CN111883932A - Low radar scattering cross section reflective array antenna based on artificial surface plasmon - Google Patents
Low radar scattering cross section reflective array antenna based on artificial surface plasmon Download PDFInfo
- Publication number
- CN111883932A CN111883932A CN202010794856.6A CN202010794856A CN111883932A CN 111883932 A CN111883932 A CN 111883932A CN 202010794856 A CN202010794856 A CN 202010794856A CN 111883932 A CN111883932 A CN 111883932A
- Authority
- CN
- China
- Prior art keywords
- metal
- dielectric substrate
- reflection
- rectangular
- branch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 claims abstract description 175
- 229910052751 metal Inorganic materials 0.000 claims abstract description 175
- 239000000758 substrate Substances 0.000 claims abstract description 76
- 230000005855 radiation Effects 0.000 claims abstract description 22
- 238000004891 communication Methods 0.000 abstract description 6
- 238000004088 simulation Methods 0.000 description 26
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
- H01Q15/0026—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
本发明提出了一种低雷达散射截面的反射阵天线,主要解决现有反射阵天线的雷达散射截面减缩频带和角域范围窄的问题。其包括馈源(1)和位于馈源下方的反射阵面(2),该反射阵面包括M×N个结构相同、参数不同的反射单元(3),每个反射单元包括四个介质基板和印制在每个介质基板上的金属面,每个金属面由上、下金属枝节和金属枝干构成,其中上金属枝节由三个金属贴片构成,下金属枝节由五个金属贴片构成,四个介质基板两两贴合,构成两个叠层介质基板(31,32),这两个叠层介质基板垂直放置构成十字型结构。本发明在保证反射阵天线的辐射效率的同时,在宽频带、宽角域的范围内实现了雷达散射截面减缩,可用于各类远距离无线通信系统中。
The invention proposes a reflection array antenna with low radar scattering cross section, which mainly solves the problems of the reduced frequency band and narrow angular domain of the radar scattering cross section of the existing reflection array antenna. It includes a feed (1) and a reflection front (2) located below the feed, the reflection front includes M×N reflection units (3) with the same structure and different parameters, and each reflection unit includes four dielectric substrates and a metal surface printed on each dielectric substrate, each metal surface is composed of upper and lower metal branches and metal branches, wherein the upper metal branch is composed of three metal patches, and the lower metal branch is composed of five metal patches In the structure, the four dielectric substrates are laminated two by two to form two laminated dielectric substrates (31, 32), and the two laminated dielectric substrates are placed vertically to form a cross-shaped structure. While ensuring the radiation efficiency of the reflection array antenna, the invention realizes the reduction of the radar scattering cross section in the range of wide frequency band and wide angle domain, and can be used in various long-distance wireless communication systems.
Description
技术领域technical field
本发明属于电磁场与微波技术领域,具体涉及一种低雷达散射截面的反射阵天线,可用于各类远距离无线通信系统中。The invention belongs to the technical field of electromagnetic fields and microwaves, and in particular relates to a reflection array antenna with low radar scattering cross section, which can be used in various long-distance wireless communication systems.
背景技术Background technique
表面等离激元SSP是在金属表面区域的由自由电子和光子相互作用形成的电磁振荡,是一种沿着金属和介质的分界面传播的表面电磁波。在微波频段或者太赫兹频段,金属无法激发表面等离激元,通过人工设计的周期性结构可以支持与表面等离激元色散关系类似的表面波,这种表面波被称为人工表面等离激元SSPP,而这种周期性结构被称为人工表面等离激元结构,工作在微波或太赫兹频段的人工表面等离激元结构,对电磁波有良好的传输与截止特性,通过改变这种结构的相关参数,可以改变其色散关系,进而改变其对电磁波的传输和截止特性。基于以上特性,人工表面等离激元结构能很好地应用于频率选择表面FSS、天线雷达散射截面RCS减缩等研究领域。Surface plasmon polaritons (SSPs) are electromagnetic oscillations formed by the interaction of free electrons and photons in the metal surface area, and are a surface electromagnetic wave propagating along the interface between the metal and the medium. In the microwave frequency or terahertz frequency band, metals cannot excite surface plasmons. The artificially designed periodic structure can support surface waves with a similar dispersion relationship to surface plasmons. Such surface waves are called artificial surface plasmons. Polar SSPP, and this periodic structure is called artificial surface plasmon structure. The artificial surface plasmon structure working in the microwave or terahertz frequency band has good transmission and cut-off characteristics of electromagnetic waves. The relevant parameters of this structure can change its dispersion relationship, and then change its transmission and cut-off characteristics of electromagnetic waves. Based on the above characteristics, the artificial surface plasmon structure can be well applied in research fields such as frequency selective surface FSS and antenna radar cross section RCS reduction.
随着卫星通信、雷达技术以及普通民用通信的发展,通信系统对天线的要求越来高,如今复杂的电磁环境要求天线具有较强的抗干扰能力以及较远的通信距离,这就要求天线具有高增益,高效率的特点,高增益天线在天线的应用中占有举足轻重的地位,目前主要的高增益天线包括反射面天线和微带阵列天线,其中反射面天线具有高增益、高效率、无复杂的馈电网络的特点,但是其体积大、剖面高的缺点限制了其应用的范围。微带阵列天线具有体积小、质量轻、成本低的特点,但是其馈电网络设计复杂,而且馈电网络损耗较高。反射阵天线结合了两者的优点,即没有复杂的馈电网络,又有体积小、质量轻、成本低的特点,因此得到了广泛的应用。With the development of satellite communication, radar technology and ordinary civil communication, communication systems have higher and higher requirements for antennas. Today's complex electromagnetic environment requires antennas to have strong anti-interference capabilities and long communication distances, which requires antennas to have The characteristics of high gain and high efficiency, high-gain antennas play a pivotal role in the application of antennas. At present, the main high-gain antennas include reflector antennas and microstrip array antennas. Among them, reflector antennas have high gain, high efficiency, and no complexity. The characteristics of the feed network, but its large size and high profile shortcomings limit the scope of its application. The microstrip array antenna has the characteristics of small size, light weight and low cost, but its feeding network design is complicated and the loss of the feeding network is high. Reflect array antenna combines the advantages of both, that is, there is no complicated feeding network, and it has the characteristics of small size, light weight and low cost, so it has been widely used.
为了提高天线的增益,最常见的方法就是增加天线的辐射口径,因此现有的高增益天线通常具有面积较大的特点,这导致天线的雷达散射截面较大,目前实现天线雷达散射截面减缩的方法有天线结构塑形、使用雷达吸波材料、使用附加的频率选择表面作为天线罩等方法,尽管现有的方法能在一定程度上实现天线雷达散射截面减缩,但是减缩的频带范围和角域范围仍然有限,此外,很多减缩天线雷达散射截面的方法会影响天线的辐射性能,降低天线的效率。In order to increase the gain of the antenna, the most common method is to increase the radiation aperture of the antenna. Therefore, the existing high-gain antennas usually have a large area, which leads to a large radar cross section of the antenna. The methods include shaping the antenna structure, using radar absorbing materials, and using additional frequency selective surfaces as radomes. Although the existing methods can reduce the antenna radar scattering cross section to a certain extent, the reduced frequency band range and angular domain. The range is still limited, and in addition, many methods of reducing the radar cross section of the antenna can affect the radiation performance of the antenna and reduce the efficiency of the antenna.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对上述现有技术存在的缺陷,设计一种基于人工表面等离激元的低雷达散射截面反射阵天线,以在保证天线良好辐射性能的前提下,提高雷达散射截面减缩的频带范围和角域范围。The purpose of the present invention is to design a low radar cross section reflect array antenna based on artificial surface plasmon in view of the above-mentioned defects in the prior art, so as to improve the reduction of radar cross section under the premise of ensuring the good radiation performance of the antenna. Frequency band range and angular domain range.
为实现上述目的,本发明基于人工表面等离激元的低雷达散射截面反射阵天线,包括馈源1和反射阵面2,所述反射阵面2,是由M×N个结构相同、参数不同的反射单元3构成,其特征在于:In order to achieve the above purpose, the present invention is based on the artificial surface plasmon low radar scattering cross section reflect array antenna, including a
所述反射单元3采用十字形结构,即是由第一叠层介质板31和第二叠层介质板32十字交叉而成的三维人工表面等离激元结构;The
该第一叠层介质板31,由第一介质基板311、第二介质基板312和印制在第一介质基板311表面两侧的第一左金属面313、第一右金属面314构成,且第一介质基板311印制有金属的一面与第二介质基板312粘贴在一起;The first laminated
该第二叠层介质板32,由第三介质基板321、第四介质基板322和印制在第三介质基板321表面两侧的第二左金属面323、第二右金属面324构成,且第三介质基板321印制有金属的一面与第四介质基板322粘贴在一起。The second laminated
进一步,所述第一介质基板311、第二介质基板312、第三介质基板321和第四介质基板322均为长方形,且第一介质基板311的中心上方开有第一上矩形通槽3111,第二介质基板312的中心上方开有第二上矩形通槽3121;第三介质基板321中心下方开有第一下矩形通槽3211,第四介质基板322的中心下方开有第二下矩形通槽3221;Further, the first
进一步,所述第一上矩形通槽3111与第二上矩形通槽3121贴合,第一下矩形通槽3211、与第二下矩形通槽3221贴合,且该上下两种矩形通槽垂直放置,形成十字交叉结构。Further, the first upper rectangular through-
进一步,所述第一左金属面313由上金属枝节3131、下金属枝节3132和金属枝干313构成;Further, the first
进一步,所述第一右金属面314、第二左金属面323、第二右金属面324与第一左金属面313结构均相同,分别是由第一左金属面313围绕十字交叉结构的中心轴旋转180°、顺时针旋转90°和逆时针旋转90°得到。Further, the first
进一步,所述上金属枝节3131由三个尺寸相同的长方形金属贴片构成,这三个金属贴片由下至上平行排列,且相邻两个贴片的间距相同;Further, the
进一步,所述下金属枝节3132位于上金属枝节3131下方,其由五个尺寸相同的长方形金属贴片构成,这五个金属贴片由下至上平行排列,且相邻两个贴片的间距相同;Further, the
进一步,所述金属枝干3133为长方形金属柱,位于上金属枝节3131的三个金属贴片和下金属枝节3132的五个金属贴片的一端,用于将这八个金属贴片相连。Further, the
进一步,每个反射单元3的上金属枝节3131中的三个金属贴片的长度L由该反射单元3的反射相位值确定;每个反射单元3的下金属枝节3132中的五个金属贴片的尺寸与该反射单元3的反射相位值无关,即每个反射单元3中的下金属枝节3132的尺寸均相同;每个反射单元3的金属枝干3133的尺寸与该反射单元3的反射相位值无关,即每个反射单元3中的金属枝干3133的尺寸均相同。Further, the length L of the three metal patches in the
本发明与现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
第一,本发明由于采用M×N个反射相位不同的反射单元构成的反射阵面,在工作频带范围之内,能将馈源辐射的球面电磁波反射为平面电磁波,保证了反射阵天线辐射的增益,在工作频带之外,雷达探测波将透过反射阵面,使反射阵天线具有低雷达散射截面的特点。First, because the present invention adopts the reflection front composed of M×N reflection units with different reflection phases, within the working frequency band, the spherical electromagnetic wave radiated by the feed can be reflected as a plane electromagnetic wave, which ensures that the reflection array antenna radiates the surface electromagnetic wave. Gain, outside the operating frequency band, the radar detection wave will pass through the reflection front, so that the reflection array antenna has the characteristics of low radar cross section.
第二,本发明的反射单元由于采用由两个结构相同的叠层介质基板十字交叉而成的三维人工表面等离激元结构,能对两个极化的电磁波进行调控;Second, since the reflecting unit of the present invention adopts a three-dimensional artificial surface plasmon structure formed by the cross of two laminated dielectric substrates with the same structure, it can regulate and control two polarized electromagnetic waves;
第三,本发明的叠层介质基板设有四个金属面,每个金属面包括下金属枝节和上金属枝节。由于下金属枝节能使反射单元产生带阻特性,因而在工作频带范围之内,反射单元具有反射系数高的特点,保证了反射阵天线的辐射效率,在工作频带范围之外,反射单元具有透波效率高的特点,使得雷达探测波能透过反射单元;同时由于上金属枝节在调节反射单元的反射相位时,对反射单元的反射和透射特性影响小,因此不同反射相位的反射单元在工作频带内都具有高反射系数、工作频带外都具有高透射系数。Third, the laminated dielectric substrate of the present invention is provided with four metal surfaces, and each metal surface includes a lower metal branch and an upper metal branch. Because the lower metal branch saves energy, the reflection unit has a band-stop characteristic. Therefore, within the working frequency band, the reflection unit has the characteristics of high reflection coefficient, which ensures the radiation efficiency of the reflect array antenna. Outside the working frequency band, the reflection unit has a transparent The characteristics of high wave efficiency enable the radar detection wave to pass through the reflection unit; at the same time, since the upper metal branch has little influence on the reflection and transmission characteristics of the reflection unit when adjusting the reflection phase of the reflection unit, the reflection units with different reflection phases are working. It has a high reflection coefficient in the frequency band and a high transmission coefficient outside the operating frequency band.
附图说明Description of drawings
图1是本发明反射阵天线的三维结构示意图;Fig. 1 is the three-dimensional structure schematic diagram of the reflector antenna of the present invention;
图2是本发明中每个反射单元的整体结构示意图;Fig. 2 is the overall structure schematic diagram of each reflection unit in the present invention;
图3是本发明中每个反射单元的分层结构示意图;Fig. 3 is the layered structure schematic diagram of each reflection unit in the present invention;
图4是本发明中反射阵单元的金属面的结构示意图;Fig. 4 is the structural representation of the metal surface of the reflection array unit in the present invention;
图5是本发明中实施例1、实施例2、实施例4的每个反射单元的上金属枝节长度与其反射相位的关系图;5 is a graph showing the relationship between the length of the upper metal branch and its reflection phase of each reflection unit in
图6是本发明前三个实施例在10.0GHz的频率处,方位角俯仰角θ=-180°~180°时的增益仿真结果图;Fig. 6 is the first three embodiments of the present invention at the frequency of 10.0GHz, the azimuth angle The gain simulation result graph when the pitch angle θ=-180°~180°;
图7是本发明前三个实施例在10.0GHz的频率处,方位角俯仰角θ=-180°~180°时的增益仿真结果图;Fig. 7 is the azimuth angle of the first three embodiments of the present invention at the frequency of 10.0GHz The gain simulation result graph when the pitch angle θ=-180°~180°;
图8是本发明的实施例1和实施3在8.5GHz至11.5GHz的频带范围内,方位角俯仰角θ=0°时的增益仿真结果图;Fig. 8 is the
图9是本发明的实施例1和实施3经x极化波垂直入射,在1.0GHz至22.0GHz的频带范围内,其方位角俯仰角θ=0°时的雷达散射截面仿真结果图;Fig. 9 is the azimuth angle of
图10是本发明的实施例1和实施3经x极化波20°斜入射,在1.0GHz至22.0GHz的频带范围内,其方位角俯仰角θ=-20°时的雷达散射截面仿真结果图;Fig. 10 shows the azimuth angle of the x-polarized wave at 20° oblique incidence in the
图11是本发明的实施例1和实施3经x极化波40°斜入射,在1.0GHz至22.0GHz的频带范围内,其方位角俯仰角θ=-40°时的雷达散射截面仿真结果图。Fig. 11 shows the azimuth angle of the x-polarized wave with oblique incidence of x-polarized wave at 40° in the frequency band range of 1.0GHz to 22.0GHz according to
具体实施方式Detailed ways
下面结合附图对本发明的具体实施例和效果作进一步详细描述。The specific embodiments and effects of the present invention will be described in further detail below with reference to the accompanying drawings.
参照图1,给出如下四种实施例:1, the following four embodiments are provided:
实施例1Example 1
本实施例包括馈源1和反射阵面2,其中馈源1的波束宽度为40°,反射阵面2位于馈源1的正下方,且反射阵面2与馈源1的相位中心的距离f为165.0mm,所述反射阵面2,是由14×14个结构相同、参数不同的反射单元3构成。每个反射单元3由第一叠层介质板31和第二叠层介质板32十字交叉,组成三维人工表面等离激元结构,如图2所示。This embodiment includes a
所述反射阵面2中的每个反射单元3的反射相位通过如下公式确定:The reflection phase of each
其中,φi是第i个反射单元3的反射相位,其中i的取值是从1到14×14,自由空间中的工作波长λ为30.0mm,Ri是从馈源1的相位中心到第i个反射单元3中心的距离,ri是从反射阵面2中心指向第i个反射单元3中心的矢量,沿反射阵天线辐射方向的单位矢量r0=(0,0,0),φ0取0°。Among them, φ i is the reflection phase of the i-
参照图3,每个反射单元3的第一叠层介质31由第一介质基板311、第二介质基板312和印制在第一介质基板311表面两侧的第一左金属面313、第一右金属面314构成,且第一介质基板311印制有金属的一面与第二介质基板312粘贴在一起;每个反射单元3的第二叠层介质板32由第三介质基板321、第四介质基板322和印制在第三介质基板321表面两侧的第二左金属面323、第二右金属面324构成,且第三介质基板321印制有金属的一面与第四介质基板322粘贴在一起。Referring to FIG. 3 , the first
所述第一右金属面314、第二左金属面323、第二右金属面324与第一左金属面313结构均相同,即第一右金属面314由第一左金属面313围绕十字交叉结构的中心轴旋转180°而成,第二左金属面323由第一左金属面313围绕十字交叉结构的中心轴顺时针旋转90°而成,第二右金属面324由第一左金属面313围绕十字交叉结构的中心轴逆时针旋转90°而成;The first
所述第一介质基板311、第二介质基板312、第三介质基板321和第四介质基板322均为长方形,且第一介质基板311的中心上方开有第一上矩形通槽3111,第二介质基板312的中心上方开有第二上矩形通槽3121;第三介质基板321中心下方开有第一下矩形通槽3211,第四介质基板322的中心下方开有第二下矩形通槽3221;The first
所述第一上矩形通槽3111与第二上矩形通槽3121贴合,第一下矩形通槽3211与第二下矩形通槽3221贴合;贴合后的两个上矩形通槽与贴合后的两个下矩形通槽垂直放置,最终形成如图2所示的十字交叉结构。The first upper rectangular through
所述第一介质基板311、第二介质基板312、第三介质基板321、第四介质基板322均采用相对介电常数为2.2的长方形板材,其厚度t均为0.5mm,长度w均为17.0mm,高度h均为8.0mm;图3中的第一上矩形通槽3111、第二上矩形通槽3121、第一下矩形通槽3211、第一下矩形通槽3221高度0.5×h均为4.0mm,宽度2×t均为1.0mm。The first
参照图4,所述第一左金属面313由上金属枝节3131、下金属枝节3132和金属枝干3133构成;其中上金属枝节3131由三个尺寸相同的长方形金属贴片构成,这三个金属贴片自下而上平行排列,且相邻两个贴片的间距相同;下金属枝节3132位于上金属枝节3131下方,其由五个尺寸相同的长方形金属贴片构成,这五个金属贴片自下而上平行排列,且相邻两个贴片的间距相同;金属枝干3133为长方形金属柱,位于上金属枝节3131的三个金属贴片和下金属枝节3132的五个金属贴片的一端,用于将这八个金属贴片相连。4, the first
所述上金属枝节3131中的三个金属贴片相互之间的间距g均为0.5mm,每一个金属贴片的宽度b均为0.5mm,长度L均相等,三个金属贴片的长度L由该反射单元3的反射相位确定,得出每个反射单元φi的四个金属面的上金属枝节长度Li与其反射相位φi的关系如图5中的实线所示。The distance g between the three metal patches in the
所述下金属枝节3132中的五个金属贴片相互之间的间距g均为0.5mm,每一个金属贴片的宽度b均为0.5mm,长度a均为6.0mm,且每个反射单元3的下金属枝节3132中的五个金属贴片的尺寸与该反射单元3的反射相位值无关,即每个反射单元3中的下金属枝节3132尺寸均相同;该下金属枝节3132与上金属枝节3131的间距g为0.5mm;The distance g between the five metal patches in the
所述金属枝干3133的宽度b和高度8×b+7×g分别为0.5mm和7.5mm。且每个反射单元3的金属枝干3133的尺寸与该反射单元3的反射相位值无关,即每个反射单元3中的金属枝干3133的尺寸均相同。The width b and height 8×b+7×g of the
实施例2Example 2
本实施例与实施例1的结构相同,仅对如下参数作了调整:其中馈源1的波束宽度为35°,馈源1的相位中心到反射阵面2的距离f为188.0mm,上金属枝节3131的三个金属贴片的宽度、下金属枝节3132的五个金属贴片的宽度b均为0.7mm,上金属枝节3131的三个金属贴片的间距、下金属枝节3132的五个金属贴片的间距、上金属枝节3131与下金属枝节3132的间距g均为0.7mm,金属枝干3133的宽度b和高度8×b+7×g分别为0.7mm和10.5mm,第一介质基板311、第二介质基板312、第三介质基板321、第四介质基板322的高度h均为11.2mm,第一上矩形通槽3111、第二上矩形通槽3121、第一下矩形通槽3211、第一下矩形通槽3221高度0.5×h均为5.6mm。The structure of this embodiment is the same as that of
每个反射单元的反射相位根据公式<1>计算得到。通过仿真,得出每个反射单元i的四个金属面的上金属枝节长度Li与其反射相位φi的关系式如图5中的虚线所示。The reflection phase of each reflection unit is calculated according to formula <1>. Through simulation, the relationship between the upper metal branch length L i of the four metal surfaces of each reflection unit i and its reflection phase φ i is obtained as shown by the dotted line in FIG. 5 .
实施例3Example 3
本实施例与实施例1的结构和参数均相同,仅在实施例1的反射阵面2的下方增加了尺寸为238mm×238mm的金属板,该金属板紧贴反射阵面2。The structure and parameters of this embodiment are the same as those of
实施例4Example 4
本实施例与实施例1的结构相同,仅对如下参数作了调整:其中:The structure of this embodiment is the same as that of
馈源1的波束宽度为30°,馈源1的相位中心到反射阵面2的距离f为220.0mm,上金属枝节3131的三个金属贴片的宽度、下金属枝节3132的五个金属贴片的宽度b为0.3mm,上金属枝节3131的三个金属贴片的间距、下金属枝节3132的五个金属贴片的间距、上金属枝节3131与下金属枝节3132的间距g为0.3mm,金属枝干3133的宽度b和高度8×b+7×g分别为0.3mm和4.5mm,第一介质基板311、第二介质基板312、第三介质基板321、第四介质基板322的高度h为4.8mm,第一上矩形通槽3111、第二上矩形通槽3121、第一下矩形通槽3211、第一下矩形通槽3221高度0.5×h均为2.4mm。The beam width of
每个反射单元的反射相位根据公式<1>计算得到。通过仿真,得出每个反射单元i的四个金属面的上金属枝节长度Li与其反射相位φi的关系式如图5中的点划线所示。The reflection phase of each reflection unit is calculated according to formula <1>. Through simulation, the relationship between the upper metal branch length Li of the four metal surfaces of each reflection unit i and its reflection phase φ i is obtained as shown by the dot-dash line in FIG. 5 .
本发明的效果可以通过以下仿真进一步说明:The effect of the present invention can be further illustrated by the following simulation:
一、仿真软件:1. Simulation software:
商用Ansoft HFSS 15.0软件。Commercial Ansoft HFSS 15.0 software.
二、仿真内容:2. Simulation content:
仿真1,在10.0GHz的频率处,方位角俯仰角θ=-180°~180°时,对本发明前三个实施例的辐射方向图进行仿真,结果如图6所示,其中实线为实施例1的辐射方向图,虚线为实施例2的辐射方向图,点划线为实施例3的辐射方向图。
由图6可见,实施例1的辐射方向图的最大增益为25.2dB、副瓣小于-18dB;实施例2的辐射方向图的最大增益为24.3dB、副瓣小于-16dB;实施例3的辐射方向图的最大增益为25.6dB、副瓣小于-18dB。It can be seen from FIG. 6 that the maximum gain of the radiation pattern of Example 1 is 25.2dB, and the side lobe is less than -18dB; the maximum gain of the radiation pattern of Example 2 is 24.3dB, and the side lobe is less than -16dB; the radiation of Example 3 The maximum gain of the pattern is 25.6dB and the side lobes are less than -18dB.
仿真2,在10.0GHz的频率处,方位角俯仰角θ=-180°~180°时,对本发明前三个实施例的辐射方向图进行仿真,结果如图7所示,其中实线为实施例1的辐射方向图,虚线为实施例2的辐射方向图,点划线为实施例3的辐射方向图。
由图7可见,实施例1的辐射方向图最大增益为25.2dB、副瓣小于-17dB;实施例2的辐射方向图的最大增益为24.3dB、副瓣小于-15dB;实施例3的辐射方向图的最大增益为25.6dB、副瓣小于-19dB。It can be seen from FIG. 7 that the maximum gain of the radiation pattern of Example 1 is 25.2dB, and the side lobe is less than -17dB; the maximum gain of the radiation pattern of Example 2 is 24.3dB, and the side lobe is less than -15dB; the radiation direction of Example 3 The maximum gain of the figure is 25.6dB and the side lobes are less than -19dB.
由图6和图7的仿真结果表明,馈源和反射单元参数不同将影响天线辐射方向图的最大增益和副瓣,相比于有金属板的实施例3,实施例1的最大增益仅下降0.4dB。The simulation results in Fig. 6 and Fig. 7 show that the different parameters of the feed source and the reflection unit will affect the maximum gain and side lobe of the antenna radiation pattern. Compared with the
仿真3,在8.5GHz至11.5GHz的频带范围内,设方位角俯仰角θ=0°时,对本发明实施例1和实施3的增益分别进行仿真,结果如图8所示,其中实线为实施例1的增益仿真结果,虚线为实施例3的增益仿真结果,由图8可得,实施例1的最大增益下降在1dB范围以内的工作频带范围为9.5~10.8GHz,对应的1dB工作带宽为12.8%,实施例3的最大增益下降在1dB范围以内的工作频带范围为9.5~11.1GHz,对应的1dB工作带宽为15.5%,相比于有金属板的实施例3,实施例1的1dB工作带宽仅下降2.7%。
仿真4,在1.0GHz至22.0GHz的频带范围内,设方位角俯仰角θ=0°,对本发明的实施例1、实施3经x极化波垂直入射时的雷达散射截面分别进行仿真,结果如图9所示。其中,实线为实施例1的雷达散射截面仿真曲线,虚线为实施例3的雷达散射截面仿真曲线,由图9可得,实施例1在1.0~9.5GHz、12.5~22.0GHz的频带范围之内相比于实施例3具有雷达散射截面减缩的效果。
仿真5,在1.0GHz至22.0GHz的频带范围内,设方位角俯仰角θ=-20°,对本发明的实施例1、实施3经x极化波20°斜入射时的雷达散射截面分别进行仿真,结果如图10所示。其中,实线为实施例1的雷达散射截面仿真曲线,虚线为实施例3的雷达散射截面仿真曲线,由图10可得,实施例1在1.0~9.5GHz、12.5~22.0GHz的频带范围之内相比于实施例3具有雷达散射截面减缩的效果。
仿真6,在1.0GHz至22.0GHz的频带范围内,设方位角俯仰角θ=-40°,对本发明的实施例1、实施3经x极化波40°斜入射时的雷达散射截面分别进行仿真,结果如图11所示。其中,实线为实施例1的雷达散射截面仿真曲线,虚线为实施例3的雷达散射截面仿真曲线,由图11可得,实施例1在1.0~9.5GHz、12.5~22.0GHz的频带范围之内相比于实施例3具有雷达散射截面减缩的效果。
综合以上仿真结果,实施例1相比于实施例3在最大增益和1dB工作带宽下降较小的情况下实现了宽频带、宽角域雷达散射截面减缩。Based on the above simulation results,
以上描述仅是本发明的四个实施例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解接本发明内容和原理后,都可能在不背离本发明原理和结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求和保护范围内。The above descriptions are only four embodiments of the present invention, and do not constitute any limitation to the present invention. Obviously, for those skilled in the art, after understanding the content and principles of the present invention, they may not deviate from the principles and structures of the present invention. Under the circumstance of the present invention, various corrections and changes in form and details are made, but these corrections and changes based on the idea of the present invention are still within the scope of the claims and protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010794856.6A CN111883932B (en) | 2020-08-10 | 2020-08-10 | Low radar cross section reflectarray antenna based on artificial surface plasmon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010794856.6A CN111883932B (en) | 2020-08-10 | 2020-08-10 | Low radar cross section reflectarray antenna based on artificial surface plasmon |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111883932A true CN111883932A (en) | 2020-11-03 |
CN111883932B CN111883932B (en) | 2021-05-28 |
Family
ID=73211165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010794856.6A Active CN111883932B (en) | 2020-08-10 | 2020-08-10 | Low radar cross section reflectarray antenna based on artificial surface plasmon |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111883932B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112952400A (en) * | 2021-02-01 | 2021-06-11 | 西安电子科技大学 | Broadband wave-absorbing structure with high-transmittance wave-transmitting window |
CN113270725A (en) * | 2021-05-12 | 2021-08-17 | 中国人民解放军空军工程大学 | Ultra-wideband and large-angle grazing incidence wave absorber based on artificial surface plasmon |
CN115395242A (en) * | 2022-08-09 | 2022-11-25 | 西安电子科技大学 | A three-dimensional common-aperture multi-frequency co-polarized transflective array antenna |
CN115621742A (en) * | 2022-11-30 | 2023-01-17 | 南京邮电大学 | Low Radar Cross Section Reflectarray Antenna Based on Three-Dimensional Frequency Selective Structure |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081235A (en) * | 1998-04-30 | 2000-06-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | High resolution scanning reflectarray antenna |
CN105742795A (en) * | 2016-04-06 | 2016-07-06 | 东南大学 | Transparent reflective array antenna adopting graphene unit |
CN107819202A (en) * | 2017-09-30 | 2018-03-20 | 北京邮电大学 | Beam scanning reflecting antenna array and beam sweeping method based on graphene |
CN109037947A (en) * | 2018-07-24 | 2018-12-18 | 中国人民解放军空军工程大学 | A kind of low RCS antenna |
CN109560373A (en) * | 2018-11-22 | 2019-04-02 | 中国人民解放军空军工程大学 | A kind of reflective array antenna with low RCS characteristic |
CN110034396A (en) * | 2019-03-29 | 2019-07-19 | 上海交通大学 | Vertical depolarized omnidirectional antenna based on artificial surface phasmon structure |
CN110534911A (en) * | 2019-09-19 | 2019-12-03 | 西安电子科技大学 | Spatial filter based on artificial surface phasmon |
CN111262024A (en) * | 2020-01-21 | 2020-06-09 | 上海交通大学 | Low-profile vertically polarized endfire antenna based on artificial surface plasmon structure |
-
2020
- 2020-08-10 CN CN202010794856.6A patent/CN111883932B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081235A (en) * | 1998-04-30 | 2000-06-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | High resolution scanning reflectarray antenna |
CN105742795A (en) * | 2016-04-06 | 2016-07-06 | 东南大学 | Transparent reflective array antenna adopting graphene unit |
CN107819202A (en) * | 2017-09-30 | 2018-03-20 | 北京邮电大学 | Beam scanning reflecting antenna array and beam sweeping method based on graphene |
CN109037947A (en) * | 2018-07-24 | 2018-12-18 | 中国人民解放军空军工程大学 | A kind of low RCS antenna |
CN109560373A (en) * | 2018-11-22 | 2019-04-02 | 中国人民解放军空军工程大学 | A kind of reflective array antenna with low RCS characteristic |
CN110034396A (en) * | 2019-03-29 | 2019-07-19 | 上海交通大学 | Vertical depolarized omnidirectional antenna based on artificial surface phasmon structure |
CN110534911A (en) * | 2019-09-19 | 2019-12-03 | 西安电子科技大学 | Spatial filter based on artificial surface phasmon |
CN111262024A (en) * | 2020-01-21 | 2020-06-09 | 上海交通大学 | Low-profile vertically polarized endfire antenna based on artificial surface plasmon structure |
Non-Patent Citations (2)
Title |
---|
JUN YU: "Wideband Angular Stable Absorber Based on Spoof Surface Plasmon Polariton for RCS Reduction", 《IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS》 * |
PENG JIANG: "An Ultra-wideband Bandstop Frequency Selective Surface Based on Spoof Surface Plasmon Polaritons", 《2020 9TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP)》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112952400A (en) * | 2021-02-01 | 2021-06-11 | 西安电子科技大学 | Broadband wave-absorbing structure with high-transmittance wave-transmitting window |
CN113270725A (en) * | 2021-05-12 | 2021-08-17 | 中国人民解放军空军工程大学 | Ultra-wideband and large-angle grazing incidence wave absorber based on artificial surface plasmon |
CN115395242A (en) * | 2022-08-09 | 2022-11-25 | 西安电子科技大学 | A three-dimensional common-aperture multi-frequency co-polarized transflective array antenna |
CN115395242B (en) * | 2022-08-09 | 2023-10-10 | 西安电子科技大学 | A three-dimensional co-aperture multi-frequency co-polarized transflective array antenna |
CN115621742A (en) * | 2022-11-30 | 2023-01-17 | 南京邮电大学 | Low Radar Cross Section Reflectarray Antenna Based on Three-Dimensional Frequency Selective Structure |
CN115621742B (en) * | 2022-11-30 | 2023-03-14 | 南京邮电大学 | Low radar scattering cross section reflective array antenna based on three-dimensional frequency selection structure |
Also Published As
Publication number | Publication date |
---|---|
CN111883932B (en) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111697335B (en) | Radar antenna housing with mixed absorption and diffuse scattering | |
CN111883932A (en) | Low radar scattering cross section reflective array antenna based on artificial surface plasmon | |
CN103078185B (en) | High-gain low-radar cross section panel antenna based on artificial electromagnetic structural material | |
CN111786090B (en) | Planar broadband transmission array antenna based on liquid crystal adjustable material | |
CN110380222A (en) | A kind of super surface cell of Huygens, transmission array antenna and unit phase control method | |
CN111900546B (en) | Hybrid-mechanism electromagnetic metasurfaces for wide-bandwidth angular RCS reduction | |
CN112467393B (en) | A Dual-Band RCS Reduced Metasurface Based on FSS and Polarization Rotation Metasurface | |
CN112701495B (en) | Frustum-mounted two-dimensional conformal low-scattering ultra-wideband phased array based on strong coupling effect | |
CN114361806B (en) | Miniaturized integrated frequency selective surface that absorbs thoroughly | |
CN110444895A (en) | Broadband reflection array antenna based on the embedded fluting annulus unit of single layer | |
CN111541031A (en) | A broadband low-profile transmission array antenna and wireless communication equipment | |
CN115603063A (en) | A Folded Transmissive Metasurface Antenna with Simultaneous and Independent Adjustment of Amplitude and Phase | |
CN111666682A (en) | Design method of ultra-wideband circularly polarized planar reflective array antenna | |
CN105762528A (en) | High-aperture efficiency reflect array antenna | |
Jiang et al. | A mesh-type low RCS reflectarray antenna based on spoof surface plasmon polariton | |
CN114859536B (en) | A metasurface-based low-profile high-gain multiple folded reflective antenna | |
CN106785479A (en) | A kind of lobe millimeter wave micro-strip antenna wide based on plane single pole sub antenna | |
CN113067139B (en) | Low-scattering ultra-wideband conformal phased array based on aperiodic distributed resistance loading | |
CN114361810A (en) | Broadband low-scattering dual-frequency microstrip antenna | |
CN113036411A (en) | Broadband circularly polarized reflective array antenna unit | |
CN116435761B (en) | Dual circularly polarized reflectarray antenna and its radiation beam independent control method | |
CN115347377B (en) | A dual-frequency dual-polarization incident wave anti-reflection glass and anti-reflection method thereof | |
CN117096614A (en) | Dual-frenquency double polarization common aperture antenna of big frequency ratio | |
CN112768906B (en) | S-shaped Rotating Element Structure Planar Reflect Array Antenna with Left-Handed Steering Structure | |
Chaharmir et al. | Single-band and dual-band multilayer transmitarray antennas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |