粒。
更进一步的,上述步骤S1中,所述聚丙烯酸(PAA)溶液的浓度为4 mg/mL,用氢氧化钠调节pH为9-10;所述聚烯丙基胺盐酸盐(PAH)溶液的浓度为1mg/mL,用盐酸调节pH为5-6。
PAH在pH为9-10条件下带正电;PAA在pH为5-6条件下带负电。由于PAH和PAA的自组装驱动力主要是静电作用,在上述指定的pH条件下,有合适的离子强度,组装上去的PAH和PAA更多一点。
更进一步的,上述步骤S2中对碳布进行前处理的方法为:将碳布裁剪成 3×3cm2大小,将裁剪好的碳布置入乙醇中超声震荡处理20-30min;再将碳布置入蒸馏水中超声震荡处理20-30min;最后将其浸泡在步骤S1所配制的聚烯丙基胺盐酸盐溶液中1h,然后用蒸馏水洗涤,使其表面带有正电荷。
更进一步的,上述步骤S3和步骤S4中,碳布分别置入聚丙烯酸溶液和聚烯丙基胺盐酸盐溶液中静置的时间为10-20min。
更进一步的,上述步骤S5中,重复步骤S3~S4,使碳布交替浸入聚丙烯酸溶液和聚烯丙基胺盐酸盐溶液中,且最后一次浸入聚烯丙基胺盐酸盐溶液,重复的次数为6-8次,以得到多层聚电解质层(聚丙烯酸/聚烯丙基胺盐酸盐)膜修饰的碳布。
更进一步的,上述步骤S6中,MoS2前驱体分散液为四水合钼酸铵和硫脲分散于蒸馏水中形成,四水合钼酸铵和硫脲的质量分别为900mg和970 mg,蒸馏水的体积为40mL。
适宜的前驱体浓度能够使前驱体更高效地沉积在聚电解质层中,从而使聚电解质层结构空间限制二硫化钼纳米片的生长:前驱体过低,碳布负载二硫化钼量少;前驱体四水合钼酸铵和硫脲的浓度过高,会使得二硫化钼形成大面积团聚,从而影响纳米片结构形成。
本发明通过研究和优化计算,得到:四水合钼酸铵和硫脲的质量分别为 900mg和970mg,蒸馏水的体积为40mL是最优浓度配制,在其他浓度下得不到二硫化钼纳米片:浓度过低,不能形成二硫化钼;浓度过高则全部呈现二硫化钼团聚的球;只有在该浓度下才能得到均匀的纳米片分布,再通过超声处理剥离下来。
更进一步的,上述步骤S7中,水热釜为聚四氟乙烯反应釜,水热制备的温度为180℃,水热反应的时间为12h。
更进一步的,上述步骤S8中的具体方法为:先用蒸馏水洗涤负载MoS2的碳布,除去松散的MoS2微粒,再将洗涤后的碳布置入40-60mL蒸馏水中,超声处理时间为5-60min,得到MoS2纳米片。超声处理时间越长二硫化钼纳米片会发生团聚,影响纳米片的粒径和厚度,主粒径分布变宽,适当控制超声时间可得到适宜粒径的MoS2纳米片。
本发明同时提供了一种电催化产氢复合薄膜的制备方法,包括以下步骤:
1)量取乙二醇加入等体积的聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)溶液中,混合均匀,备用;
2)将MoS2纳米片配制成0.1mg/mL的MoS2纳米片分散液,所述MoS2纳米片由本发明上述MoS2纳米片的制备方法中经步骤S8超声处理后所得;
3)将碳布剪裁成1*4cm2大小,经置入乙醇中超声震荡处理20-30min、再置入蒸馏水中超声震荡处理20-30min;
4)将步骤3)处理的碳布置于40mL步骤1)得到的混合溶液中15min,然后转入烘箱中100℃保持30min;
5)将负载了聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)的碳布继续浸入步骤 2)所得的0.1mg/mL的MoS2纳米片分散液中15min,100℃烘干30min;
6)循环重复数次步骤4)~5),在碳布上得到电催化产氢复合膜,即多层(聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸))/MoS2形成的复合膜,记为 (PEDOT:PSS/MoS2)n-CC,其中n代表(PEDOT:PSS)/MoS2在碳布上的层数,取值范围为大于4-10之间的整数。
上述(PEDOT:PSS/MoS2)n-CC复合膜可用于催化产氢中。
本发明相比于现有技术的益处是:
本发明利用空间限制法制备MoS2纳米片,工艺简单、成本低廉,平衡能量损耗过程,重复性强,所制备的MoS2纳米片粒径范围为100-200nm,厚度约为10-20nm(在选择的适宜前驱体四水合钼酸铵和硫脲浓度下,超声40min,制备得到的粒径范围为100-200nm,厚度10-20nm(通过AFM测定不同纳米片粒径和厚度,得到这样一个范围)。该方法适用性强,可扩展到其他类似二维结构的制备。
附图说明
从下面结合附图对本发明实施例的详细描述中,本发明的这些和/或其它方面和优点将变得更加清楚并更容易理解,其中:
图1为本发明实施例制备MoS2纳米片的流程示意图;
图2为本发明实施例制备MoS2纳米片所得MoS2纳米片扫描电镜形貌图;
图3为本发明实施例制备的MoS2纳米片的原子力显微镜图;其中(a) 为原子力显微照片;(b)为图(a)中所示编号纳米片的厚度曲线;
图4为本发明制备的MoS2纳米片与聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)制备复合薄膜用于电催化产氢的照片及电流密度图;其中 (a)为(PEDOT:PSS/MoS2)n-CC薄膜用于电催化产氢的照片;(b)为 (PEDOT:PSS/MoS2)n-CC薄膜中n分别取值4、6、8和10时的产氢极化曲线图。
具体实施方式
为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
实施例1
一种二硫化钼(MoS2)纳米片的制备,其流程示意图如图1所示,具体步骤如下:
将碳布裁剪成3*3cm2大小,将裁剪好的碳布放到乙醇中超声震荡处理 20min;再将碳布浸入蒸馏水中超声震荡处理10min;浸泡在4mg/mL pH=9 的PAH水溶液中1h,蒸馏水洗涤,使其表面带有正电荷。将预处理的碳布浸入1mg/mL pH=6的PAA水溶液中5min;再将其浸入4mg/mL pH=9的 PAH水溶液中5min;重复以上两个步骤,循环6次,得到聚电解质层修饰的碳布,记为(PAA/PAH)6-CC。称取四水合钼酸铵900mg和硫脲970mg,将其分散于40mL蒸馏水溶液中,搅拌均匀;将配置好的溶液转移到50mL聚四氟乙烯反应釜中,并将(PAA/PAH)6-CC置于溶液中,在180℃保持12h;然后将负载样品的碳布用蒸馏水洗涤,60℃干燥,样品记为MoS2-(PAA/PAH)6- CC;将MoS2-(PAA/PAH)6-CC置于40mL蒸馏水中,超声处理40min,得到 MoS2纳米片。所得纳米片的扫描电镜形貌图如图2所示,可以看出纳米片的粒径分布。
实施例2
二硫化钼(MoS2)纳米片的应用:
量取20mL乙二醇(EG)加入等体积20mL的PEDOT:PSS溶液中,混合均匀,备用;将实施例1中所得的MoS2纳米片配制成0.1mg/mL的MoS2纳米片分散液。将碳布(CC)剪裁成1*4cm2大小,置入乙醇中超声震荡处理20- 30min、再置入蒸馏水中超声震荡处理20-30min处理后,置于40mL的 PEDOT:PSS混合溶液中15min,然后转入烘箱中100℃保持30min;将负载了PEDOT:PSS的碳布继续浸入0.1mg/mL的MoS2纳米片分散液中15min, 100℃烘干30min;重复数次以上浸入PEDOT:PSS溶液中15min然后烘干,再浸入MoS2纳米片分散液中然后烘干步骤得到所需要的样品,记为 (PEDOT:PSS/MoS2)n-CC。
将得到的不同组装层数(n=4-10)的(PEDOT:PSS/MoS2)n-CC样品,进行电化学产氢测试,电催化产氢的照片及电流密度如图4所示。电催化产氢测试采用三电极体系,对电极(Pt片/碳棒)、参比电极(Ag/AgCl(饱和KCl))、工作电极(n=4-10范围内的(PEDOT:PSS/MoS2)n-CC),电解液为0.5M H2SO4,相对于标准氢电极(RHE)电压:E(RHE)=E(Ag/AgCl)+0.2V。电化学催化剂的产氢极化曲线采用线性扫描伏安法,扫描速率为5mV/s,扫描范围为-0.45-0 V(vs.RHE)。
实验结果及讨论:
图1所示的MoS2纳米片制备的流程示意中,关键在于:聚电解质层修饰的碳布表面为二硫化钼前驱体的沉积提供了空间限制,有利于水热过程中 MoS2纳米片的形成。
结合图2和图3可以看出:本发明实施例制备的MoS2纳米片粒径约100- 200nm、厚度范围约为10-20nm,说明本发明制备的MoS2纳米片满足预期的目的。
结合图4可知,随着组装层数n的增加,初始电流为-10mA/cm2时的极化电压值逐步降低。当n=8、过电位η=0.45V时,电流密度j=-55.1mA/cm2,当层数继续增加至10,电流密度下降。说明电催化剂活性随着层数改变的可调性。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (3)

1.一种MoS2纳米片的制备方法,其特征在于,以聚电解质层修饰的碳布为基底材料,以MoS2前驱体为原料,在基底材料上水热法负载形成MoS2纳米片结构,再利用超声法辅助剥落得到MoS2纳米片,其中所述聚电解质层修饰的碳布是以聚丙烯酸和聚烯丙基胺盐酸盐为聚电解质层基质材料在碳布表面交替进行层层自组装所得;
所述制备方法包括以下步骤:
S1、分别配制聚丙烯酸和聚烯丙基胺盐酸盐溶液,调节各自的pH值;
S2、对碳布进行前处理;
S3、将步骤S2的碳布置入聚丙烯酸溶液中静置,然后用去离子水洗涤,氮气吹干;
S4、将步骤S3得到的碳布置入聚烯丙基胺盐酸盐溶液中静置,然后去离子水洗涤,氮气吹干;
S5、重复步骤S3~S4,得到聚电解质层修饰的碳布表面;
S6、称取一定质量的MoS2前驱体,分散于水溶液中得到前驱体分散液;
S7、将步骤S5得到的碳布和步骤S6配制的前驱体分散液转移至水热釜中,水热制备碳布负载的MoS2
S8、将步骤S7得到的负载MoS2的碳布用蒸馏水洗涤,再进行超声处理,得到MoS2纳米片;
步骤S1中,所述聚丙烯酸溶液的浓度为4 mg/mL,用氢氧化钠调节pH为9-10;所述聚烯丙基胺盐酸盐溶液的浓度为1 mg/mL,用盐酸调节pH为5-6;
步骤S5中,重复步骤S3~S4,使碳布交替浸入聚丙烯酸溶液和聚烯丙基胺盐酸盐溶液中,且最后一次浸入聚烯丙基胺盐酸盐溶液,重复的次数为6-8次,以得到聚电解质层聚丙烯酸/聚烯丙基胺盐酸盐多层膜修饰的碳布;
所述步骤S6中,MoS2前驱体分散液为四水合钼酸铵和硫脲分散于蒸馏水中形成,四水合钼酸铵和硫脲的质量分别为900 mg和970 mg,蒸馏水的体积为40 mL;
所述步骤S7中,水热釜为聚四氟乙烯反应釜,水热制备的温度为180℃,水热反应的时间为12 h;
步骤S8中的具体方法为:先用蒸馏水洗涤负载MoS2的碳布,除去松散的MoS2微粒,再将洗涤后的碳布置入40-60 mL蒸馏水中,超声处理时间为5-60 min,得到MoS2纳米片。
2.如权利要求1所述的MoS2纳米片的制备方法,其特征在于,步骤S2中对碳布进行前处理的方法为:将碳布裁剪成3×3cm2大小,将裁剪好的碳布置入乙醇中超声震荡处理20-30min;再将碳布置入蒸馏水中超声震荡处理20-30 min;最后将其浸泡在步骤S1所得的聚烯丙基胺盐酸盐溶液中1 h,然后用蒸馏水洗涤,使其表面带有正电荷。
3.如权利要求1所述的MoS2纳米片的制备方法,其特征在于,步骤S3和步骤S4中,碳布分别置入聚丙烯酸溶液和聚烯丙基胺盐酸盐溶液中静置的时间为10-20 min。
CN202010827201.4A 2020-08-17 2020-08-17 一种MoS2纳米片及电催化产氢复合膜的制备方法 Active CN111908507B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010827201.4A CN111908507B (zh) 2020-08-17 2020-08-17 一种MoS2纳米片及电催化产氢复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010827201.4A CN111908507B (zh) 2020-08-17 2020-08-17 一种MoS2纳米片及电催化产氢复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN111908507A CN111908507A (zh) 2020-11-10
CN111908507B true CN111908507B (zh) 2022-06-28

Family

ID=73278242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010827201.4A Active CN111908507B (zh) 2020-08-17 2020-08-17 一种MoS2纳米片及电催化产氢复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN111908507B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114082979B (zh) * 2021-11-15 2023-05-26 华侨大学 一种具有高单原子负载量的碳材料、制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684386A (zh) * 2016-07-29 2017-05-17 华东理工大学 一种三维有序大孔二硫化钼/碳复合柔性电极材料、制备方法及其应用
CN107486045A (zh) * 2017-08-23 2017-12-19 北京工业大学 一种MoS2/聚电解质杂化纳滤膜及其制备方法
CN108339412A (zh) * 2018-03-23 2018-07-31 北京工业大学 一种原位生长MoS2无机复合纳滤膜及其制备方法
CN109360885A (zh) * 2018-08-16 2019-02-19 江西科技师范大学 PEDOT:PSS/ce-MoS2薄膜的制备方法
CN109608697A (zh) * 2018-12-20 2019-04-12 中国地质大学(武汉) 一种含磷化合物改性MoS2纳米片层的制备方法及其应用
CN110002500A (zh) * 2019-03-28 2019-07-12 岭南师范学院 一种聚丙烯酸钠协助制备二硫化钼花球的方法及应用
CN110713211A (zh) * 2019-09-06 2020-01-21 扬州大学 珍珠项链多级结构MoS2@C-CNFs钠离子电池负极材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10260154B2 (en) * 2015-08-01 2019-04-16 Indian Institute Of Science Education And Research, Thiruvananthapuram (Iiser-Tvm) Method for the synthesis of layered luminescent transition metal dichalcogenide quantum dots

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684386A (zh) * 2016-07-29 2017-05-17 华东理工大学 一种三维有序大孔二硫化钼/碳复合柔性电极材料、制备方法及其应用
CN107486045A (zh) * 2017-08-23 2017-12-19 北京工业大学 一种MoS2/聚电解质杂化纳滤膜及其制备方法
CN108339412A (zh) * 2018-03-23 2018-07-31 北京工业大学 一种原位生长MoS2无机复合纳滤膜及其制备方法
CN109360885A (zh) * 2018-08-16 2019-02-19 江西科技师范大学 PEDOT:PSS/ce-MoS2薄膜的制备方法
CN109608697A (zh) * 2018-12-20 2019-04-12 中国地质大学(武汉) 一种含磷化合物改性MoS2纳米片层的制备方法及其应用
CN110002500A (zh) * 2019-03-28 2019-07-12 岭南师范学院 一种聚丙烯酸钠协助制备二硫化钼花球的方法及应用
CN110713211A (zh) * 2019-09-06 2020-01-21 扬州大学 珍珠项链多级结构MoS2@C-CNFs钠离子电池负极材料及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Fabrication and independent control of patterned polymer gate for a few-layer WSe2 field-effect transistor;Hong Sung Ju et al.;《AIP ADVANCES》;20160826;第6卷;第1-7页 *
Layer-by-layer self-assembly of polyelectrolyte functionalized MoS2 nanosheets;Shen Jianfeng et al.;《NANOSCALE》;20161231;第9641-9647页 *
Simple Layer-by-Layer Assembly Method for Simultaneously Enhanced Electrical Conductivity and Thermopower of PEDOT:PSS/ce-MoS2 Heterostructure Films;Wang Xiaodong et al.;《ACS APPLIED ENERGY MATERIALS》;20180613;第1卷;第3123-3133页 *
构筑"匹萨"状二硫化钼/聚吡咯/聚苯胺三元复合材料用于高性能超级电容器电;王开等;《2017全国高分子学术论文报告会》;20171231;第484页 *
纳米MoS_2的制备及其与聚吡咯物复合膜光学性能的研究;何晓云等;《化学世界》;20060225(第02期);第69-70,77页 *

Also Published As

Publication number Publication date
CN111908507A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
Heme et al. Recent progress in polyaniline composites for high capacity energy storage: A review
Wang et al. Supercapacitor performances of the MoS2/CoS2 nanotube arrays in situ grown on Ti plate
Hou et al. Hierarchical core–shell structure of ZnO nanorod@ NiO/MoO2 composite nanosheet arrays for high-performance supercapacitors
Fan et al. 3D conductive network-based free-standing PANI–RGO–MWNTs hybrid film for high-performance flexible supercapacitor
Hu et al. Silicon-conductive nanopaper for Li-ion batteries
Mahmood et al. Fabrication of MoO3 Nanowires/MXene@ CC hybrid as highly conductive and flexible electrode for next-generation supercapacitors applications
Le et al. Controllably doping nitrogen into 1T/2H MoS2 heterostructure nanosheets for enhanced supercapacitive and electrocatalytic performance by low-power N2 plasma
Miao et al. Dopamine-induced formation of ultrasmall few-layer MoS2 homogeneously embedded in N-doped carbon framework for enhanced lithium-ion storage
WO2019165806A1 (zh) 具有Mo空位的MXene纳米片的制备方法
Zhang et al. Highly porous polyimide-derived carbon aerogel as advanced three-dimensional framework of electrode materials for high-performance supercapacitors
Shi et al. 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor
Reddy et al. Asymmetric supercapacitor device performance based on microwave synthesis of N-doped graphene/nickel sulfide nanocomposite
Cao et al. Novel fabrication strategy of nanostructured NiCo-LDHs monolithic supercapacitor electrodes via inducing electrochemical in situ growth on etched nickel foams
Gao et al. Hydrothermal synthesis and electrochemical capacitance of RuO2· xH2O loaded on benzenesulfonic functionalized MWCNTs
Tamang et al. Morphology controlling of manganese-cobalt-sulfide nanoflake arrays using polyvinylpyrrolidone capping agent to enhance the performance of hybrid supercapacitors
Ghasemi et al. Electrophoretic preparation of graphene-iron oxide nanocomposite as an efficient Pt-free counter electrode for dye-sensitized solar cell
Zhao et al. Design and construction of nickel-cobalt-sulfide nanoparticles in-situ grown on graphene with enhanced performance for asymmetric supercapacitors
CN105977049A (zh) 一种碳化钼/石墨烯纳米带复合材料的制备方法
Han et al. Multidimensional structure of CoNi 2 S 4 materials: structural regulation promoted electrochemical performance in a supercapacitor
She et al. Structural engineering of S-doped Co/N/C mesoporous nanorods via the Ostwald ripening-assisted template method for oxygen reduction reaction and Li-ion batteries
Li et al. High performance Ni3S2/3D graphene/nickel foam composite electrode for supercapacitor applications
Hu et al. A state-of-the-art review on biomass-derived carbon materials for supercapacitor applications: From precursor selection to design optimization
Zhao et al. Zn@ cellulose nanofibrils composite three-dimensional carbon framework for long-life Zn anode
Liu et al. High synergetic transition metal phosphides@ nitrogen doped porous carbon nanosheets hybrids derived from silk fibroin and phytic acid self-assembly for ultra-high performance lithium storage
Sangeetha et al. High power density and improved H2 evolution reaction on MoO3/Activated carbon composite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant