CN111879839A - 一种PtRh纳米溶胶的制备方法 - Google Patents
一种PtRh纳米溶胶的制备方法 Download PDFInfo
- Publication number
- CN111879839A CN111879839A CN202010747042.7A CN202010747042A CN111879839A CN 111879839 A CN111879839 A CN 111879839A CN 202010747042 A CN202010747042 A CN 202010747042A CN 111879839 A CN111879839 A CN 111879839A
- Authority
- CN
- China
- Prior art keywords
- ptrh
- nano
- preparing
- electrode
- square wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910019017 PtRh Inorganic materials 0.000 title claims abstract description 79
- 238000002360 preparation method Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 claims abstract description 30
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 21
- 239000002105 nanoparticle Substances 0.000 claims description 43
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 2
- 239000002184 metal Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002086 nanomaterial Substances 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000005285 chemical preparation method Methods 0.000 abstract description 2
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 239000003960 organic solvent Substances 0.000 abstract description 2
- 150000003839 salts Chemical class 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 28
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 23
- 239000000956 alloy Substances 0.000 description 16
- 229910045601 alloy Inorganic materials 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 229910019603 Rh2O3 Inorganic materials 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000003223 protective agent Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- MINVSWONZWKMDC-UHFFFAOYSA-L mercuriooxysulfonyloxymercury Chemical class [Hg+].[Hg+].[O-]S([O-])(=O)=O MINVSWONZWKMDC-UHFFFAOYSA-L 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004313 potentiometry Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44747—Composition of gel or of carrier mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/36—Glass electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44756—Apparatus specially adapted therefor
- G01N27/44773—Multi-stage electrophoresis, e.g. two-dimensional electrophoresis
- G01N27/44778—Multi-stage electrophoresis, e.g. two-dimensional electrophoresis on a common gel carrier, i.e. 2D gel electrophoresis
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
本发明公开了一种PtRh纳米溶胶的制备方法,与现有技术相比,本发明采用方波电势法制备PtRh合金纳米粒子,该方法绿色、方便、经济,既不需要在溶液中引入金属盐和其他有机溶剂,也无需去模板处理。该方法是一种利用方波电势脉冲法在NaOH溶液中电化学分散纯PtRh丝制备PtRh纳米溶胶的新方法。具有反应条件温和、可控性好、适用范围广、可与其它化学制备方法联用的特点,可用来制备各种不同要求的金属纳米材料。且本方法耗能低、环境友好、设备简单、操作方便,具有推广应用的价值。
Description
技术领域
本发明涉及材料技术领域,尤其涉及一种PtRh纳米溶胶的制备方法。
背景技术
PtRh纳米粒子在催化领域有着广泛的应用。通常,在保护剂存在的条件下,可用化学还原Pt和Rh的金属离子前驱体制备PtRh合金纳米粒子。本发明中,介绍一种一步合成PtRh纳米水溶胶的新颖、简易方法——方波电势法,即在室温且无需任何金属离子前驱体和还原剂存在的条件下,将纯PtRh丝在NaOH溶液中进行温和的方波电势扰动即可得到PtRh纳米离粒子。我们对PtRh纳米溶胶进行了TEM、XRD和XPS等表征,并介绍了其对甲醇的电催化氧化活性。
发明内容
本发明的目的就在于为了解决上述问题而提供一种PtRh纳米溶胶的制备方法。
本发明通过以下技术方案来实现上述目的:
本发明包括以下步骤:
S1:将PtRh电极丝置于2M NaOH溶液中,采用三电极体系,在电化学工作站上采用方波电势法,调节方波高电势为0.4V,低电势为-4.5V,频率为50Hz,方波时间为300s,同时,PtRh电极表面形成了粗糙的形貌;
S2:然后将PtRh纳米粒子分散在乙醇中,负载在玻碳电极上,自然晾干,得到PtRh纳米粒子修饰的玻碳电极。
采用步骤S1和S2的方法能够制备Pt纳米溶胶。采用相同方法制备的Pt纳米粒子用于和PtRh纳米粒子做比较,能更清晰的说明双金属PtRh纳米粒子在电催化活性方面的优越性。
采用步骤S1、S2的方法能够制备得到Pt纳米粒子修饰的玻碳电极。
PtRh纳米粒子修饰的玻碳电极和Pt纳米粒子修饰的玻碳电极其电催化活性测试是在0.5M H2SO4+2M CH3OH溶液中进行的。
本发明的有益效果在于:
本发明是一种PtRh纳米溶胶的制备方法,与现有技术相比,本发明采用方波电势法制备PtRh合金纳米粒子,该方法绿色、方便、经济,既不需要在溶液中引入金属盐和其他有机溶剂,也无需去模板的后处理。该方法是一种利用方波电势脉冲在NaOH溶液中电化学分散纯PtRh丝制备PtRh纳米粒子的新方法。与其它制备方法相比,该方法具有如下优点:
(1)反应条件温和:一般在常温常压下进行。
(2)可控性好:可选择性的调节和控制外加电势、电流及波形,实现纳米材料的形状、大小可控。
(3)适用范围广:可制备多种纳米态单金属、合金、氧化物等材料。
(4)可与其它化学制备方法联用,来制备各种不同要求的纳米材料。
(5)耗能低、环境友好、设备简单、操作方便,短时间内及可制备纳米材料。
附图说明
图1是PtRh纳米溶胶投射电镜(TEM)和高分辨投射电镜(HR-TEM)图;
图2是方波电势法制备的PtRh纳米粒子和Pt纳米粒子的X-射线衍射(XRD)图;
图3是PtRh纳米粒子和光滑PtRh电极的扫描电镜图(SEM)以及对应的X-射线色散能量谱(EDS)图。
图4是(A)Rh3d和(B)Pt 4f的XPS谱的X-射线光电子能谱(XPS)图;
图5是PtRh和Pt纳米粒子对甲醇(0.5M H2SO4+2M CH3OH)的电催化氧化。
具体实施方式
下面结合附图对本发明作进一步说明:
循环伏安实验和方波电势实验在H型电解池和CHI660C电化学工作站(辰华仪器,中国上海)上进行。工作电极为多晶PtRh盘(直径1mm,纯度≥99.99%,Pt:Rh=57.37:42.63),对电极为铂片(面积1cm2),参比电极为饱和硫酸亚汞电极(SMSE)。工作电极在使用之前用2000#砂纸打磨抛光,采用超纯水超声清洗3次。
PtRh溶胶的制备是将PtRh电极置于2M NaOH溶液中,采用三电极体系,在电化学工作站上采用方波电势(SWP)法,调节方波的高电势为0.4V,低电势为-4.5V,频率为50Hz,方波时间为300s。或者用交流电势法制备PtRh纳米溶胶,此实验是在一台交流变压器上进行的(上海长江电子有限公司,中国上海)。将PtRh电极丝置于2M NaOH溶液中,采用两电极体系,通过交流电势法(AC),设置电势为+5V、频率为50Hz,数秒后即可获得PtRh纳米溶胶。当电化学反应进行到300s后,停止电化学反应,收集纳米溶胶并离心分离,设置离心转速为12000r/min,将分离得到的PtRh纳米粒子经超纯水和乙醇交替清洗各5次。同时,PtRh电极表面形成了粗糙的形貌。然后将PtRh纳米溶胶分散在乙醇中,负载在GC电极上,自然晾干,得到PtRh纳米粒子修饰的GC电极(PtRhNPs/GC)。上述方法也适应于Pt纳米粒子的制备。
PtRh纳米溶胶的表征:
如图1A的插图中所示,新制备的PtRh纳米溶胶呈黑色,且稳定性好。图1A为PtRh纳米溶胶的TEM图,从图中可以看出,PtRh纳米粒子的粒径在数纳米之内,由于制备过程中未加保护剂,纳米溶胶呈团聚态,难以准确估计粒径大小。为了获得单分散的PtRh合金纳米粒子,将在下一步工作中进行研究。如图1B和C所示,PtRh纳米粒子的晶面间距为0.223nm,对应PtRh合金的(111)面,因此,采用方波电势法制备的PtRh纳米粒子为合金态。
采用XRD对PtRh合金纳米粒子的物相进行了表征,其结果如图2所示。为了更好的分析其合金峰的位置,图2以Pt(JCPDS编号04-0802)和Rh(JCPDS编号05-0685)为参考。对单种Pt纳米粒子也进行了XRD表征。如图2所示,39.8°、46.2°和67.8°处出现的特征衍射峰对应Pt的(111)、(200)和(220)晶面。40.6°、47.2°和69.1°处出现特征衍射峰分别为PtRh的(111)、(200)和(220)晶面。PtRh的衍射峰并未发生分离,进一步证明Pt与Rh形成了PtRh合金。
图3为PtRh纳米粒子和光滑PtRh电极的SEM图以及对应的EDS图。EDS分析表明,制备的PtRh纳米粒子中Pt和Rh的元素组组成分别为56.81和43.19at%。此外,光滑PtRh电极中Pt和Rh的元素组成分别为57.37和42.63at%。与大块金属相比,PtRh合金中Rh的含量在增加,这可能是由于Rh比Pt更容易溶出。
采用XPS分析了PtRh纳米颗粒的表面价态和表面化学成分。如图4A所示,Rh3d3/2和Rh3d5/2峰分离成两个独立的峰,这个与文献中报道的一致。XPS结果表明,方波制备的PtRh溶胶中含有氧化态的Rh(III),但以0价的Rh为主。其Rh(0)/Rh(III)的比例为67.85/32.15。Rh2O3可能是在制备的过程中生成的,也可能是样品暴露在空气中被氧气氧化而形成的。图4B所示结合能的比较表明,在~71和~74eV处出现的能谱峰为Pt4f7/2和Pt4f5/2峰,另一方面,在73.8和74.6eV处,Pt2+和Pt4+分别没有出现对应的峰值,说明Pt处于0价金属状态。此外,XPS的表征结果表明,Pt/Rh的原子比为71.42/28.58。和PtRh合金丝中各元素的比值(Pt:Rh=57.37:42.63)相比较发现,Pt在PtRh合金纳米粒子的表面富集,这种现象可能是源于Pt在PtRh纳米粒子的富集有利于降低PtRh纳米粒子的表面能,使得PtRh纳米粒子更在稳定。
图5为PtRh-NPs/GC电极和Pt-NPs/GC电极对甲醇(0.5M H2SO4+2M CH3OH)的电催化氧化。扫描速率为100mV s-1。
Pt和PtRh合金纳米粒子对甲醇氧化的电催化活性如图5所示,从图中可以看出,在+0.5V时,PtRh合金纳米粒子对甲醇电催化氧化的电流密度(0.96mA cm-2)比Pt纳米粒子对甲醇电催化氧化的电流密度(0.48mA cm-2)高,说明PtRh合金纳米粒子比单种Pt纳米粒子的催化活性更高,基于以上结果,PtRh合金纳米粒子具有较高的电化学活性可能是源于双功能机制和电子效应。此外,XPS光谱证实,Rh2O3的形成有助于CO的氧化,防止Pt原子被CO毒化,从而促进甲醇分子的完全氧化,达到提高催化活性的目的。
以上显示和描述了本发明的基本原理和主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (4)
1.一种PtRh纳米溶胶的制备方法,其特征在于,包括以下步骤:
S1:将PtRh电极丝置于2M NaOH溶液中,采用三电极体系,在电化学工作站上采用方波电势法,调节方波高电势为0.4V,低电势为-4.5V,频率为50Hz,方波时间为300s,同时,PtRh电极表面形成了粗糙的形貌;
S2:然后将PtRh纳米粒子分散在乙醇中,负载在玻碳电极上,自然晾干,得到PtRh纳米粒子修饰的玻碳电极。
2.根据权利要求1所述的PtRh纳米溶胶的制备方法,其特征在于:采用步骤S1和S2的方法能够制备Pt纳米溶胶。
3.根据权利要求1所述的PtRh纳米溶胶的制备方法,其特征在于:采用步骤S1、S2的方法能够制备得到Pt纳米粒子修饰的玻碳电极。
4.根据权利要求3所述的PtRh纳米溶胶的制备方法,其特征在于:PtRh纳米粒子修饰的玻碳电极和Pt纳米粒子修饰的玻碳电极其电催化活性测试是在0.5M H2SO4+2M CH3OH溶液中进行的。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010747042.7A CN111879839A (zh) | 2020-07-29 | 2020-07-29 | 一种PtRh纳米溶胶的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010747042.7A CN111879839A (zh) | 2020-07-29 | 2020-07-29 | 一种PtRh纳米溶胶的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111879839A true CN111879839A (zh) | 2020-11-03 |
Family
ID=73201237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010747042.7A Pending CN111879839A (zh) | 2020-07-29 | 2020-07-29 | 一种PtRh纳米溶胶的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111879839A (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103097588A (zh) * | 2010-07-19 | 2013-05-08 | 莱顿大学 | 一种制备金属纳米颗粒或金属氧化物纳米颗粒的方法 |
CN104084244A (zh) * | 2014-07-10 | 2014-10-08 | 厦门大学 | 碳载金属纳米催化剂制备装置及其制备方法 |
-
2020
- 2020-07-29 CN CN202010747042.7A patent/CN111879839A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103097588A (zh) * | 2010-07-19 | 2013-05-08 | 莱顿大学 | 一种制备金属纳米颗粒或金属氧化物纳米颗粒的方法 |
CN104084244A (zh) * | 2014-07-10 | 2014-10-08 | 厦门大学 | 碳载金属纳米催化剂制备装置及其制备方法 |
Non-Patent Citations (2)
Title |
---|
THOMAS J. P. HERSBACH ET AL.: "《Local structure and composition of PtRh nanoparticles produced through cathodic corrosion》", 《PHYS. CHEM. CHEM. PHYS》 * |
方莉等: "双金属催化剂PtRh@Pt_5/C的制备、表征及其在甲醇电化学氧化中的催化性能研究", 《山西大学学报(自然科学版)》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Electrocatalytically active cobalt-based metal–organic framework with incorporated macroporous carbon composite for electrochemical applications | |
Yuwen et al. | General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS 2 nanosheets and the enhanced catalytic activity of Pd–MoS 2 for methanol oxidation | |
US11105009B2 (en) | Graphene material inlaid with single metal atoms and preparing method and application thereof | |
Xiong et al. | The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation | |
Hang et al. | Hierarchical micro/nanostructured C doped Co/Co 3 O 4 hollow spheres derived from PS@ Co (OH) 2 for the oxygen evolution reaction | |
JP5920643B2 (ja) | コア−シェル粒子の製造方法 | |
Yoo et al. | Green synthesis of Pt–Pd bimetallic nanoparticle decorated reduced graphene oxide and its robust catalytic activity for efficient ethylene glycol electrooxidation | |
Suo et al. | Synthesis of bimetallic PdAu nanoparticles for formic acid oxidation | |
JP6196579B2 (ja) | 白金中空ナノ粒子および該粒子担持触媒体ならびに該触媒体の製造方法 | |
US10533258B2 (en) | Method of making Co3O4 nanorods for electrocatalytic water splitting | |
Lv et al. | Facile synthesis of reduced graphene oxide supported PtAg nanoflowers and their enhanced electrocatalytic activity | |
Lin et al. | The effect of Sn content in Pt–SnO2/CNTs for methanol electro-oxidation | |
Hu et al. | Enhanced electrocatalytic ethanol oxidation reaction in alkaline media over Pt on a 2D BiVO 4-modified electrode under visible light irradiation | |
Wang et al. | Green synthesis of porous flower-like palladium with high electrocatalytic activity towards methanol oxidation | |
Bai et al. | A facile one-step preparation of a Pd–Co bimetallic hollow nanosphere electrocatalyst for ethanol oxidation | |
Mancier et al. | Synthesis and characterization of copper oxide (I) nanoparticles produced by pulsed sonoelectrochemistry | |
Shendage et al. | Electrochemical Deposition of Highly Dispersed Palladium Nanoparticles on Nafion‐Graphene Film in Presence of Ferrous Ions for Ethanol Electrooxidation | |
Yang et al. | Scale-up synthesis of RuCoNi hydroxide/sulfide heterostructures in alkali for the industrial current density | |
de la Fuente et al. | Enhanced methanol electrooxidation activity of PtRu nanoparticles supported on H2O2-functionalized carbon black | |
Rowshanzamir et al. | Non-precious metal on zirconium oxide/nitrogen-doped graphene nanocomposite (M/ZrO2-NG) as electrocatalyst for oxygen reduction reaction | |
Bi et al. | Regulating effect of heterojunctions on electrocatalytic oxidation of methanol for Pt/WO 3-NaTaO 3 catalysts | |
TWI618290B (zh) | 金屬奈米粒子的製造方法、載置金屬奈米粒子的載體的製造方法、及載置金屬奈米粒子的載體 | |
Li et al. | A simple and controlled electrochemical deposition route to urchin-like Pd nanoparticles with enhanced electrocatalytic properties | |
Vilian et al. | The electrochemical synthesis of Pt particles on ZrO 2–ERGO modified electrodes with high electrocatalytic performance for methanol oxidation | |
CN111879839A (zh) | 一种PtRh纳米溶胶的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201103 |