CN111868556A - 用于高分辨率远程闪速lidar的方法和系统 - Google Patents

用于高分辨率远程闪速lidar的方法和系统 Download PDF

Info

Publication number
CN111868556A
CN111868556A CN201980018556.4A CN201980018556A CN111868556A CN 111868556 A CN111868556 A CN 111868556A CN 201980018556 A CN201980018556 A CN 201980018556A CN 111868556 A CN111868556 A CN 111868556A
Authority
CN
China
Prior art keywords
photons
time
signal
output
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980018556.4A
Other languages
English (en)
Inventor
霍德·芬克尔斯坦
布伦特·费希尔
斯考特·伯勒斯
鲁塞尔·坎乔斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Induced Photonics
Sense Photonics Inc
Original Assignee
Induced Photonics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Induced Photonics filed Critical Induced Photonics
Publication of CN111868556A publication Critical patent/CN111868556A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种光检测和测距(LIDAR)装置包括:脉冲光源,用于发射光信号;检测器阵列,包括单光子检测器,该单光子检测器用于输出指示入射到单光子检测器上的多个光子到达时间的相应检测信号;以及处理电路,用于接收相应检测信号。该处理电路包括下项中的一个或多个再充电电路,被配置成针对光信号的脉冲之间的相应选通窗并以不同的延迟来启用和停用单光子检测器的子集;相关器电路,被配置成输出表示具有相对于彼此在预定相关时间内的到达时间的一个或多个光子的检测的相应相关信号;以及时间处理电路,包括被配置成增加计数值的计数器电路和被配置成基于由相应相关信号或检测信号生成积分时间值的时间积分器电路。

Description

用于高分辨率远程闪速LIDAR的方法和系统
优先权的要求
本申请要求2018年2月13日提交的美国临时申请第62/630,079号、2018年3月1日提交的第62/637,128号、2018年4月9日提交的第62/655,000号以及2018年6月14日提交的第62/684,822号的优先权,分别题为“用于高分辨率远程闪速LIDAR的方法和系统”,其公开内容以引用方式并入本文中。
技术领域
本文的主题总体上涉及3D成像,并且更具体地涉及用于3D成像的LIDAR(光检测和测距;在本文中也称为“LIDAR”)系统。
背景技术
3D成像系统可以归类为基于雷达的系统,它可能依赖于微波辐射(例如1mm-100cm的波长范围),而光学系统则可能依赖于光波段中的电磁辐射(例如,100纳米(nm)–1毫米(mm)的波长范围)。光学3D成像系统可以分为基于立体的系统(可能依赖于视差效应)、干涉成像系统(可能取决于多普勒效应)和飞行时间(TOF)系统。
TOF 3D成像系统可分为间接TOF或直接式TOF系统。间接TOF系统的示例是光子混合器设备(PMD),它可以测量传输与接收的幅度调制光信号之间的相位延迟。到目标的距离d可计算为(d和R在本文中可互换使用):
Figure BDA0002676292190000011
可以使用称为锁定像素的准CCD(电荷耦合器件)像素内配置来检测相位,其中光生电荷分布在多个(例如,4个)阱之间,每个阱延迟四分之一的调制周期并持续一半的调制周期。可以从每个四分之一周期的阱中收集的电荷中提取收集到的信号的相移。一些PMD的最大可实现范围分辨率可以表示为:
Figure BDA0002676292190000021
其中c是光速,fmod是调制频率,B是等于B=Asig+BG的偏移量,其中第一项是积分时间内的信号电子数量,而第二项是积分时间内的背景电子数量,并且cdemod是解调对比。
对于PMD设备可能存在一些缺点。例如,PMD通常使用非CMOS(互补金属氧化物半导体)设备,因此可能比一些通用CMOS设备(例如CMOS图像传感器)贵。PMD设备的另一缺点可能与范围与范围分辨率之间的权衡取舍有关。例如,当使用四个独立且电隔离的抽头时,每个像素所需的硅面积会增大,从而减少芯片上像素的最大数量(该面积通常受半导体制造商的光刻线中标线片场尺寸的限制)以及每个像素的有效价格。最大范围可以由可以测量的最大相位来确定,该最大相位是2π。可以降低频率以增大最大范围。另一方面,范围分辨率可能受到相位误差的限制,相位误差可能由发射器与理想正弦调制的偏差以及四个检测器抽头(tap)处的噪声以及发射器与检测器之间的其它幅度和相位噪声所决定。因此,对于光脉冲所遍历的给定距离,可以使用更高的调制频率来增大或最大化相位延迟。更高的调制频率可能需要更昂贵的发射器驱动器,更快的帧频检测器以及更高的灵敏度,因为在更高的频率下,四个相位中的每个相位可能会占用更短的时间,因此可能会有更少的光用于积分,并且信噪比可能会降低。对于远程、低反射率的目标,检测器输出端的信号可能最低,而恰好在处于抽头之间的相位差可能最小的范围处;而最大信号可能出现在短距离、高反射率的目标上,这些目标恰好位于抽头之间的相位差可能最大的距离处,因此,动态范围的问题可能会加剧。此外,直射的阳光会阻碍PMD检测器的性能。虽然一些设备可能会将背景扣除功能集成到检测器中,但由于最低的调制频率(最长的集成)下的直射阳光,每个抽头的全阱容量仍应能容纳光子通量,并且伴随着泊松噪声累积的电荷会降低信噪比,特别是对于远程弱反射而言。
解决上述一些不足的一种方法是在频率或音调之间进行切换。然而,这样的切换可以有效地降低刷新率,并且可能具有有限的效果,因为达到数百米的范围(这对于诸如自动驾驶汽车的应用可能是期望的)通常需要非常低的频率以及非常精细的相位控制。此外,动态范围的问题在远程尤其是在阳光直射的情况下可能变得严重。
TOF 3D成像器的另一类是直接式TOF系统,它通过测量光信号到达目标并返回到传感器所花费的时间(即,光信号发射与传感器处的反射光信号的检测/到达时间之间的时间)来测量到目标的距离。选通直接式TOF相机通常使用周期性脉冲光源进行照明,并使用CCD或CMOS图像传感器进行检测。相对于光源,图像传感器在较短的时间范围内以可变的延迟被启用(或“选通的”),从而仅捕获每帧特定范围内的反射信号。每个收集的图像都包含该时间(和距离)窗中所有光子的积分信号。无法收集有关单个光子到达时间的信息。虽然此类设备可以使用标准的CMOS处理技术来设计高速选通相机,但其有效刷新率(RR)可能很慢,并且可能表示为:RR=(范围分辨率/最大范围)×(1/帧时间)。因此,在一个示例中,如果需要33毫秒(ms)来集成具有可接受信噪比(SNR)的信号,并且需要200m的最大范围和5cm的范围分辨率,则刷新速率为0.0075帧/秒,这通常是不可接受的。注意,由于读噪声,积分时间不能任意缩短。
非选通直接式TOF 3D成像系统可以使用许多检测元件,包括但不限于单元素扫描系统、线性阵列扫描或旋转系统以及凝视(staring)或闪速LIDAR系统。例如,利用微电子机械系统(MEMS)进行光束控制的单元素扫描系统通常受到光束从最远目标获取信号所需的往返时间的限制。例如,如果最大可检测目标距离200m,则系统可能在向一个方向传输脉冲和向另一方向传输脉冲之间等待1.3微秒;否则,在接收到有关其始发脉冲的信号时可能会模棱两可。这可能会限制此类系统的分辨率和刷新率。例如,如果在最大范围为200m的120度×30度视场上需要0.1×0.1平方度的分辨率,则系统的刷新率将为2.1帧/秒,这对于许多应用而言通常太慢了(除非采取捷径,这可能会导致未成像的区域或较低的分辨率)。此类阵列的另一可能的问题是MEMS反射镜可能未对准,这可能导致视场的覆盖范围不完整和/或不准确。
LIDAR的线性阵列可以使用子Geiger模式二极管阵列,诸如p-i-n二极管和基于雪崩光电二极管(APD)的阵列。虽然每个物理操作都不同–p-i-n二极管可能会使用宽的耗尽区来提高量子效率,却以时间分辨率为代价,而APD可以使用高电场来提供增益,而以噪声放大为代价–它们在3D成像系统背景下的操作方式相似。p-i-n二极管和APD在本文中通常称为“光电二极管”。
利用此类光电二极管的LIDAR系统可以通过发射周期性脉冲光来操作。光子可能会在光电二极管中被吸收,并且在APD放大的情况下,生成的电流可能与光子的数量大致成线性关系。使用p-i-n二极管可以很好地保持这种线性度,但是在APD的高增益操作下,响应可能会偏离线性度。通过测量光电二极管的光电流,可以测量微弱的信号,并且由于这些设备没有积分电荷,因此只要它们的噪声和统计散粒噪声保持较低,它们就可以在高环境光下操作。这与主动照明和频谱过滤一起可以允许环境光成像。此外,通过处理所生成的光电流的模拟波形,可以区分和识别多次反射。
光电二极管的直接输出是模拟电流,该电流对应于随光电二极管的时间响应及其输出阻抗而卷积的随时间变化的光子通量。由于应适应较小的信噪比,因此电流的数字化通常可能会非常靠近传感结。模数转换器(ADC)可能需要相对大量的位,以适应所需的高动态范围和非常精细的分辨率。如果阵列中没有冗余,即如果所有像素都可以同时记录反射信号(或“回波”),则可以为每个像素分配一个ADC。这可能会转换为较大的管芯面积,因此多像素二维阵列的大规模集成可能会限于小型阵列。此外,以高增益运行会限制设备的带宽。
光电二极管的时间分辨率有限(例如,某些APD上升10ns)可能意味着采样回波前沿的精确到达时间会涉及相对较大的误差。这可能会限制传感器的深度分辨率,从而可能导致相对较低的空间分辨率、低范围分辨率的系统。
可能在一些LIDAR系统中使用Geiger模式雪崩二极管。Geiger模式雪崩二极管是反向偏置超过其击穿电压的p-n二极管。因为单个光子可能引发雪崩,而雪崩又可以将其作为按其时间包含模拟信息的二进制事件来读出,所以这些设备可能不会产生读噪声,因此可能适合于以高时间分辨率进行快速采集。可以设计适当的电路以提供可靠的操作并采样Geiger模式雪崩二极管的输出。
在成像硅光电倍增管(SiPM)像素阵列配置中,Geiger模式雪崩二极管可以组织成微单元簇,使得像素中的雪崩数量可以用于计算检测周期中的检测到的光子数量,并且适当的定时测量电路可用于检测相对于参考时间(诸如光的发射脉冲的时间)的这些雪崩的时间。这些设备可能有许多缺陷。例如,对于给定的激光周期可以检测到的最大光子数可能受到像素中微单元数的限制。因此,在对二极管进行电隔离以减少或防止电气或光学串扰的情况下,更高的分辨率会转化为更大的面积,这会限制芯片上阵列中的像素数量。此外,像素对雪崩数量的响应可能是非线性的,这可能会导致有限的动态范围,或者在大光子通量中出现更高的误差。如果需要记录每个光子的到达时间,则可能会执行大量的模数计算,这可能会导致芯片上的面积使用率较高以及电流消耗较高。如果共享二极管的电容,则后脉冲可能会增大,这是Geiger模式二极管中的相关噪声源,因此也是噪声源。因此,成像SiPM阵列通常可用于低像素数的阵列,例如1×16SiPM。如果需要更高的分辨率,则可能需要围绕轴旋转一个或多个阵列,从而导致系统更大且更昂贵。
Geiger模式雪崩光电二极管的另一配置是时间相关单光子计数(TCSPC)配置中的SPAD(单光子雪崩检测器)阵列。例如,如图26中所示,控制器将触发器发送到脉冲光源,诸如激光器,作为响应,该脉冲光源在时间t0传输脉冲。同时,使用多种方法,时间数字转换器(TDC)或其阵列在时间t0开始测量时间。从一个或多个目标反射的一些光子(在本文中也称为回波信号或“回波”)可能在接收到时触发SPAD阵列中的一个或多个雪崩(在图26中参考分别在时间t1和t2处检测到的2个回波示出)。每个雪崩停止其TDC,并且输出与激光触发和雪崩检测之间经过的时间相对应的数字值,并将其存储在存储器中。通常,产生每个像素中光子到达时间的统计分布,从中可以推断出成像目标的3D位置(图26中基于回波信号的到达时间t1和t2示出为对象1和对象2),类似的“反向开始-停止”方法可以在感测到雪崩时开始时间测量,并在下一次激光触发时结束时间测量,这样可以在雪崩相对稀疏时节省功率。
在一些常规配置中,可以通过在与发射器脉冲的激发相关的时间将SPAD预充电到其击穿电压以上来选通阵列中的SPAD。如果光子在SPAD中被吸收,则可能触发雪崩击穿。该事件可以触发时间数字转换器中的时间测量,该时间数字转换器又可以输出与检测到的光子的到达时间相对应的数字值。单个到达时间携带的信息很少,因为雪崩可能由环境光、二极管内的热发射、被释放的电荷(后脉冲)和/或隧穿触发。此外,SPAD设备的响应可能具有固有的抖动。统计数字处理通常在基于3D SPAD的直接式TOF成像器中执行。
在这种基于3D SPAD的直接式TOF成像器中,数据吞吐量通常很高。典型的采集可以涉及数以万计的光子检测,这具体取决于背景噪声、信号电平、检测器抖动和/或所需的定时精度。数字化到达时间(TOA)所需的位数可以由范围与范围分辨率之比来确定。例如,范围为200m且范围分辨率为5cm的LIDAR可能需要12位。如果需要500次采集才能确定点云中的3D点,则可能需要执行500次时间数字的转换,并且可能需要存储6kbit进行处理。对于具有0.1×0.1度分辨率和120度(水平)乘30度(垂直)范围的LIDAR系统,每个成像周期可以执行360,000次采集。这可能需要1.8亿次TDC操作和2.16Gbits的数据。对于一些应用(例如,自动驾驶汽车),典型的刷新率可能是每秒30帧。因此,基于SPAD的LIDAR要达到典型的目标性能规格,可能需要每秒执行54亿次TDC操作,移动和存储64.8Gbit的信息并每秒处理360,000×30=1,080万个直方图。
除了这种天文处理要求之外,使用对光子到达时间的直接数字化的体系结构可以还具有面积和功率要求,这些要求可能同样与移动应用程序(诸如自动驾驶汽车)不兼容。例如,如果将TDC集成到每个像素中,则大的管芯可能仅适合160×128像素,例如,由于像素的填充系数低(其中大部分区域被控制电路和TDC占据)。TDC和随附的电路可能会提供有限数量的位。
一些现有SPAD阵列的另一缺陷是SPAD一旦放电,就在整个循环的剩余时间内仍保持放电或“失明”状态。直射阳光通常为100k lux。在一个示例中,在940nm处,直接束太阳辐照度为0.33W/m2/nm。在940nm处,光子能量为2.1x10-19J,因此在1nm波段中,每秒每m2撞击0.33/2.1×10-19=1.6×1018个光子。典型的LIDAR滤波器的通带约为20nm。对于直径为10μm的SPAD,每秒转换为3.2×109个光子。光需要400/3×108=1.3μs才能穿越2×200m。在此期间,平均3.2×109×1.3×10-6=4,160个光子将撞击SPAD。一旦第一个光子引发雪崩,SPAD就会停用。因此,在这些条件下,一些SPAD 3D相机可能无法在直射的阳光下使用。
一种解决高环境光条件的方法实现了时空相关器。在一个示例中,可以使用4个像素来数字地检测相关事件,其可以归因于脉冲源而不是环境光。可以使用精细和粗略的TDC将每个像素多达4个SPAD的到达时间数字化,并且可以将每个SPAD的结果存储在16位像素存储器储器中。结果可以从芯片上卸载下来,然后用软件进行处理。该软件可以选择一致的到达,以形成每像素每帧到达时间的直方图。直方图可以被处理以在点云上提供单个点。与普通成像器相比,该方案可以将面积和处理能力提高四倍。通过使用4个相关的到达,该示例系统可以对发射器功率、最大目标范围和/或目标反射率的设置限制,因为单个脉冲可以在检测器处提供4个检测到的光子。此外,电路所需的面积可允许有限数量的像素,其可仅包括整个管芯面积的一小部分。因此,使用该方案可能难以或不可能实现高分辨率成像器。例如,处理2×192像素阵列的数据吞吐量可能是320Mbit/sec,因此将这些2×192像素缩放到上述针对凝视LIDAR系统提到的360,000个像素可能是不现实的。
发明内容
根据本公开的一些实施例,光检测和测距(LIDAR)装置包括:脉冲光源,被配置成发射光信号;检测器阵列,包括单光子检测器,该单光子检测器被配置成输出指示入射到单光子检测器上的多个光子的相应到达时间的相应检测信号,其中光子包括具有与来自脉冲光源的光信号相对应的波长的信号光子、以及具有与至少一个其他光源(例如,环境光)相对应的波长的背景光子;以及处理电路,其被配置成接收从单光子检测器输出的相应检测信号。处理电路包括:一个或多个再充电电路,被配置成响应于相应选通信号而针对光信号的脉冲之间的相应选通窗并以相对于脉冲不同的相应延迟来启用和停用单光子检测器的子集;相关器电路,被配置成输出表示一个或多个光子的检测的相应相关信号,该一个或多个光子的相应到达时间相对于光子中的至少一个其他光子的相应到达时间在预定相关时间内;以及时间处理电路,包括:计数器电路,被配置成响应于相应相关信号或检测信号而增大计数值;以及时间积分器电路,其被配置成基于由相应相关信号或检测信号指示的相应到达时间来相对于参考定时信号生成积分时间值,其中,积分时间值与计数值之比指示光子的平均到达时间。
在一些实施例中,可调光学滤波器元件可被布置成使入射在检测器阵列上的光子通过或透射。可调光学滤波器元件可以具有透射带,该透射带被配置成基于从脉冲光源输出的光信号的频谱和/或脉冲光源的温度而变化。
在一些实施例中,处理电路还可以包括:第一通道,被配置成响应于检测信号的第一子集而提供输出值,该第一子集指示包括信号光子和背景光子的多个光子的相应到达时间;第二通道,被配置成响应于检测信号的第二子集提供参考值,该参考值指示背景光子而非信号光相应到达时间;以及控制电路,被配置成基于输出值与参考值之间的数学关系来计算对光子的平均到达时间的估计。
在一些实施例中,处理电路可以与检测器阵列在芯片上集成。
在一些实施例中,单光子检测器可以是单光子雪崩检测器(SPAD)。
在一些实施例中,控制电路可以被配置成生成相应选通信号和/或计算光子的平均到达时间。
在一些实施例中,控制电路可以与检测器阵列集成在芯片上。
根据本公开的一些实施例,光检测和测距(LIDAR)测量设备包括检测器阵列,该检测器阵列包括单光子检测器,该单光子检测器被配置成输出指示入射到单光子检测器上的光子的相应到达时间的相应检测信号,其中光子包括具有与从脉冲光源输出的光信号相对应的波长的信号光子;以及处理电路,包括再充电电路,该再充电电路被配置成响应于相应的选通信号而针对光信号的脉冲之间的相应选通窗并以相对于脉冲不同的相应的延迟来启用和停用单光子检测器的子集。
在一些实施例中,相应选通窗的持续时间可以相同。
在一些实施例中,相应选通窗的持续时间可以不同。
在一些实施例中,光信号的脉冲之间的时间可以对应于距离范围,并且相应选通窗的持续时间可以根据距离范围的子范围而不同。
在一些实施例中,对应于距离范围的较近子范围的相应选通窗的持续时间可以大于对应于距离范围的较远子范围的相应选通窗的持续时间。
在一些实施例中,再充电电路可以被配置成响应于相应的选通信号,基于检测器中的单光子检测器的子集的相对位置来启用和停用用于相应选通窗的单光子检测器的子集。
在一些实施例中,相对位置可以对应于相对于检测器阵列的定向的操作环境的不同方位角和高度。
在一些实施例中,再充电电路可以被配置成响应于相应的选通信号而动态地调节相应选通窗的持续时间。
在一些实施例中,再充电电路可以被配置成响应于相应的选通信号而动态地调节相应选通窗的持续时间,从而改变对应于相应选通窗的子范围的边界,或者基于由先前检测信号指示的目标的亮度。
根据本公开的一些实施例,光检测和测距(LIDAR)测量设备包括检测器阵列,该检测器阵列包括单光子检测器,该单光子检测器被配置成输出指示入射在其上的多个光子的相应到达时间的相应检测信号,其中光子包括具有与从发射源输出的光信号相对应的波长的信号光子以及具有与至少一个其他光源相对应的波长的背景光子;以及处理电路,被配置成接收从单光子检测器输出的相应检测信号。处理电路包括:时间处理电路,其包括:计数器电路,被配置成响应于相应检测信号而增大计数值;以及时间积分器电路,被配置成基于由相应检测信号指示的相应到达时间相对于参考时间生成关于参考定时信号的积分时间值,其中积分时间值与计数值之比指示光子的平均到达时间。
在一些实施例中,处理电路还可以包括再充电电路,被配置成响应于相应的选通信号而针对光信号的脉冲之间的相应选通窗并且以相对于脉冲不同的相应的延迟来启用和停用单光子检测器的子集。
在一些实施例中,处理电路还可以包括相关器电路,该相关器电路被配置成接收相应检测信号并输出表示一个或多个光子的检测的相应相关信号,该一个或多个光子的相应到达时间相对于至少一个其他光子在预定相关时间内。计数器电路可以被配置成响应于包括相关信号的相应检测信号的子集而增大计数值,并且时间积分器电路可以被配置成对由包括相关信号的相应检测信号的子集指示的相应到达时间进行积分。
在一些实施例中,可调光学滤波器元件可以被布置成输出入射在检测器阵列上的光子。可调光学滤波器元件可以具有透射带,该透射带被配置成基于光信号的频谱和/或发射源的温度而变化。
在一些实施例中,时间处理电路可以包括:第一通道,被配置成响应于检测信号的第一子集而提供计数值和积分时间值,该第一子集指示包括信号光子和背景光子的多个光子的相应到达时间;以及第二通道,被配置成响应于检测信号的第二子集而提供参考计数值和参考积分时间值,该第二子集指示背景光子的到达时间而非信号光子的相应到达时间。控制电路可以被配置成基于积分时间值与参考积分时间值之间以及计数值与参考计数值之间的关系来计算对光子的平均到达时间的估计。
在一些实施例中,计数器电路可以包括:计数电容器,被配置成响应于相应检测信号中的每一个来累积电荷并输出与计数值相对应的电压;并且/或者时间积分器电路和/或时间积分器电路可以包括积分电容器,被配置成响应于相应检测信号来累积电荷并且输出与积分时间值相对应的电压。
根据本公开的一些实施例,光检测和测距(LIDAR)测量设备包括检测器阵列,该检测器阵列包括单光子检测器,该单光子检测器被配置成输出指示入射到单光子检测器上的多个光子的相应到达时间的相应检测信号;以及处理电路,被配置成接收从单光子检测器输出的相应检测信号。处理电路包括相关器电路,被配置成输出表示一个或多个光子的检测的相应相关信号,该一个或多个光子的相应到达时间相对于至少一个其他光子在预定相关时间内。
在一些实施例中,相关器电路可以被配置成在一些实施例中基于检测信号独立于存储的数据输出指示相应到达时间的相关信号。
在一些实施例中,相关器电路可以被配置成输出相关信号而不将相应到达时间存储在一个或多个直方图中。
在一些实施例中,预定相关时间可以相对于相应检测信号的前沿,该相应检测信号指示一个或多个光子的相应到达时间。
在一些实施例中,预定相关时间可以对应于从脉冲光源输出的光信号的脉冲宽度。
在一些实施例中,相关器电路可以包括相应缓冲器元件,被配置成将相应检测信号延迟预定相关时间并输出具有与预定相关时间相对应的脉冲宽度的相应脉冲信号;以及逻辑电路,被配置成当相应脉冲信号中的至少两个的脉冲宽度在时间上重叠时,输出相关信号。
在一些实施例中,处理电路还可以包括时间处理电路,包括:计数器电路,被配置成响应于相关信号中的每一个而增大计数值;以及时间积分器电路,被配置成基于与相关信号的相应到达时间来生成积分时间值,其中积分时间值与计数值之比表示光子的估计的平均到达时间。
在一些实施例中,处理电路可以被配置成旁通相关器电路,并且基于相对于预定阈值的相应检测信号,将相应检测信号提供给时间处理电路。
在一些实施例中,时间处理电路可以包括:第一通道,被配置成响应于相关信号而提供计数值和积分时间值;以及第二通道,被配置成响应于与相应到达时间相对于彼此在预定相关时间以外的光子相对应的相应检测信号而提供参考计数值和参考积分时间值。
在一些实施例中,相关器电路可以被配置成当与其相应到达时间相对于彼此在预定相关时间之外的光子相对应的相应检测信号在阈值以下时,增大或减小预定相关时间。
在一些实施例中,处理电路还可以包括再充电电路,被配置成响应于相应选通信号而针对从脉冲光源输出的光信号的脉冲之间的相应选通窗并以相对于脉冲不同的相应延迟来启用和停用单光子检测器的子集。
在一些实施例中,可调光学滤波器元件可以被布置成输出入射在检测器阵列上的光子,该可调光学滤波器元件具有透射带,该透射带被配置成基于从脉冲光源输出的光信号的频谱和/或脉冲光源的温度而变化。
根据本公开的一些实施例,光检测和测距(LIDAR)测量设备包括:可调光学滤波器元件,具有透射带,该透射带被配置成基于从发射源透射的光信号的频谱和/或发射源的温度而变化;以及检测器阵列,布置成接收透射通过光学滤波器元件的输出光,该检测器阵列被配置成输出指示入射到检测器阵列上的多个光子的相应到达时间的相应检测信号。
在一些实施例中,至少一个致动器可以被配置成改变可调光学滤波器元件相对于参考角(例如,其上的光入射角)的倾斜角。倾斜角可以在预定角度范围内连续变化,或者可以在多个离散的倾斜角之间变化,并且透射带可以基于倾斜角而变化。
在一些实施例中,阻抗测量电路可以被配置成测量可调光学滤波器元件的相应区域处的相应阻抗,并且驱动电路可以耦合到阻抗测量电路并且被配置成控制至少一个致动器以基于相应的阻抗来改变倾斜角度。
在一些实施例中,可调光学滤波器元件的温度可以被配置成随着发射源的温度而变化。
在一些实施例中,可调光学滤波器元件可以热耦合到发射源,包括与发射源相同的材料,和/或被包括在温度可控的壳体中。
根据本公开的一些实施例,光检测和测距(LIDAR)测量设备包括检测器阵列,该检测器阵列被配置成输出指示入射到检测器阵列上的光子的相应到达时间的相应检测信号,其中光子包括具有与发射源的光输出相对应的波长的信号光子以及具有与至少一个其他光源相对应的波长的背景光子;以及处理电路,被配置成接收从单光子检测器输出的相应检测信号。处理电路包括:第一通道,被配置成响应于检测信号的第一子集而提供输出值,该第一子集指示包括信号光子和背景光子的多个光子的相应到达时间;以及第二通道,被配置成响应于检测信号的第二子集而提供参考值,该第二子集指示背景光子而非信号光子的相应到达时间。控制电路被配置成基于输出值与参考值之间的数学关系来计算对光子的平均到达时间的估计。
在一些实施例中,控制电路可以被配置成按顺序地操作检测器阵列的一个或多个单光子检测器以提供检测信号的第一和第二子集。
在一些实施例中,控制电路可以被配置成按顺序地操作一个或多个单光子检测器,以与发射源的停用相协调地提供第二子集。
在一些实施例中,控制电路可以被配置成操作检测器阵列的一个或多个单光子检测器以与第一子集并行提供第二子集。单光子检测器中的一个或多个可以包括光学滤波器,该光学滤波器具有透射带,该透射带被配置成防止信号光子通过到达单光子检测器中的一个或多个。
在一些实施例中,处理电路还可以包括:相关器电路,被配置成接收相应检测信号并输出表示一个或多个光子的检测的相应相关信号作为第一子集,该一个或多个光子相对于彼此的相应到达时间在预定相关时间内。
在一些实施例中,相关器电路可以被配置成当检测信号的第二子集指示来自至少一个其他光源的光低于阈值时,增大或减少预定相关时间。
根据一些实施例,光检测和测距(LIDAR)成像设备包括:单光子检测器(例如SPAD)阵列,被配置成输出指示入射到单光子检测器阵列上的光子的相应到达时间的相应检测信号;以及集成在单光子检测器阵列中的红外检测器和/或CMOS图像传感器阵列。
在一些实施例中,单光子检测器可以具有同心布置(例如,由一个或多个环形二极管围绕的中央二极管),并且可以共享一个或多个电连接,或者可以具有它们自己的电连接。
在一些实施例中,单光子检测器可以具有堆叠的布置(例如,在第一二极管下方布置有一个或多个二极管),并且可以共享一个或多个电连接,或者可以具有它们自己的电连接。
在一些实施例中,可以在成像设备上设置电容器阵列(例如,在同一基板上堆叠有阵列),以允许电荷分配和阵列的单光子检测器的快速再充电。
通过阅读以下附图和详细描述,根据一些实施例的其它设备、装置和/或方法对于本领域技术人员将变得显而易见。除了上述实施例的任何和所有组合之外,所有这些其它实施例都旨在包括在本说明书中,在本公开的范围内,并由所附权利要求保护。
附图说明
图1是示出根据本文描述的一些实施例的LIDAR应用中的飞行时间测量系统或电路的示例组件的框图。
图2是示出根据本文描述的其它实施例的LIDAR应用中的飞行时间测量系统或电路的示例组件的框图。
图3是示出根据本文描述的一些实施例的在LIDAR应用中的包括可调光学滤波器的成像系统的示例组件的框图。
图4A至图4D是示出根据本文所述的一些实施例的可在LIDAR应用中使用的可调光学滤波器的特性的曲线图。
图5A至图5C是示出根据本文所述的一些实施例可以执行的基于SPAD的3D成像系统和相关联的操作的图。
图6是示出根据本文描述的一些实施例的用于像素内数据缩减的操作的框图。
图7是示出根据本文描述的一些实施例的图像帧、子帧、激光周期和选通窗之间的关系的图。
图8A和图8B是示出根据本文描述的一些实施例的范围选通的示例的图。
图9是示出根据本文描述的一些实施例的示例LIDAR测量设备的框图。
图10是示出根据本文描述的一些实施例的示例计数电路的框图。
图11A和图11B是示出根据本文描述的一些实施例的时间处理电路的示例的框图。
图12A和图12B分别是示出了根据本文所述的一些实施例的包括多个检测器元件的示例性检测器像素的平面图和截面图。
图13是根据本文描述的其它实施例的包括多个检测器元件的示例检测器像素的截面图。
图14是示出根据本文描述的一些实施例的示例饱和度控制电路的框图。
图15是示出根据本文描述的一些实施例的示例脉冲时间相关器(PTC)电路的框图。
图16A至图16C是示出根据本文描述的一些实施例的图15的PTC电路的示例操作的定时图。
图17是示出根据本文描述的一些实施例的示例检测器子阵列的框图。
图18A是示出根据本文描述的一些实施例的可在LIDAR应用中使用的可调光学滤波器的特性的曲线图。
图18B是示出根据本公开的一些实施例的示例集成可见TOF-IR图像传感器设备的框图。
图19是示出根据本文描述的一些实施例的示例模拟时间处理电路的框图。
图20A和图20B示出了根据本文描述的一些实施例的用于区分信号光子和背景光子的示例操作。
图21是示出根据本文描述的一些实施例的在用于区分信号和背景光子的示例操作中的噪声影响的曲线图。
图22是说明根据本文描述的一些实施例的相关器电路的示例操作的框图。
图23是示出根据本文描述的一些实施例的用于背景光子校正操作的示例双像素元件的框图。
图24A和图24B是示出根据本文描述的一些实施例的用于相移以校正可能跨越两个子帧的检测到的光子的分布的操作的图。
图25A和图25B是示出根据本文描述的一些实施例的可调光学滤波器配置的示例的框图。
图26是示出根据本文描述的一些实施例的可与LIDAR系统和测量电路结合使用的SPAD的操作原理的图。
具体实施方式
本公开的实施例针对基于光的测距测量系统(诸如LIDAR)和相关的操作方法,其被配置成减少被测量和/或作为数据存储在存储器中的入射光子的数量。本文所述的一些实施例提供了方法、系统和包括电子电路的设备,电子电路提供了LIDAR系统,该LIDAR系统包括一个或多个发射器元件(包括半导体激光器,诸如表面发射或边缘发射激光二极管;在本文中通常称为发射器)以及一个或多个光检测器元件(包括半导体光电检测器,诸如光电二极管,包括雪崩光电二极管和单光子雪崩检测器;在本文中通常称为检测器)。在一些实施例中,检测器基于光子相对于彼此的相应到达时间之间的时间相关性来选择性地捕获或检测光子,这可以减少被测量和处理的入射光子的数量。例如,基于对来自脉冲激光并被目标反射的光子可以在相对窄的时间窗内到达的认知,本文描述的实施例可以由此选择性地捕获这些“相关”光子,同时拒绝“不相关”光子,诸如来自环境光源(例如太阳)的光子。在一些实施例中,诸如模拟计数器之类的计数器电路生成表示落在时间相关窗内的光子的计数值信号,提供像素内平均而无需数字化和存储表示捕获的光子的直方图或其它数据。因此,可以显著降低数据吞吐量。
通过非线性地选通测距门和/或通过对由发射器阵列输出的光和/或在检测器阵列处检测到的光进行频谱滤波,可以进一步减小环境光的影响。特别地,其它实施例可以包括可调频谱滤波器(例如,随着发射器或检测器阵列温度和/或发射器阵列的频谱输出而变化)、非线性数据选通(例如,随着飞行时间而变化)以进一步减少环境光光子计数。还可以实现对不相关或“背景”光子的检测和扣除。可能需要最少或减少的片外处理,从而降低了整体系统成本。将理解,本文中关于环境光或光源的讨论可以类似地应用于来自除了本公开的LIDAR系统的脉冲激光器或发射源之外的来源的光。
即,本公开的一些实施例可以包括像素内计数和平均与时间相关器的组合,并且在一些其它实施例中,包括检测器阵列的非线性选通、背景光扣除和/或可调频谱滤波。在一些实施例中,雪崩光电二极管(诸如基于SPAD的阵列)可以用作光子捕获机制。因此,一些实施例可以提供在直射阳光条件下操作的基于远程凝视SPAD的LIDAR系统。结合附图,根据以下描述和所附权利要求,本公开的附加特征(包括这些特征的任何和所有组合)将变得显而易见。
图1示出了根据本文所述的一些实施例的LIDAR应用中的飞行时间测量系统或电路100的示例组件。该电路可以包括控制电路105、定时电路106和单光子检测器阵列110(例如,SPAD阵列)。定时电路106可以生成并输出选通信号,该选通信号控制单光子检测器阵列110的定时。发射器阵列115在由定时发生器或驱动器电路116控制的时间发射辐射脉冲(例如,通过扩散器或光学滤波器114)。
在一些实施例中,发射器阵列115中的每个发射器元件可以连接到相应的驱动器电路116并由其控制。在其它实施例中,发射器阵列115中的相应发射器元件组(例如,彼此在空间上接近的发射器元件)可以连接到同一驱动器电路116。驱动器电路116可以包括:一个或多个驱动器晶体管,其被配置成控制光发射信号的定时和幅度。定时电路106可以类似地控制检测器阵列110的定时和增益/灵敏度。在一些实施例中,定时电路106和/或驱动器电路116可以被包括在控制电路105中。
从发射器阵列115的一个或多个发射器发射的光信号撞击在一个或多个目标150上并被其反射,并且通过检测器阵列110的一个或多个检测器(例如,经由一个或多个透镜112)将反射的光检测为光信号(在本文中也称为回波信号或回波),转换为电信号表示并进行处理(例如,基于飞行时间)以定义视场的3-D点云表示170。更具体地,检测器阵列110生成指示在反射的光信号中的相应到达时间的相应检测信号,并将相应检测信号输出到控制电路105。在一些实施例中,控制电路105可以包括像素处理器,其测量从发射器阵列110到目标150再回到检测器阵列110的过程中照明脉冲的飞行时间(即,由发射器阵列115发射光信号与反射到检测器阵列110的光信号或回波的到达时间之间的时间,由如相应检测信号所示),并计算到目标150的距离。如本文所述,根据本公开实施例的LIDAR系统的操作可由一个或多个处理器或控制器执行,诸如图1的控制电路105。在一些实施例中,本文描述的部分或全部控制电路可以集成在检测器阵列110中。
在特定实施例中,发射器阵列115可以包括脉冲光源,诸如LED、激光器、VCSEL或其阵列。可以选择光源的总光功率输出,以根据本文描述的实施例在可以检测到的最亮的背景照明条件下生成来自最远的反射最少的目标的回波信号的信噪比。发射的光可以具有相对窄的带宽。在一些非限制性示例中,总发射器峰值功率可以是0.01、0.1、1、5、10、25、40、60或65kW,其中峰值波长为940nm,发射带宽约为0.1、0.5、1、3、5、10或20nm FWHM(半高全宽)。
在一些实施例中,发射器阵列115可以是VCSEL阵列。晶片上VCSEL的典型发射波长频谱可能比LIDAR应用中通常所需的频谱宽。例如,整个晶片上的峰值发射波长可以相差约10或20nm。此外,晶片上的VCSEL的峰值发射波长之间可能存在很高的空间相关性。换句话说,在晶片上紧邻的VCSEL设备通常具有紧密的发射频谱,并且可以在将VCSEL设备切成小块或单片化之前,例如通过光泵浦来测量这些频谱。
本文描述的一些实施例可以针对例如具有在车辆(诸如自动驾驶车辆)上使用的特定应用的LIDAR系统。以下针对用于自动驾驶车辆的LIDAR系统的实施例的讨论本质上仅是示例性的,并且绝不旨在限制本公开或其应用或用途。例如,虽然本文所述的LIDAR系统的一些实施例可能具有在车辆上使用的特定应用,如本领域技术人员将理解,本文所述的LIDAR系统可能具有其它应用,包括但不限于机器人系统、飞机和仓库导航设备。
可能期望LIDAR系统包括所有固态组件并且不需要机械扫描,从而降低成本并提高耐用性。这样的LIDAR系统可以具有几百米的范围,例如150、200、250或300米,即使在阳光直射(100k lux)的情况下,也可以在白天和夜间的照明条件下运行,并且可以提供良好的范围分辨率,例如3、5、7、10或15cm。视场的一些或全部区域可以以期望的频率刷新,例如每秒10、20、30、40或50帧。对于车辆应用,角场可能相对较宽,例如具有0.1度分辨率的水平120度×垂直30度场。发射器的波长、输出功率和发射特性可能不会对眼睛造成伤害。LIDAR系统可在室外操作条件的相对较宽的温度范围(例如-40摄氏度(℃)至105℃的环境温度)内运行,外形尺寸小并具有成本效益。
如图2中所示,这样的示例LIDAR系统200包括窄发射带VCSEL阵列215作为发射器阵列以及光束成形发射器光学器件214以发射可以覆盖期望的视场(FOV)的光信号。例如,VCSEL阵列215可以被印刷到柔性基板上,并且使用覆盖的金属介电模板互连,以确保VCSEL阵列的基本同时激发。互连的阵列和基板可以被安装在导热的第二基板上并且被封闭在外壳中。外壳中(或可替代地,外壳外)的一个或多个发射透镜可以扩散VCSEL发射光,以形成发射锥以照射所需区域。
在示例LIDAR系统200中,检测器阵列被实现为SPAD阵列210。如本文中更详细描述,SPAD阵列210可以包括多个像素,每个像素包含两个或更多个SPAD、时间相关器、模拟计数器和/或时间累加器。相关器、计数器和/或累加器可以与SPAD检测器阵列210集成在芯片上(例如,堆叠在同一基板下面)。在每个成像帧期间,控制器205驱动VCSEL阵列215以使用包括一连串脉冲的光学信号217照射一部分或整个视场。成像滤波器212使大多数或基本上所有到达的回波VCSEL光子218通过,但拒绝(大部分)环境光子。SPAD阵列210可以在VCSEL阵列215激发时放电,并且可以在发射光脉冲之后的短时间内被(完全)充电。本文描述的一些实施例实现时间相关器,使得仅测量在预定时间内检测到的成对的雪崩(或两个以上)。在一些实施例中,测量可以包括:将固定的第一电荷(指示计数值)添加到计数电容器上,以及将第二电荷(其是到达时间的函数)添加到时间积分器上。在帧的末尾,电路(示出为包括读出集成电路(ROIC)208和GPU/点云处理器209)计算出积分时间与到达次数的比率,这是对像素的光子平均到达时间的估计。该估计基于积分时间分布的“中心”的计算,并且在本文中也称为质量中心估计。处理器209从成像器模块(本文称为包括检测器阵列和伴随的处理电路)收集点云数据,生成3D点云。
如在图2的示例中所示,温度监测器213测量VCSEL阵列215的温度并输出指示该温度的电信号。VCSEL阵列215可以被配置成作为光信号217发射光,该光信号包括在被大气弱吸收的波长,例如约940nm的波长下的一系列脉冲,并且同时照射相对宽的视场,例如,水平120度乘垂直30度的区域。一些发射光217击中目标250,并且该光中的一些被反射以将回波信号218提供到检测器/SPAD阵列210上,该检测器/SPAD阵列可以布置成靠近发射器/VCSEL阵列215。
各种频谱成像光学滤波器可以用作成像光学滤波器212,以阻挡一些环境光并将从发射器阵列215输出的一些、大部分或全部发射光217透射到检测器阵列210上。一些频谱滤波器可以利用吸收材料,并且一些滤波器可以使用电介质材料的叠层(电介质滤波器)。其它可以使用诸如法布里-珀罗干涉仪之类的腔来选择性地透射与LIDAR系统200的光发射217相对应的光的波长,同时阻挡许多环境光。可以调节这种滤波器的透射带,例如以在约20nm或10nm或1nm或0.1nm的带宽上透射光。
在图2中,成像滤波器被实现为可调光学滤波器元件212(在本文中也称为可调滤波器),其被配置成透射从目标250接收的反射光218(例如,基本上所有接收的反射光),但拒绝或阻挡环境光和/或来自其它LIDAR发射器的光(即,来自VCSEL阵列215的发射光217的波长范围之外的光)的至少一部分的传输。可调滤波器212的传输带(或“通带”)可以相对较窄,例如0.1、0.5、0.8、1、1.5、3、5、7、10或20nm FWHM。在一些实施例中,例如,响应于来自热传感器/温度监测器213的电信号,可以基于发射器阵列215的温度变化(和/或其频谱输出217的结果变化)来控制或改变可调滤波器212的透射带。
在一些实施例中,可以检测包含VCSEL阵列215的晶片,并且可以产生发射波长图。在一些实施例中,诸如微转移印刷过程的转移过程转移VCSEL组以限定具有相对较窄的频谱分布的VCSEL阵列215;例如,可以将彼此之间具有1nm波段的发射最大值的VCSEL转移到单个基板上。在一些实施例中,可以不执行晶片映射,并且可以基于转移的VCSEL的定位来确保窄的频谱扩展。在一些实施例中,可以在VCSEL元件的阵列215上或上方施加互连层,以使得从一个或多个驱动器到VCSEL元件阵列215的每一个的时间延迟相对较小。例如并且在特定实施例中,单个驱动器(诸如图1的驱动器电路116)驱动互连“树”,由此互连长度和从驱动器到一些或全部VCSEL元件阵列215的RC延迟可以小于约250皮秒(ps)或500ps或750ps或1ns。可以布置一个或多个透镜(诸如透镜112)以使VCSEL的发射均匀,并使光束成形以以所需的均匀性照射所需的区域。
如图2中所示,可调滤波器212是窄带成像滤波器,其被布置成在被SPAD阵列210检测之前,对从目标250反射的光信号218进行滤波。可调滤波器212由VCSEL阵列215的测量温度控制(如由温度监测器213的输出指示)并向SPAD阵列210传输与(基本上全部)所发射的VCSEL能量相对应的窄频谱带,同时拒绝环境光。可调滤波器212可以包括可调法布里-珀罗滤波器、声光滤波器和液晶可调滤波器。这些滤波器中的一些可能会遭受宽透射带,频谱带之间切换慢,光通量低,带外抑制比低和/或价格高的困扰。在一些实施例中,收集光学器件(诸如图1的透镜112)可以用于将反射光218聚焦在SPAD阵列210上,使得每个SPAD像素成像0.1°×0.1°的锥体。
图3示出了根据一些实施例的包括可调滤波器312的成像系统300的一个示例。可以包括一个或多个光学元件的收集光学器件318使来自预定接受锥的光准直,例如相对于系统300的光轴为水平120°×垂直30°。可以实现为诸如筒之类的各种形式的空间光学滤波器311被布置成仅允许相对较窄的一组射线角度透射通过它们。例如,如图3中所示,射线A(至少部分地被准直)穿过2-光瞳空间滤波器311,而射线B(以大于或超出接收锥的角度范围的角度入射)被阻挡。具有期望的精细度的可调滤波器312通过致动器344(诸如压电致动器,其可通过附接到发射VCSEL阵列的热传感器来设置其驱动电压)而被附接到固定基板345。聚焦光学器件316将空间和频谱滤波的光聚焦到光学传感器或检测器阵列310上,在一些实施例中,该传感器或检测器阵列可以是SPAD阵列。
如在图3的示例中更详细地示出,可调滤波器312被布置在检测器阵列310的前面,以基本上阻挡环境光和/或没有从发射器阵列(例如115、215)输出的其它光。在特定实施例中,可调滤波器312可以是高精细可调法布里-珀罗干涉仪、高精细液晶可调滤波器、可调声光可调滤波器或介电滤波器,它们中的每一个都可以安装在一个或多个致动器344上并(可选地)放置在空间滤波器(诸如,由光瞳311限定)的后面,以相对于滤波器312以受控角度引导准直光。致动器4可以被配置成响应于致动器控制信号使可调滤波器312以期望的倾斜角倾斜。致动器344可以可操作以在连续可变的角度范围内或在与相应致动器位置相对应的一组离散的倾斜角之中改变可调滤波器312的倾斜角。一个或多个光瞳311可以与入射光的期望传播同轴。
频谱滤波器可用于拒绝日光,但允许LIDAR反射光到达检测器。这种滤波器的透射带通常为1–20nm宽。在图4A中示出示例窄带LIDAR滤波器的透射带。透射带中心波长是入射光线相对于其光轴的角度的函数:
Figure BDA0002676292190000221
并且在图4B中通过示例示出neff=1.8。VCSEL的中心发射波长可能会随温度以大约0.08℃/nm的速率近似线性变化。在图4C中示出了作为温度的函数的发射器阵列(例如,VCSEL阵列215)的发射频谱的示例。在一些实施例中,监测发射器阵列的温度(例如,通过温度监测器213),并且微控制器响应于发射器阵列的温度而生成倾斜信号,以控制附接到窄带滤波器312的致动器元件4(例如,压电元件),使得滤波器312的透射波长例如基于图4D所示的温度-角度关系来跟踪发射器阵列的窄发射带。
在图3的实施例中,可调滤波器312被放置在光学系统10的傅里叶平面中。在一些实施例中,可调滤波器312被放置在焦平面中,使得系统10的数值孔径足够低以提供相对较窄的通带(例如0.1、0.5、0.8、1、1.5、3、5、7、10或20nm FWHM),同时保持数值孔径与孔径直径之间的一致性。在一些实施例中,成像系统10可以被配置成将可调滤波器312的环境温度维持在预定温度范围内。
图5A、图5B和图5C示出了一些基于SPAD的3D成像系统,以帮助理解本文描述的实施例。特别地,图5A中示出了一些3D直接式TOF SPAD阵列的数据流。例如,对于在约940nm处输出的发射器阵列光,直接束太阳辐照度可以约为0.33W/m2/nm。光子能量可以约为2.1e-19J,因此在1nm的通带中,每秒每m2可以入射0.33/2.1e-19=1.6e18个光子,而在20nm的通带中,每秒可以入射3.2e19个光子。对于直径为10μm的SPAD,每秒转换为3.2e9个光子。光需要400/3e8=1.3μs才能穿越2×200m。在这段时间期间,每个激光周期平均有13.2e9 x1.3e-6=416个光子撞击SPAD。在一些体系结构中,SPAD阵列每个周期再充电一次,因此在发生雪崩时,SPAD对其它光子无响应,因此成像系统无法运行。
如果实现滤波以将每个激光周期的平均光子检测减少到1,则每个雪崩的检测(在框510处)可能需要通过时间数字转换器(TDC)电路进行时间数字化(在框515处)。每个像素每秒可能有1/1.3e-6=800,000次此类转换,并且整个阵列每秒有800,000×360,000=2880亿次数字转换。TDC功耗可以约为22.5nW,因此检测器阵列可能需要6.5kW,这在小型自动驾驶汽车LIDAR中是无法实现的。此外,为了以1纳秒分辨率(15cm)和1.3微秒范围进行数字化,可能需要11位分辨率。具有这种分辨率的紧凑型TDC阵列可能会在28nm处理技术中,甚至在考虑如何快速传输所有信号且具有亚ns抖动之前,占据4个全光刻掩模版管芯,这对于凝视3D远程LIDAR系统也是不切实际。
本公开的实施例可以基于以下认知来减少进行数字转换所需的时间:源自太阳能背景的光子到达不相关,而来自被脉冲光源(例如,脉冲激光)照射的目标的光子具有在窄时间相关窗(例如,与脉冲宽度相对应的时间窗)(在本文中也称为预定相关时间)中,以2个或更多的组被检测到的可能性更高。在图5B中示出了这样的实施例,其中一些可以以准线性SPAD阵列(相对于区域,凝视检测器)来实现。特别地,如图5B中所示,在检测到光子到达之后(在框510处),时间相关器电路输出信号,该信号指示检测到具有相对于彼此落入预定相关时间之内的相应到达时间的相关光子对(在框525处)。这可以减少进行数字转换的时间,但是仍然会在每个采集帧期间为每个像素生成TOA直方图,这涉及每帧每像素多达数百个TOA的数字化(框515),数字化数据存储在存储器中(框530),以及直方图的生成(在框540处)。在一些情况下,每秒可能需要1080万个直方图,这可能超出了具有成本效益的移动平台的计算能力。
图5C示出了示例到达时间直方图(如在框540处生成的),具有100k lux背景和距发射器55m的目标。如果实现了3ns的TOA相关窗,则在直射阳光(100k lux)下每像素每30ms帧时间仍然会有大约12,000个相关到达事件。但是,可以将每帧每像素的信息编码为单个12位输出(log2(200m/5cm)),这意味着该信息在像素中可能非常稀疏。
已经证明了通过平均到达时间来测量分子荧光寿命实现一些像素内数据的减少或最小化。然而,这种方法可能不足以用于LIDAR应用,因为在荧光寿命成像显微镜(FLIM)应用中,存在关于荧光光子的预期TOA的先验信息。例如,1微秒的激光周期时间可与寿命在0.5ns–3.5ns数量级的荧光团一起使用,这使得可以定义非常短的时间窗并拒绝大多数不相关的时间(本文也称为不相关的)雪崩事件。另一方面,在LIDAR中,回波可能会在激光周期时间内的任何时间到达。此外,在一些情况下,可以通过使系统保持光学隔离来减少或最小化无关或不相关的光子发射,因此光仅来自脉冲激光器,而脉冲激光器可能不会在较长的周期时间内发射光(例如,在1微秒的周期时间脉冲宽度为0.5ns)。此外,可以将激发保持在较短的渐逝区域,该区域在成像芯片顶面上的波导上方约50nm。相反,在LIDAR应用中,环境光会在整个激光周期内撞击传感器,从而使特定发射的空间隔离变得困难。另外,在荧光寿命成像系统中,可以设计该系统,使得每个激光周期发生雪崩的可能性非常低,通常低于1%,以便防止称为堆积的统计误差。在LIDAR应用中,在特定的环境和目标范围以及反射率情况下,每个激光脉冲期望到达许多光子。因此,迄今为止,尚未解决由本公开的实施例解决的一些问题。
图6是示出根据本公开的实施例的一些像素内数据减少或最小化操作的框图。如图6中所示,在检测到入射光子时(在框610处),例如通过如本文所描述的时间相关器电路,将具有相对于彼此落入预定相关时间内的相应到达时间的两个或更多个光子进行相关(在框625处)。输出指示相关光子的检测的信号以进行像素内平均(在框650),其可以通过本文所述的计数器和时间积分器电路来实现。可以基于像素内平均的输出来生成点云(在框670处),而与将指示到达时间的数据存储在存储器中无关(例如,不存储如图5C所示的TOA直方图)。
在本公开的一些实施例中,频谱滤波(例如,使用一个或多个光学滤波器,诸如可调滤波器212、312)可以减少检测器(例如110、210、310)处的环境光光子计数,以便进行像素内平均。在一些实施例中,通过选择发射频谱相对较窄的一个或一组光发射器(例如,VCSEL,在本文中通常称为发射器)或其阵列(例如115、215)来实现这种环境光拒绝。在一些实施例中,光发射器或发射器阵列附接到导热基板。在一些实施例中,导热基板可以用于确保光发射器基本上是等温的,并且与周围环境热绝缘。在一些实施例中,可以使用被动冷却来确保光发射器保持在热平衡和/或在温度范围内。在一些实施例中,光发射器和/或导热基板被主动地冷却或加热以使它们保持在期望的温度范围内。在一些实施例中,温度传感器(例如,213)测量发射器、发射器基板和/或环境温度的温度,并提供指示温度的电输出信号。在一些实施例中,电输出信号经由查找表或数学算法被转换成驱动信号,该驱动信号到达可调滤波器元件(例如,212、312)。在一些实施例中,使用频谱测量设备(在不失一般性的情况下,诸如频谱仪)来跟踪或测量发射器(例如,115、215)的发射波长漂移。频谱测量设备的输出可以被转换成驱动信号,该信号到达可调滤波器元件(例如,212、312)。驱动信号可用于基于发射器的发射波长的变化来调节可调滤波器元件的透射带,如由其温度和/或其频谱输出的变化所指示。在一些实施例中,将光学滤波器放置在发射器或发射器阵列(例如,115、215)的前面,使得该光学滤波器选择并输出比从一个或多个发射器输出的光更窄的透射带。
应该理解,在一些实施例中并且在不失去一般性的情况下,可以类似地使用本文参考系统的检测器部分描述的闭环控制方案来代替或结合系统的发射器部分。在一些实施例中,发射器的温度控制可以提供更稳定的发射带,其透射穿过固定频谱窄带滤波器。在一些实施例中,可调滤波器的透射带被调谐为遵循发射器的发射带。在一些实施例中,可调滤波器的无源和/或有源温度控制和透射带的有源调谐的组合可在透射来自发射器的反射光的同时拒绝环境光。在一些实施例中,可调滤波器的透射带被控制为遵循与发射器相同的温度依赖性。在一些实施例中,可调滤波器的透射带随温度变化,并且有源控制信号可以微调透射带以匹配发射器的发射带。
在一些实施例中,直接式TOF成像系统(或“成像器”)包括多个像素。每个像素包含一个或两个或三个或四个或更多个SPAD(或其它光电检测器),其响应时间配置成准确测量光子的到达时间。在包括多个SPAD的像素中,SPAD可以例如同心地布置(例如,具有被一个或多个环形二极管包围的中央二极管)或堆叠(例如,具有布置在第一二极管下方的一个或多个二极管),并且这些二极管可以共享一个或多个电气连接,也可以各自具有它们自身的电气连接。至少在LIDAR系统的发射器发射期间,将SPAD偏置为使其处于非活动状态(处于非运行或非检测状态,在本文中也称为停用)。
一些实施例提供SPAD阵列的快速且同时的再充电,使得SPAD在不活动(inactive)以及活动(active)(处于运行或检测状态,在本文中也称为启用)并且几乎瞬间充满电时,例如在不活动后的0.1ns、0.5ns、1ns、2ns或5ns之内,仍保持偏置在击穿以下。在一些实施例中,阵列的再充电不是同时的,而是对检测器阵列的像素组(例如诸如行、列或子阵列)进行(例如,按顺序地),使得每个这样的组可以从不同的距离集检测反射的光信号,从而减少检测器中的电流尖峰。
在一些实施例中,在成像器上(例如,在与SPAD阵列相同的基板上)提供电容器阵列,以允许SPAD阵列的电荷分配和快速再充电。在一些实施例中,在设备的基板上方实现电容器阵列。在一些实施例中,电容器阵列被实现为金属-绝缘体-金属(MIM)或金属-氧化物-金属(MOM)电容器的阵列,其分布在非活动检测区域的区域(例如,分配用于处理SPAD附近的电路的区域)上。在一些实施例中,在SPAD阵列之外的检测器的区域上方实现大电容器组,而将较小电容器的阵列散布在该阵列的像素之间和/或在互连区域上方。在一些实施例中,第二管芯在未暴露于光的一侧上结合到检测器管芯,其中第二管芯包括用于有效且快速的电荷分配的电容器阵列。
在一些实施例中,SPAD连接到第一晶体管的栅极,使得SPAD的雪崩输出(响应于入射光子的检测)切换第一晶体管的状态。第一晶体管连接到电容器。第二晶体管与第一晶体管串联连接。第二晶体管的栅极连接到全局定时电路。在一些实施例中,在改变其状态时(响应于SPAD被放电),第一晶体管被配置成将电流传导到电容器上。全局定时电路在启用SPAD阵列时改变第二晶体管的状态,使得第二晶体管被配置成传导电流。在一些实施例中,第二晶体管由全局定时电路与脉冲发射器同步地切断。在一些实施例中,电流或电压积分开始于或响应于发射器脉冲之后不久的全局定时信号,并在触发之后通过SPAD的雪崩输出或活动时间窗的全局结束而结束。在一些实施例中,电流或电压积分开始于或响应于从SPAD输出的雪崩,并且恰好在随后的发射极脉冲的发射之前结束。在一些实施例中,全局定时信号可以不以发射器周期的开始或发射器周期的结束定时,而是可以在周期的开始和结束之间定时(在本文中也称为选通信号)。在一些实施例中,全局开始和结束信号的定时在所有周期期间都不相同,例如,允许范围的可变选通。
在一些实施例中,对入射光子的检测和从SPAD输出的所得雪崩的检测还增大了每像素计数器。在一些实施例中,计数器是数字计数器。在一些实施例中,计数器是模拟计数器,其为每个计数接收电荷量,并且所存储的电压作为计数总数的量度。
如上所述,SPAD基于p-n结,该p-n结例如通过或响应于具有期望脉冲宽度的选通信号而被偏置到其击穿区域之外。高的反向偏置电压会生成足够大小的电场,使得引入到设备耗尽层中的单个电荷载流子会经由碰撞电离引起自持性雪崩。雪崩通过主动或被动猝灭电路进行猝灭,以使SPAD被“复位”以检测更多的光子。
在一些实施例中,根据本文描述的实施例,通过实现计数器和/或积分器电路,处理电路被配置成响应于入射在检测器阵列上的光子而操作。计数器和积分器电路可操作以响应于检测入射光子的一个或多个检测器电路的输出来分别计数和积分检测到的光子相应到达时间。处理电路可以包括计数电路和/或积分器电路的模拟和/或数字实现。
在一些实施例中,处理电路包括相关器电路(在本文也称为脉冲时间相关器),其响应于到达预定的相关窗内的入射光子而提供输出信号,在本文中也称为相关时间。即,如本文中所描述的像素内相关可以涉及计算在由相关器电路定义的相同相关窗中接收的信号光子的到达时间(TOA)。这样,如果多个光子的突发基本上同时到达SPAD阵列,则其具有与单个光子相同的效果,即使该SPAD放电。一旦SPAD已经被前导光子放电,它对突发中的所有其它光子是不可见的,而阵列中的其余SPAD可以同样地响应于突发中的多个光子而操作。处理电路可以被配置成基于阵列中的相应SPAD对每个光子进行的积分的到达时间(例如,如本文中的时间积分电路所提供)和检测的计数(例如,如本文中的计数器电路所提供)的比率来计算对光子突发的到达时间估计。
在图9中示出LIDAR测量设备900的一些实施例的操作。在该示例中,分布式电荷网络901将电荷输送到SPAD阵列的像素附近,该SPAD阵列被示为包括两个SPAD 910。全局定时生成和复位电路902经由耦合到每个SPAD 910的相应的再充电电路903控制SPAD 910的再充电定时。在一些实现方式中,再充电方案是无源的,并且在雪崩输出时,SPAD 910被相应的再充电电路903立即且快速地再充电。在一些实施例中,该再充电方案是有源的(active),并且响应于从全局定时生成和复位电路902(也称为有源再充电电路)输出的相应选通信号,电气地控制再充电电路903的再充电时间。有源猝灭电路904感测雪崩的开始并传递反馈信号以快速猝灭雪崩。
在一些实施例中,有源再充电电路902、903在与从脉冲光源输出的光信号的激发(诸如从LIDAR系统的VCSEL输出的激光脉冲)的激发相关的相应时间将SPAD 910偏置到击穿之外。在一些实施例中,有源再充电电路902、903将SPAD 910偏置为启用一部分时间(“时间门”),诸如光脉冲穿越往返到最远目标所需的一部分时间,并且这个时间门可以改变,以选通LIDAR系统的范围。在一些实施例中,有源再充电电路902、903将SPAD 910维持在其充电状态达足以释放相对大百分比的捕获电荷的持续时间(例如1ns、2ns、3ns、5ns、7ns、10ns、50ns或100ns),然后快速为SPAD 910再充电。
37即,本文所述的一些实施例可以利用范围选通(即,在相对于激光发射的可变延迟下,在整个激光周期内的持续时间或时间窗内偏置SPAD以被启用和停用,从而捕获对应于每个窗/帧的特定距离子范围的反射的相关信号光子)以限制每个激光周期中获取的环境光子的数量。激光周期是指激光脉冲之间的时间。在一些实施例中,基于所发射的光脉冲往返于最远允许的目标所需的时间,即基于期望的距离范围来设置激光周期时间或以其它方式设置。为了覆盖约200米的期望距离范围内的目标,在一些实施例中,激光器可以以至多750kHz的频率进行操作(即,每1.3微秒或更长时间发射一次激光脉冲)。
图7是示出根据本文描述的实施例的图像帧、子帧、激光周期和时间门(在本文中也称为选通窗)之间的关系的图。如图7中所示,示例性激光周期可以被分成多个选通窗,该多个选通窗在发射的激光脉冲之间的时间上具有相应的持续时间。例如,在750kHz的操作频率下,激光周期可以是约1.3μs。激光周期可以分成相应选通窗,诸如例如20个选通窗。选通窗在激光周期内可以相互排斥或在时间上重叠,并且可以单调或不单调排序。在图7的示例中,在激光脉冲之间的激光周期时间的1.3μs内,选通窗可以具有各为67ns的相等的不重叠的持续时间。图像子帧包括多个激光脉冲,在激光脉冲之间具有多个选通窗。例如,每个子帧中可能有约1000个激光周期。每个子帧也可以代表为相应选通窗收集的数据。可以在每个子帧末尾执行选通窗读出操作,其中多个子帧(对应于相应选通窗)构成每个图像帧(例如,每个帧中的20个子帧)。图7所示的定时仅是示例性的,并且根据本文描述的实施例,其它定时是可能的。
图8A和图8B示出了根据本文描述的实施例的范围选通的示例。特别地,图8A示出了激光脉冲之间的n个选通窗,其中每个选通窗0-n响应于相应的选通信号Strobe#0-Strobe#n以相对于激光脉冲不同的相应延迟来定义SPAD的启用持续时间。在一些实施例中,选通窗0-n的持续时间相同,如图8A中所示。在一些实施例中,可以对选通窗进行缩放,例如,使得“较近”的选通窗(相对于激光脉冲发射具有较短的延迟)更宽/具有更长的持续时间,而“较远”的选通窗(相对于激光脉冲发射具有较长的延迟)更窄/具有更短的持续时间,反之亦然,从而提供非线性的选通窗,如图8B中所示。
光信号(和/或对应选通窗)的脉冲之间的时间可以对应于距离范围,并且相应选通窗可以因此对应于距离范围的子范围。例如,要成像200米(m)的距离范围,可以定义相应选通窗以覆盖1m-50m、50m-90m、90m-125m、125m-155m、155m-175m、175m-190m和190m-200m的距离范围。这种方案提供了用于获取从较远目标反射的光子的选通窗(可能更弱或较不会反射)更短,从而允许更少的环境光子到达较短的获取窗,从而在计算与均匀的选通窗持续时间相比的平均到达时间时实现更高的信噪比。
在一些实施例中,可以调节或改变每个时间门分配的激光周期的数量(例如,如图7中所示,每个子帧的每个选通窗读数,其中每个子帧指示用于相应选通窗的数据)。在一些实施例中,覆盖特定距离范围的每个帧或子帧中的激光周期的数量可以是恒定的,而不管选通门宽度或距离范围如何或与之无关。即,通过示例,为了使用750kHz激光器以每秒10帧的速度进行检测,每个帧可以对应于75,000个激光周期(例如,10个时间门(例如,选通窗读数)中每一个的75,000个激光脉冲覆盖的距离子范围为1m-50m、50m-80m、80m-110m、110m-125m、125m-140m、140m-155m、155m-170m、170m-180m、180m-190m和190m-200m)。在一些实施例中,对于不同范围的时间门,对应于每个帧或子帧的激光周期的数量是不同的。例如,与用于较近时间门的子帧相比(距离激光脉冲发射的延迟更短,例如,覆盖0-50米的较近距离),可以分配用于较远时间门的子帧(距离激光脉冲发射的延迟更长,例如,覆盖190-200米的较远距离),或者以其它方式对应于更大部分(或更少部分)的激光周期数量,而不是为每个时间门或子帧平均分配激光周期的数量。即,在一些实施例中,用于较远时间门的激光周期的数量大于用于较近时间门的激光周期的数量,反之亦然。
在一些实施例中,对于给定的时间门,在帧或子帧中的激光周期的相对数量按距离的平方缩放。在一些实施例中,在没有信号光子的情况下选择性地记录/捕获背景/不相关的光子计数(例如,通过暂停激光器的发射或通过测量与没有目标反射的距离范围相对应的距离范围的选通门处的光子计数的数量,并按比例缩放到门宽度),并且将背景加信号光子计数记录并存储在存储器中,该计数可用于计算信号光子计数(假设光子计数率足够低以使这些参数独立,或者如果它们不是独立的,则可以对此依赖性进行校正,例如“堆积校正”方案)。可以基于信号光子计数或背景光子计数或两者来调节与选通门相对应的每个子帧的激光周期的相对数量。例如,可以基于检测到的目标的反射率(例如,基于先前检测信号指示的反馈)来调节检测器阵列的选通,这样的较多激光周期可以分配给较低反射率的目标的检测(例如,在750,000个激光周期中,有100,000个可以定向到190-200米的距离处的目标,而较少的激光周期可以分配给较高反射率的目标的检测(例如,在750,000个激光周期中,有50,000个可以定向到0-50米距离处的目标),反之亦然。更一般地,每个时间门/对应子帧分配的激光周期的数量可以变化,以便为调光(低反射率)目标提供更多的激光周期,或者为较亮(高反射率)目标提供更多的激光周期。
在一些实施例中,检测器阵列的不同部分(例如,不同区域中的SPAD)可以同时选通不同距离范围。在一些实施例中,可以在不同的时间间隔期间对成像器的交替行进行充电,这可以降低激光功率,同时实现相同的SNR,但以较低的空间分辨率为代价。例如,在一个示例中,在10个选通窗处扫描120行,而所有行在给定子帧处扫描相同的选通窗。对于每秒30帧的全局帧速率,读数可能为每秒300帧,因此每1/300=3毫秒(毫秒)的子帧必须向目标传递足够的能量。在另一个示例中,交替行对交替的选通窗进行成像,以使有效行数为120/2=60。对于每秒30帧的全局帧速率,应在2/300=6毫秒的周期期间向目标传递相同的能量,因此与上述先前示例相比,平均功率和峰值功率可以减半。
在一些实施例中,在图9中示出LIDAR测量设备900还可以包括处理器,该处理器被配置成响应于对信号光子或其它雪崩(诸如热生成的雪崩)的检测而从检测器阵列910接收信号,基于接收到的信号确定相应目标的亮度,并基于确定的目标亮度动态地调节激光周期数、检测器的相关窗、检测器的选通窗和/或如本文所述的背景扣除/校正。
图9的LIDAR测量设备900还包括脉冲时间相关器925(在本文中也称为相关器电路)、包括事件计数器950a(在本文中也称为计数器电路)和时间积分器950b(在本文中也称为时间积分器电路)的时间处理电路950)、饱和度控制电路955、阵列定序器和读出电路960以及处理器单元970(可以设置在芯片上或芯片外)。在一些实施例中,阵列定序器和读出电路960可以与LIDAR系统的发射器阵列(和/或相关的控制电路)协同操作。在下面更详细地描述相关器电路925、计数器电路950a和时间积分器电路950b。
本公开的一些实施例提供各种架构,其中与如本文所述的相关器电路925和/或饱和度控制电路955组合,将计数器电路950a实现为模拟事件计数器和/或将时间积分器电路950b实现为模拟时间积分器。例如,如图10中所示,SPAD 1010连接到无源淬灭和再充电晶体管1003,其静态DC偏置电压“VQ”控制SPAD 1010的再充电或“死”时间。它经由两个晶体管全局快门时间门1047连接到模拟计数电荷转移放大器(CTA)电路1050a。通过将主电容器“C”拉至高复位电压VRT来复位CTA电路1050a。CTA电路1050a响应于输入栅极电压(在这种情况下为SPAD 1010的阳极电压)增大到输入源极跟随器的阈值电压之上而进行操作。电荷从主电容器“C”流到寄生电容器“CP”,并且寄生节点上的电压升高。升高的电压将源极跟随器推入切断区域,并且电荷流停止,从而导致从主电容器传输离散的电荷包用于每个输入脉冲。SPAD1010开始再充电,并且CTA电路1050a中的下部晶体管1051释放寄生电容,这是通过施加静态偏置电压“VDC”来实现的,该偏置电压使该晶体管处于弱反转状态并保持在阈值以下。
通过示例的方式提供了图11A和图11B以示出根据本文描述的实施例的包括模拟计数器电路1150a和模拟时间积分器电路1150b的时间处理电路1150的操作。还示出了关联的发射器阵列(激光脉冲)的定时。通过将固定量的电荷注入到电容器Ca上,计数器电路1150a进行操作。因此,电容器Ca上的电压(V_event_counter)是记录的雪崩数乘以电荷量子除以Ca的电容。模拟时间积分器电路1150b通过在雪崩开始时开始向不同的电容器Cb注入电流,并在全局控制的时间(例如,基于基准定时信号)停止而进行操作。因此,电容器Cb上的电压(V_time_accum)等于流过的电流(I)乘以总积分时间除以Cb的电容。在子帧末尾读取像素(Read_pixel_caps),提供计数值(Number_of_events)和子帧到达时间之和(sum(arrival_times),从中可以估计出检测到的光子的平均到达时间。
在本公开的一些实施例中,每个像素包括具有其保护环以及光学和电隔离的2个SPAD。响应于雪崩的SPAD输出前沿在紧凑的像素内脉冲时间相关器(PTC)中与时间相关。如果前沿到达预设的或可调的“相关时间”内,则后者的前沿将以相对较低的抖动被传输到时间处理电路,该时间处理电路包括事件计数器和时间积分器。如果没有相关的雪崩,则没有信号将到达时间处理电路。在一些实施例中,将仅处理边缘中的一个(例如,较早的一个)。在一些实施例中,将处理两个边缘,并且在像素中实现两组对应的事件计数器和时间积分器。在一些实施例中,如果两个检测到的雪崩在时间上足够接近(例如,在预定相关时间内),则PTC仅输出一种极性的数字信号,否则输出另一极性,并且该相关信号用作开关的控制,其允许对相关事件进行定时和事件测量,否则不允许进行这种测量。
在一些实施例中,数字电路可以代替时间积分电容器Cb和/或事件计数器电容器Ca。在一些实施例中,相关器(例如,925)的输出被馈送到数字转换器(TDC),其动态范围对应于选通门的持续时间(例如,对于10米窗为66纳秒)的时间与每次测量所需或期望的时间分辨率(例如2ns)之比-在此示例中仅需要5位-这可能比通常需要12-14位并因此占据像素中更多空间的其它LIDAR像素要少得多。TDC的输出可以存储在像素中的存储器中。数字累加器(例如,950b)增大了到达时间。类似地,数字计数器(例如,950a)在从相关器(例如,925)输出的每个相关事件之后增大。同样在子帧的末尾读取数字时间累加器和数字事件计数器的值,从中可以估计出检测到的光子的平均到达时间。
在一些实施例中,事件以电报码的形式记录在存储器中,其位数等于选通门持续时间与所需或期望的时间分辨率之间的比率。例如,如果选通门为66纳秒,而所需的或期望的测量分辨率为2纳秒,则使用33个存储仓,每个存储仓都有多个存储单元。存储器单元的数量可以由每个时间区间的总预期计数来确定。对于每次到达,相应仓处的存储值都会增大,从而生成实时直方图。在一些实施例中,该存储器阵列的输入不是直接SPAD输出,而是相关事件,因此导致“更清晰”和更小的直方图,并且不相关事件明显更少。将理解,存储单元所占据的面积可能是实现方式中的限制因素,因此可以期望显著减少要处理的事件(通过使用根据本文描述的实施例的相关器和/或选通门)。
在一些实施例中,检测器阵列的像素中的两个SPAD或微单元由两个或更多个二极管限定,每个二极管封装在保护环中。在一些实施例中,如分别在图12A和图12B的平面图和横截面图中所示,像素1200包括同心布置的两个二极管D1和D2,例如,使得第一中心二极管D1为椭圆形或多边形,而第二二极管D2限定围绕中心二极管D1的椭圆形或多边形环,因此减小了由该对二极管D1、D2占据的总像素面积。在一些实施例中,可以形成诸如沟槽或注入结构之类的隔离结构以更好地隔离两个二极管D1、D2。更一般地,第二二极管D2可以围绕第一二极管D1的周边或外围布置。二极管D1、D2彼此充分地电隔离和光学隔离,并且每个二极管具有如本文所述的读出节点。在一些实施例中,可以在像素1200中形成两个以上的同心二极管。例如,第三二极管可以类似地限定围绕二极管D2的椭圆形或多边形环,第四二极管可以限定围绕第三二极管的椭圆形或多边形环,等。
在一些实施例中,像素中的两个或更多个相关二极管可以垂直堆叠。例如,可以使用像素中的不同结来实现两个二极管D1、D2。作为示例并且在不失一般性的情况下,像素1300可以包括由源极-漏极扩散至N阱结(结1)限定的一个二极管D1和由N阱至深N阱结限定的另一二极管D2(结2),如图13的截面图所示。然而,将理解,本公开的实施例不限于所示的结结构,并且其它结结构可用于提供足够的电隔离,使得一个二极管中的雪崩引起第二二极管中雪崩的可能性低。在一些实施例中,每个二极管具有其自身的读出电路。在一些实施例中,像素1200、1300或其它结构具有单个读出,其中一个二极管的雪崩被读出为一个电压极性,而另一二极管的雪崩被读出为第二极性,均馈入本文所述的读出电路中。从而可以实现像素面积的减少,从而节省大量像素。在一些实施例中,像素的两个或更多个二极管经由具有适当的电互连的晶片间接合来堆叠。可以通过如本文所述的处理电路来做出适当的计算校正因子,以解决两个二极管的不同检测概率。
将理解,根据本公开的实施例,本文描述的信号和栅极极性仅作为示例提供,并且可以在不损失功能的情况下进行改变。时间处理电路(例如,950)包括计数器(例如,950a)和时间积分器(例如,950b)。计数器和时间积分器都可以每帧复位一次。计数器和时间积分器都可以由饱和度控制电路(例如,955)禁用。
在图14中示出根据本公开的示例性饱和度控制电路1455,现在将描述其操作。在图14中,DC电压时间饱和度和计数饱和度被提供给像素。比较器X1和X2分别监测时间积分器1450b和事件计数器1450a的电压输出TI_out和EC_out。一旦电压(TI_out或EC_out)中的一个达到由外部电压(时间饱和度和计数饱和度)设置的阈值,比较器电路X1、X2(已饱和)的输出将切换为1,并冻结时间积分器1450b的值和事件计数器1450a。时间积分器1450b和事件计数器1450a可以在帧的开始通过相应的复位信号来复位。外部End_frame信号输入到“或”门O2。如果时间处理电路系统1450达到饱和或End_frame标志为1,则数据就绪位变为1。在一些实施例中,事件计数器1450a是模拟计数器。在一些实施例中,事件计数器1450a是数字计数器。
在一些实施例中,PTC(例如,925)被配置成当其作为两个SPAD(例如,910)的直接,反相或缓冲的输出的两个输入在预定义或预定的持续时间(本文也称为“相关时间”或“相关窗”)内到达时,输出一个二进制数据作为相关信号,否则输出另一二进制输出或三态输出。在一些实施例中,PTC可以将检测器阵列的第一SPAD和第二SPAD的直接、反相或缓冲的输出提供给边缘触发的D触发器的时钟输入和数据输入。
在图15中示出根据本公开的示例性脉冲时间相关器(PTC)电路1525,现在将描述其操作。如同整个本公开,在特定实施例中,栅极的极性可以相反。如图15中所示,PTC 1525将检测器阵列(例如,910)的两个或更多SPAD(SPAD 1、SPAD 2)中的每个SPAD的开关节点的直接或缓冲电压直接或经由延迟元件(BUF1、BUF2)提供给相应的与门(AND1、AND2)。在一些实施例中,通过延迟元件BUF1和BUF2的延迟等于期望的相关时间。在一些实施例中,延迟元件BUF1和/或BUF2可被实现为串联连接的奇数个反相器。在一些实施例中,延迟元件BUF1和/或BUF2可以被实现为串联连接的偶数个反相器。在一些实施例中,可以经由外部电路来控制由元件BUF1和/或BUF2提供的延迟。在一些实施例中,可以控制由元件BUF1和/或BUF2提供的延迟,以在多个制造工艺条件、电源电压变化和/或温度(PVT)上维持期望的水平。来自与门(AND1、AND2)的输出(A、B)被馈送到或门(OR)和与门(AND),它们分别为边缘触发的D触发器1520生成数据和CLK输入。复位信号(Reset)用于复位触发器1520的输出。触发器1520被配置成使得其建立时间约等于或小于与相关检测相对应的最大相关时间。在一些实施例中,相关时间短于发射器脉冲的脉冲持续时间。在一些实施例中,相关时间长于发射器脉冲的脉冲持续时间。PTC电路1525被配置成使得当数据被传播到其输出时,它对数据添加了减小的或最小的可能抖动。
包括图16A至图16C中示出的波形的定时图示出了图15中所示的PTC电路1525的示例性操作。在图16A至图16C中,信号“Out”是指PTC电路1525的输出,在本文中也称为相关信号。在测量窗的末尾,触发器1520的状态通过信号Reset来复位。
包括图16A中所示的波形的定时图示出了当在相对于彼此的延迟时间长于预定相关时间的情况下发生作为检测信号SPAD_1和SPAD_2输出的两个SPAD(SPAD 1和SPAD 2)中的雪崩的检测时,PTC电路1525的操作。检测信号SPAD_1、SPAD_2指示光子到达对应检测器元件(SPAD 1、SPAD 2)的相应时间。缓冲器(BUF1、BUF2)和与门(AND1、AND2)将来自相应雪崩的每个检测信号SPAD_1、SPAD_2的前沿转换为具有与相关时间相对应的脉冲宽度或持续时间的脉冲信号A、B。从或门(OR)作为数据信号输出到触发器1520的信号A+B指示脉冲信号A、B不重叠。CLK信号A×B对数字0进行采样并提供给D触发器1520,使得由PTC电路1525生成的相关信号Out为0,指示在SPAD 1和SPAD 2处检测到的光子的相应到达时间不是相关的。
包括图16B中所示的波形的定时图示出了当在预定相关时间内恰好发生作为检测信号SPAD_1和SPAD_2输出的两个SPAD(SPAD 1、SPAD 2)中的雪崩的检测时,PTC电路1525的操作。在这种情况下,从或门(OR)作为数据信号输出到触发器1520的信号A+B指示脉冲信号A、B重叠,并且CLK信号A×B的前沿采样数字1,使得由PTC电路1525生成的相关信号Out为1,指示在SPAD 1和SPAD 2处检测到的光子的相应到达时间是相关的。
包括图16C中所示的波形的定时图示出当作为检测信号SPAD_1和SPAD_2输出的两个SPAD(SPAD 1和SPAD 2)中的雪崩的检测基本同时发生时的情形。在这种情况下,从或门(OR)作为数据信号输出到触发器1520的信号A+B还指示脉冲信号A、B重叠,并且用数据信号A+B将CLK信号A×B的前沿提供给触发器1520。因为触发器1520的建立时间设置为零,所以仍然正确地采样数据A+B,并且由PTC电路1525生成的相关信号Out为1,指示在SPAD 1和SPAD 2处检测到的光子的相应到达时间是相关的。
根据本公开的实施例的相关器电路的具体实现方式已经作为示例被提供,但是不限于此。这样,可以根据本公开的实施例实现在相关时间内发生雪崩时提供一种类型的二进制信号输出,以及在相关时间内没有两个脉冲发生时提供另一种二进制信号输出的其它相关器电路。
在一些实施例中,事件的数量和时间之和被存储为电容器上的电压(例如,分别为Ca和Cb)。
在一些实施例中,每个激光周期仅进行一次TOF测量。在一些实施例中,在一个激光周期中进行多次TOF测量。
在一些实施例中,像素中仅包括一对事件计数器和时间积分器(例如,950a和950b)。在一些实施例中,在像素中包括多于一对的事件计数器和时间积分器,使得如果已经触发一对来记录时间和事件,则使用下一对。
在一些实施例中,使用滚动快门读出方案来一次一行从像素读出像素的电压。在一些实施例中,全局快门方案用于一次读出检测器阵列的所有电压。
在一些实施例中,定义了感兴趣区域(ROI),由此仅读出检测器阵列的子集。
在一些实施例中,像素中包括电路以计算积分时间与事件数量的比率,以得出平均到达时间。例如,吉尔伯特乘法器电路可以集成在像素中。
在一些实施例中,使用模数转换器(ADC)将读出电压数字化。在一些实施例中,ADC是片上的。在一些实施例中,ADC是片外的。在一些实施例中,读出是在键合芯片(例如,读出集成电路(ROIC))中。
在一些实施例中,包括SPAD阵列(并且在一些实施例中,CIS阵列)的成像芯片被正面照射。在一些实施例中,包括SPAD阵列的成像芯片被背面照射。
在一些实施例中,片上或片外处理单元(例如,微处理器)计算每个像素的积分时间(电压)与事件数量(电压)的比率。在一些实施例中,处理单元将所有比率转换为范围和方位角高度坐标,并将结果存储和/或显示为3D点云。
本公开的实施例的其它优点可以包括改善的动态范围。动态范围可能是所有其它模式(包括PMD)的障碍。下面提供了一些示例计算;然而,将理解,这些示例是非限制性的,并且仅出于说明的目的而提供。
在以下有关LIDAR系统的示例中,应注意,照明光子通量(光子/面积/时间)通常以距离的平方下降(在一些情况下,例如,当使用非发散光束时,照明光子通量保持近似恒定,但这不是远程LIDAR系统的典型配置)。因此,与5m远的目标(假设5m是最小期望检测范围)一样,可以用(5/200)^2=6.25e-4的能量照射来照射200m远的目标。在该示例中,较近的目标是镜面反射器(反射率100%),而较远的目标是10%反射率,并且是朗伯反射器。检测器接收到的反射功率也与距离范围的平方成正比,因此来自较远目标的回波可能再次是来自较近目标的回波的6.25e-4。因此,即使在考虑环境光之前,一些积分检测器也可以处理1:2560万的动态范围。然而,在一些图像传感器中,典型的全阱容量可能约为5,000至100,000(如果满足该规范的传感器可能以小于1个电子的读噪声进行读取,则可能需要2,560万个电子的全阱容量,这可能是不可能的)。当包括阳光的影响时,每个周期可能增大约500个光子的背景,该问题可能会变得更加严重。
相比之下,使用单光子检测器的本公开的实施例可以自相矛盾地解决动态范围问题(自相矛盾地,因为单光子检测器比pin二极管、APD、PMD等可以更好地处理高通量)。如果一大束光子到达SPAD,则其效果与单个光子相同,即使放SPAD放电。一旦SPAD因前导光子而放电,它就不会对突发中的所有其它光子产生影响。许多并发的光子可能会增大相关对检测的可能性,但是SPAD的操作可能不会受到影响。因此,本公开的实施例可以提供另外优点,特别是在环境光子被拒绝并且灵敏度被调谐以用于检测更远的目标的情况下。
本文描述了在存在不相关光子的情况下通过上述像素对质心的估计的进一步改进。在以下等式中,tcalc是像素测量的时间,tsigwidth/2是与信号相关的雪崩的时间扩展的一半,s(t)是tsigwidth内相关事件的平均计数率,S是每个子帧相关事件的总数,b(t)是通过相关器的不相关事件的平均速率,而B是每个子帧通过相关器的不相关事件的总数。如本文所述,可以在不包含信号回波的选通门期间或在发射器不发射的间隔期间计算b(t)和B。ts是到达目标的真实或实际飞行时间(这是估计的目标)。
Figure BDA0002676292190000391
Figure BDA0002676292190000392
Figure BDA0002676292190000393
tFullWidth=2tsigwidth/2
Figure BDA0002676292190000394
Figure BDA0002676292190000395
其中
Figure BDA0002676292190000401
平方根是时间扩展。
在一些实施例中,诸如有源像素传感器(APS)像素或无源像素传感器(PPS)的CMOS图像传感器(CIS)像素可以集成在基于SPAD的检测器阵列内,并且可以用于滚动快门读出或全局快门式读出的相应的控制器阵列可以设置在同一芯片上或在单独的读出集成电路(ROIC)上。在图17中示出了根据本公开的一些实施例的检测器子阵列1710。在该示例中,SPAD像素1702包括SPAD有源区域1701,其具有环绕的保护环和电路。检测器阵列1710中还包括CMOS图像传感器(CIS)像素1703。因此,可以从检测器阵列1710生成两个输出:一个是3D点云(基于从SPAD 1702输出的检测信号),而另一个是相同视场的灰度欠采样图像(基于CIS像素1703的输出)。
在一些实施例中,CIS像素1703和SPAD像素1702的输出可以被处理单元组合或“融合”以形成强度编码的3D点云。在一些实施例中,单独或专用图像传感器设备可以生成单色或彩色的完整图像。在一些实施例中,来自CIS像素1703的欠采样图像可以与来自单独或专用图像传感器设备的图像融合,而欠采样特征用作来自单独或专用图像传感器设备的图像的基准或配准点。在一些实施例中,该融合图像也可以与SPAD像素1702生成的3D点云融合。
在一些实施例中,SPAD成像器可以与对红外(IR)光子例如对波长长于1200nm的光子敏感的图像传感器包装在一起。在一些实施例中,红外图像传感器可以结合到硅基SPAD设备,使得可见光子被硅基SPAD设备吸收,但是红外光子(硅基检测器无法吸收的光子)将穿过IR传感器。将理解,在这样的实施例中,光学系统可以具有足够低的数值孔径和/或聚焦深度,以允许两个焦平面阵列同时聚焦,和/或可以将可调焦点聚焦集成,以便允许使任一检测器(SPAD或IR)置于系统的焦平面中。还应当理解,SPAD设备中的金属化可以被设计成使得其允许IR光子到达结合的IR传感器。还应当理解,检测模块或阵列的前部(或输入)处的滤波器可以被配置成使得在可见光范围内,该滤波器将透射相对较窄的频谱带,例如,具有在930nm或940nm的光波长左右的约1nm或5nm或20nm的透射带,并且滤波器可以同时用作高通滤波器,相对于光的IR波长,可以透射上述1200nm宽的频带,例如在图18A的曲线图中所示。
图18B示出了根据本公开实施例的集成的可见TOF-IR图像传感器设备1800的示例。将SPAD管芯5(例如,硅管芯)以晶片级或管芯级与IR检测器管芯或晶片6(例如,InGaAs管芯或晶片)结合。SPAD管芯5包括的顶部包含金属化线2、焊线焊盘1和金属间电介质,下部或底部4包含光电二极管3。IR管芯6可以背面研磨并背面照明(BSI),因此其光电二极管7处于管芯6的顶面侧。在一些实施例中,IR管芯6不背面研磨或是正面照射。在BSI IR传感器中,金属化线10和微凸块用于将IR阵列6电互连到基板11。在一些实施例中,引线键合12将SPAD阵列5互连到同一基板。在一些实施例中,可以提供热控制以将来自IR检测器7的暗电流减小到足够低的水平,同时使来自SPAD检测器3的后脉冲率保持足够低。
本公开的一些其它实施例针对基于具有背景(BG)基准的面积计算对SPAD像素的延迟测量。这样的实施例可以与如上所述的用于计算每个像素内部的飞行时间的模拟或数字电路(例如,计数器和时间积分器电路)结合使用,以及与包括(1)可调窄带通滤波器;(2)检测器选通或选通门,尤其是门宽度随飞行时间而变化;和/或(3)符合计数(例如,使用相关器电路检测在相对彼此的预定相关时间内到达的光子)的上述特征结合使用,以将计数偏向于背景光子(例如,来自环境光源)的期望信号光子(例如,来自期望光源)。
在特定实施例中,可以使用第二“参考”通道,其被配置成允许背景光子(本文也称为BG或bg光子)进入。参考通道可以由一个或多个单光子检测器实现,该单光子检测器被配置成检测由LIDAR系统(诸如本文所述的VCSEL阵列)的脉冲光源发射的光信号的波长范围之外的入射光子。该参考通道被配置成估计仅与背景光子有关的统计数据,从而允许校正“主”通道(信号+背景)上的飞行时间的估计。随着背景的增大,TOF估计值可能会被“拉”向门的中心;因此,根据本文描述的其它实施例的参考通道提供了模拟输出,该模拟输出可用于抵消朝向中心的拉动。
在一些实施例中,参考通道可以由光学滤波器实现,该光学滤波器被布置成将输入光提供给检测器阵列的相应单光子检测器。一些光学滤波器具有允许期望信号波长和背景波长的光的透射带,而另一些光学滤波器具有仅允许背景波长的光的透射带。即,参考通道包括未在期望信号光子的波长上的光学带通滤波器(即,不对应于或被另外配置成阻止期望信号光子的透射)。也可以实现其它方法来剥夺期望信号光子的参考通道。在一些实施例中,微转移印刷可以用于将相应光学滤波器施加到检测器阵列的相应单光子检测器。
如本文的一些示例中所述,SPAD可以是可用于检测极低信号电平的检测器的示例。然而,SPAD可以为其检测到的每个光子(包括背景光子)注册一个事件。这意味着即使信号可以恢复,但如果分析策略依赖于使用所有光子事件的分析,则存储器和处理要求(用于数字化/记录/分析所有光子事件)可能也太大而无法包括在单个像素中。
如上面详细讨论,本公开的实施例针对光测距检测和分析,其提供了在检测点处SPAD输出的数据负载的减少,而不会丢失基本信息(例如,指示期望信号光子的飞行时间的信息)。因此,一些实施例可以将“飞行中”的所有事件“集成”为少量的“品质因数”,从中可以估计期望的飞行时间。
例如,一些实施例可以计算平均延迟(例如,来自所有SPAD雪崩事件的飞行时间的直方图的第一时刻)。图19示出了示例模拟时间处理电路1950,其被配置成通过独立地计算两个量来计算平均飞行时间值:(1)所有事件的TOF(或TOA)之和(例如,在电容器Cb上积分);以及(2)事件数量的计数(例如,存储在电容器Ca上)。该电路1950可以适合于估计TOF;然而,,背景光子(和其它源)可能会导致检测事件,这些事件不是来自激光信号回波,从而在测量中产生了噪声。这样,在没有附加信息的情况下,在一些情况下,由电路1950生成的值可以将期望的信号和背景光子混合成相同的值。
因此,一些其它实施例可以生成附加信息,该附加信息可以改善与期望信号光子(例如,激光信号回波)相对应的值的提取。例如,在一些实施例中,可以通过使用与主通道#1类似的设备来实现参考检测通道#2而生成平均背景强度(和延迟值)的独立估计。参考检测通道#2可以与通道#1同时/并行地操作,或者可以按顺序/在通道#1之前或之后操作。通道#2与通道#1的不同之处在于,通道2被配置成不注册或检测期望的信号光子。通过在主要和参考通道上使用图19中所示的时间处理电路1950(或类似电路),但是针对不同的波长范围进行了调谐(例如,使用相应的光学滤波器),其它实施例可以提供检测分析,该检测分析允许基于从主通道和参考通道输出的值之间的关系将期望的信号光子与背景光子区分开。
因此,本文所述的一些其它实施例可以允许通过利用参考BG通道来通过积分器的平均值来模拟峰值延迟的计算。为此,蒙特卡洛分析可用于将量视为从高斯分布中抽取的随机变量,其高斯分布的标准偏差(sigma)等于期望值(均值)的平方根。可以用最可能的飞行时间估计值以及该估计值的方差表示结果。将每个(估计值和方差)绘制为独立变化的期望信号(s)和背景(b)的函数,其中s=时间门期间期望信号光子的总数,而b=时间门期间背景光子的总数。
图20A和图20B示出了用于跨时间门(Tg;在本文中也称为Tgate)将光子与信号和背景区分开的示例。为了仅计算期望信号光子的平均延迟<t>s,可以将本文所述的模拟电路配置成测量来自给定光检测器的平均延迟<t>和总光子计数A。特别地,可以使用两个通道:一个具有检测器,该检测器被配置成收集包含期望信号和背景光子的频带/波长范围的光,而另一个用于仅包含背景光子的频带/波长范围的光。下面的等式示出了如何从这些测量中得出期望的数量,仅信号的平均延迟:
Figure BDA0002676292190000431
Figure BDA0002676292190000432
图21是示出基于通道#1上给定数量的信号和背景光子,将噪声添加到计算中的曲线图,其中S=期望信号光子的数量,而B=背景光子的数量(或暗计数)。可以在(参考)通道#2上绘制随机数量的背景光子计数:b_ref=b+X,请注意b_ref不一定与b的值相同。
可以根据预期的分布在Tgate上分配光子,并计算M1、M2、M3、M4、M5、M6的值,其中M5=使用b_ref的M3,而M6=使用b_ref的M4。基于3个不同的等式计算估计值:
Figure BDA0002676292190000441
Figure BDA0002676292190000442
Figure BDA0002676292190000443
可以对N个迭代重复以上操作,以生成预期的估计值和信号延迟ts的不确定性ts。因此,根据本文描述的实施例,随着背景噪声的减小,TOF的计算精度可以提高。可以通过增大脉冲功率以增大每个脉冲的光子来进一步提高精度,并且可以通过对更多的脉冲进行积分来提高SNR。
在包括基于单光子检测器的参考通道的实施例中,该参考通道被配置成检测不相关的背景(BG)光子,以校正“主”通道(其被配置成检测相关信号光子+BG光子的集合)上的飞行时间的估计,系统可以在三种情况下运行。在第一种情况下,从背景计数对像素中质心计算的影响可以忽略不计的意义上说,可以忽略不计。在第二种情况下,背景计数足够高,以致可以应用本文所述的背景收集操作,并且如果信号电平足够高,则这些操作可以以足够低的误差来估计正确的范围。在第三种情况下,背景电平足够高而不利地影响测量误差,但又太低而无法在整个周期中假设均匀的背景计数。在本文描述的一些实施例中,可能期望在第一种或第三种情况中操作并且避免第二种情况。
如果信号电平足够高,则将系统从第三种情况移动到第一种情况的一种方法是允许检测更多的环境光。这可能是违反直觉的,因为对于常规图像传感器,这将导致背景噪声增大,从而导致信噪比降低。然而,在根据本文描述的一些实施例的采用背景校正的像素实现方式中,具有较高均匀性的背景光子的检测减小了背景校正操作的误差。
因此,本文所述的一些实施例可以包括:处理电路(例如,相关器电路925),其被配置成基于检测到的背景(非相关)光子、信号(相关)的光子和/或背景与信号光子的比率来调节(例如,增大或减少)相关时间窗。在一些实施例中,可以通过增大频谱滤波器(例如,可调滤波器212)的带宽以允许更多的非发射器信号(例如,环境光)进入来实现不相关光子的增大。在一些实施例中,可以通过加宽像素内相关器的相关窗来实现每帧不相关的光子计数。例如,可以通过电子控制图15的脉冲时间相关器(PTC)电路1525中的缓冲器BUF1和/或BUF2中的延迟来改变相关窗,因此改变了脉冲信号A和/或B的宽度。当相关时间较长时,更多不相关的计数可以传递到事件计数器(例如,1450a)和时间积分器(例如,1450b),从而将系统转换到第一种情况。在一些实施例中,在被动帧中(即,发射器不发射或发出的情况下)或在没有目标/反射的选通门中,监测或检测不相关的光子计数水平,并响应于不相关的光子计数水平相应地调节相关窗。在一些实施例中,针对检测器阵列的单光子检测器全局地控制相关窗。在一些实施例中,选通窗由检测器阵列的区域控制,即,使得不同的相关时间被应用于从检测器阵列的第一区域中的检测器输出的检测信号和从第二检测器阵列中的第二不同区域中的检测器输出的检测信号。在一些实施例中,针对检测器阵列的一个或多个像素来控制选通窗。
即,一些实施例可以包括相对于阈值(其可以基于预定或期望的背景检测电平、预定或期望的信号电平,和/或其之间的比率)确定背景(不相关的光子)检测电平,然后在确定的背景检测电平低于阈值时,调节(例如,增大或减少)应用于来自一个或多个单光子检测器的检测信号的相关时间。这允许检测具有更高均匀性的背景光子,这可以提高本文所述的背景扣除/校正操作的准确性。
在一些实施例中,相关器电路(例如,1525)可以被旁通,并且来自任一个或两个SPAD的信号可以被直接驱动到积分电容器和计数电容器。例如,在信号和/或背景电平下降到某一阈值以下的情况下(例如,如来自一个或多个检测器的检测信号所指示),可以旁通相关器电路。例如但不失去一般性得情况下,可以通过将相关时间设置得很高来实现这种旁通。该旁通也可以通过迫使图15的触发器1520的D输入来实现得很高。
在另一些实施例中,包括基于单光子检测器的参考通道,该参考通道被配置成检测不相关的背景(BG)光子,以校正“主”通道(其被配置成检测相关信号光子+BG光子的集合)上的飞行时间估计,在一些操作条件下,不相关的光子计数率或信号光子计数率或两者都可能太高。这是不希望的,因为如果信号光子在不相关的光子到达后很可能落入/到达单光子检测器的死区时间内,则可能会降低检测信号光子的可能性。相反,如果信号光子计数率太高,则在信号光子到达后(甚至之后)的死区时间内检测到不相关光子的概率可能会不一致,因此背景扣除/校正操作可能会提供信号到达时间的估计不够准确。换句话说,如果检测到太多不相关的光子,则单光子检测器可能无法检测到到达检测器后续死区时间内的信号光子,而如果检测到太多信号光子,则可能不均匀地检测不相关的光子。如果这两个操作条件都发生,则可能会发生上述两个问题。然而,在一些情况下,可能不希望对检测到的事件或光子计数率的数量设置全局和/或静态限制,因为用于减少或最小化范围估计误差的最佳或期望的事件数量可能是信号光子计数水平、背景光子计数水平和/或它们的组合的函数。
在一些实施例中,动态事件饱和度阈值可以用于调节子帧中的事件数量以进行范围计算,例如以将系统从上述的第三种情况转变为第一种情况。例如并且在不失一般性的情况下,可以基于(i)在前一个周期中,(ii)在另一个像素中,或(ii)在前一个周期和另一个像素两者中测量的信号和背景光子计数水平来调节在图14的饱和度控制电路1455中馈送到比较器X2的计数饱和度信号。在一些实施例中,像素外部的控制器可以从控制周期接收指示背景和信号+背景光子计数的数量的信号,并且可以基于查找表或函数来设置计数饱和信号电平,使得测量提供了改进的范围估计性能。在一些实施例中,可以通过控制有源再充电电路(例如,903)来调节像素中SPAD(或其它单光子检测器)的死区时间,从而允许更多或更少的雪崩进入或以其它方式提供给相关器电路(例如,925)。在一些实施例中,例如通过调节二极管(例如,SPAD 1和SPAD2)所看到的电压过偏压来调节检测器的单光子检测概率。这样的机制可以基于每个像素或像素组进行操作。
即,在本文所述的动态控制的LIDAR应用中的单光子检测器的一些实施例中,可以例如通过改变本文所述的饱和度控制电路的阈值(例如,基于来自先前周期、另一个像素或两者的信号和背景电平)和/或通过控制本文所述的有源再充电电路来改变单光子检测器的死区时间来调节(增大或减少)光子计数率。可以调节光子计数率,因为如果计数了太多不相关的光子,则检测器可能无法检测到在先前的不相关光子到达后的“死区时间”内到达的一些信号光子,或者相反,如果有太多信号光子触发单光子检测器,则不相关的/背景电平的检测可能是不均匀的,使得本文所述的背景扣除/校正方法可能不准确。
在一些实施例中,如本文所述的像素内相关可以包括在相关窗上计算信号光子的相应到达时间(TOA)的分布的质心。将相关窗相对于脉冲宽度设置得较窄可以减少通过相关器的不相关光子的数量,但可能导致丢失或无法测量一些信号雪崩。将窗相对于脉冲宽度设置得较宽可以测量更多的雪崩,但可能包括一些背景雪崩。即,在这种情况下,可以测量更多不相关的对。因此,在一些实施例中,可以响应于所测量的背景和信号计数率动态地调节(每个像素或每个像素组)相关窗的持续时间。
如本文中所论述,一些实施例可以基于通过减少在检测点的单光子雪崩检测器(SPAD)的数据负载来减少不相关的雪崩的数量(即,响应于与脉冲激光源不相关的光子)而操作。这种不相关的雪崩可能是由SPAD设备本身引起的(例如,由于热发射或隧穿引起的),和/或可能是由于吸收了与LIDAR发射器发射的光信号的波长不对应的光子(诸如太阳能光子,或来自其它外部源的光子,诸如其它不相关的背景或环境光)(在本文中通常称为背景光子)引起的。在直接飞行时间系统中,这种不相关的背景光可能对正确的光子飞行时间的计算影响较小并因此对目标范围的计算影响较小。然而,在一些实施例中,例如对于基于平均到达时间(TOA)的计算的范围计算,影响可能更严重。不相关的雪崩对测得的到达时间(TOA)的影响可能是朝着收集到达时间的时间窗中心倾斜。
在存在不相关或非相关的雪崩的情况下(本文也描述为背景雪崩,而不失一般性),由本文所述的像素元件(或“像素”)(可能包括一个或多个光电检测器)测量的TOA经过多个脉冲周期积分后可能是:
Figure BDA0002676292190000481
其中,k是测量序列(例如,激光脉冲周期)内时间区间的索引,m是序列中时间区间的总数,tsig,k是信号光子到达时间的第k时间区间的到达时间,其相对于参考时间(迄今为止,为简单起见且不失一般性,被视为激光脉冲激发的时间(例如,基于脉冲的前沿)),nk是在第k时间区间中记录的信号(不是背景)雪崩的数量,(twin,mid)是记录雪崩序列的时间段的中心时间或与之对应的时间,nbg是在总积分时间内记录的背景雪崩的总数,并且nbg+sig是在积分时间期间记录的信号和背景雪崩的总数。
然而,可能需要测量(平均)信号光子的TOA:
Figure BDA0002676292190000482
其中nsig是信号雪崩(由信号光子产生的雪崩)的总数。在本文所述的示例中,雪崩之间的平均时间与SPAD的死区时间相比可能相对较大,从而使测量范围内的背景雪崩数量的变化可能不会对信号光子引发雪崩的概率产生重大影响。
在一些实施例中,本文所指的雪崩时间可以是由从各个SPAD检测器输出的检测信号指示的雪崩时间。在一些实施例中,本文所指的雪崩时间可以是在如本文所述的相关器电路(例如,925、1525)所定义并且由从中输出相关信号指示的相关时间内发生的相关雪崩对中的一个或两个的时间。
本文描述的其它实施例涉及在两个相邻的时间段或距离子范围内下降或以其它方式检测到的光子到达时间。描述了用于交替或以其它方式调节时间段或距离子范围的边界的方法和电路。
根据本文所述的一些实施例,可以通过以下计算经背景校正的TOA:
Figure BDA0002676292190000491
本文所述的一些实施例提供了方法和电路,由此执行计算以校正由背景雪崩引起的误差。在一些实施例中描述的像素可以包含雪崩计数电容器或电路(例如,950a)和时间积分电容器或电路(例如,950b)。通过旁通像素内相关器(例如,925),这些电容器或电路还可用于计数和积分不相关雪崩的时间。
在一些实施例中,无源采集帧可以散布在一个或多个有源采集帧之间。有源采集帧(在本文中也称为主动帧)可以指其中LIDAR系统的脉冲激光器是活动的帧。无源采集帧(在本文中也称为被动帧)可以指其中LIDAR系统的脉冲激光器是不活动的帧。
在一些实施例中,无源采集SPAD(在本文中也称为无源(passive)SPAD)或其它光电检测器可以散布在SPAD检测器阵列中,使得无源SPAD未配置成检测发射激光器波长的光子(即,信号光子)。在一些实施例中,可以在无源SPAD的有源光接收区域的顶部上沉积或以其它方式提供光学滤波器,使得透射通过无源SPAD的背景光子的速率与撞击在有源SPAD上的背景光子的速率成比例。在一些实施例中,无源SPAD可以例如通过金属层与外部照明光学隔离,并且可以对非光学背景雪崩进行补偿。
本文参考无源采集帧描述方法和电路。将理解,类似的方法可以与有源SPAD一起使用,由此校正可以与信号采集同时进行,而不是串行或按顺序进行。
再次参考图9的电路,并且在不失一般性的情况下,检测器阵列910的像素可以以特定的或预定的帧速率操作。例如,在一些实施例中,帧速率可以是每秒10帧。在一些实施例中,帧速率可以是每秒20帧。在一些实施例中,帧速率可以是每秒30帧。在每个主动帧期间,发射激光脉冲序列(例如,通过VCSEL阵列215),并且它们的回波可以生成在像素及其阵列中处理的雪崩。作为示例并且在不失一般性的情况下,被动帧可以每预定或期望数量的主动帧替换一次主动帧。在被动帧期间,激光驱动器晶体管/电路可能不会驱动激光发射脉冲。
在一些实施例中,每个帧可以包括多个子帧。每个子帧跨越完整帧的对应于距离范围一部分,该距离范围是可以由LIDAR系统成像的距离范围的一部分。
在一些实施例中,其中一个或多个子帧以被动模式操作的部分被动帧可以代替上述描述的被动帧。例如,部分被动帧可以每预定或期望数量的主动帧替换一次主动帧。可以根据它们相对于被动子帧的相对持续时间成比例,从所测量的被动子帧的背景计数中推断出其它帧的背景计数。例如,如果被动子帧持续300ns并计数100个计数,则另一个持续600ns的子帧可以接收推断的200个背景计数。
参考经过背景校正的TOA(TOAbg_corrected),可以由处理单元970处理以下参数(非穷举列表)。TOAmeas是每个主动子帧末尾的积分时间与已计数事件的比率(由已知或确定的因子缩放);nbg+sig是每个子帧末尾事件计数器的输出;twin,mid是当前子帧时间段中间的已知时间或确定时间;如上所述,nbg是事件计数器在被动子帧期间的输出或基于另一个被动子帧的推断计数数量;并且nsig=nbg+sig-nbg是在每个主动子帧期间计数器输出与相同像素的最后一个被动子帧计数器的值之间的计算差值,该值可以存储在非暂时性存储器或存储器阵列中(对于子帧数量而言)并在每次获取相同子帧的无源输出时进行替换。
一旦处理器单元970已经获取了参数,则处理器单元970可以被配置成根据以上等式来计算经背景校正的TOA(TOAbg_corrected)。在一些实施例中,处理器单元970可以由微控制器或微处理器实现。
本文描述的其它实施例可以在SPAD像素中提供背景扣除,这可以与其中基于背景的测量与信号的测量如何分开而在单个像素上将信号和背景在时间上分开的实施例不同。特别地,不是在时间上分开进行信号测量和背景测量(例如,在一个周期内,发射器被启用并发射激光脉冲,返回的数据被视为“信号”(“S”)或“信号+背景”(“S+BG”);在下一个周期中,发射器被禁用,并且测量被认为是“仅背景”(“BG”)),本文描述的其它实施例提供了“双像素”,其中单个像素元件包括两个并行同时操作的独立检测通道。
图23中示出了根据本公开的实施例的示例性双像素元件2310。如图23中所示,检测器元件2310a限定了一个通道,其被配置成允许和检测信号+BG光子。检测器元件2310b限定另一个通道2310b,其被配置成仅允许和检测BG光子(即,以便排除对期望信号光子/光的波长的检测)。每个检测器元件2310a和2310b可以被实现为单个检测器(例如,SPAD、APD等)或检测器的组合,以便输出指示相应到达时间和/或入射在其上的光子强度的相应检测信号。在一些实施例中,可以将图23中的检测器元件2310a和2310b(可以认为是所示像素元件2310的“子像素”)实现为一对SPAD,其可以根据上述实施例产生/检测相关的雪崩事件。
分别由检测器元件2310a和2310b限定的两个同时操作的通道S+BG与BG之间的区别可以通过各种方法和设备来执行。本文所述的一些实施例可以使用光学带通滤波器,其中用于一个通道S+BG的检测器2310a包括在发射器的波长处打开(即,被配置成允许光)的带通滤波器,因此允许信号光子通过;并且用于另一个通道BG的检测器2310b包括不同的光学带通滤波器(在图23中示出为光学滤波器2312),其被配置成阻止信号光子的通过(即,具有被配置成对具有从发射器输出的波长的光子/光进行滤波的透射带),但允许非信号背景光子(例如,来自背景或环境光源(包括太阳)的光子)通过的数量与预期通过另一个通道S+BG(除信号外)的背景光子数量呈线性关系。通过同时操作这两个通道S+BG和BG,可以同时收集信号和背景光子。
图23的实施例在信号和背景之间的时间多路复用的一些优点可以包括(但不限于):信号的积分时间的增大(因为没有时间被“浪费”切换到“仅BG”收集);以及S+BG和BG的同时采样允许其它电气实施例,从而可以实时减去每个通道的模拟信号。一些缺点可以包括(但不限于):焦平面中的每个像素额外的“不动产”或面积(例如,较大的占用面积),这可能会减少像素计数(对于相同大小的阵列)或增大像素的面积(实现相同的像素计数);应用于两个子像素中的一个或两个的不同光学带通滤波器。在一些实施例中,可以使用微转移印刷技术来实现不同的光学带通滤波器。在其它实施例中,可以通过与光刻掩模方法和工艺相结合的标准光学滤波器沉积和生长方法来实现不同的光学带通滤波器。
图24A和图24示出了根据本公开的实施例的用于相移以校正可以跨越两个子帧的检测到的光子的分布的操作。特别地,在一些情况下,从目标反射的激光信号回波可以跨越两个子帧。每个子帧可以跨越完整帧的一部分,其中每个完整帧对应于被成像的距离范围。每个子帧还可以包括用于检测器阵列的相应选通窗的数据,其中每个选通窗对应于被成像的距离范围的相应子范围。图24中示出这种到达(例如,光子到达)的直方图,其中水平轴表示从参考时间开始或相对于参考时间的时间区间(例如,激光发射/发射),并且同样可以表示来自LIDAR系统的计算范围的区间。垂直轴表示在每个时间区间(或被成像的距离范围的子范围)中收集的计数(例如,光子计数)的数量。
到达时间的时间分布(TOA)可以超出子帧的限制,其中每个子帧都包括一个选通窗的数据。因为如本文一些实施例中所述的像素(可能包括一个或多个检测器)可能不输出直方图,而是指示所有积分雪崩时间平均值的标量值,因此这种分布可能导致对实际到达时间的平均值的错误估计。本文描述的一些实施例提供了可以减轻这种错误的方法和电路。
特别地,定时电路(其可以由本文所述的任何控制电路来实现,例如105、205)可操作以例如通过改变相应选通窗的定时和/或持续时间来控制检测器阵列(例如110、210)(例如基于SPAD的阵列或其它检测器阵列)的子帧或子范围限制。这些时间限制指定何时对检测器阵列的SPAD设备进行充电/启用以检测光子并响应雪崩事件生成检测信号。在一些实施例中,可以采用子帧限制的交替模式来解决其中来自单个目标的回波跨越两个子帧的情况。在一些实施例中,可以通过例如使用时间门控方案改变启用相应检测器阵列的持续时间/选通窗来控制相应检测器的子帧的时间限制,包括但不限于提供用于阵列不同位置的不同检测器的不同范围。
在图24A和图24B的示例中,目标可以在距阵列161米(m)的范围内,并且回波可以分布到对应于159m至163m的范围的时间。第一帧可以包括对应于150m-160m范围的第一子帧、以及对应于160m-170m的第二子帧。像素可以计算第一子帧的约159m的第一目标、以及(如图24A中所示)第二子帧的约162m的第二目标;然而,这两个计算都是错误的。
根据本文所述的一些实施例,由定时电路驱动子帧的相移序列,该定时电路可以提供选通信号,该选通信号改变检测器阵列的选通窗的定时和/或持续时间。在该示例中,相移帧包括155m-165m和165m-175m的子范围,使得没有为第一子帧计算目标(对应于150m-160m的范围),并且为在161m的正确范围内的第二子帧(对应于160m-170m)计算目标(如图24B中所示)。
在一些实施例中,定时电路被配置成连续地交替或以其它方式调节子帧边界。在一些实施例中,定时电路被配置成在帧与帧之间改变子帧边界。在一些实施例中,定时电路被配置成如果(和/或仅当)在相邻子帧中识别出目标时改变子帧边界。
在一些实施例中,可以使用交替子帧边界的方法来将杂散噪声与由发射器阵列发射的期望光信号区分开。作为解释,如果背景或环境光水平完全均匀,则测得的TOA将是子帧的中心。如本文所述的交替边界的方法可以解决(但不限于)以下可能导致错误的情况。在一个示例中,目标可以位于子帧的中心,例如,与子帧所覆盖的范围的边界等距的距离(例如,在上面的示例第二子帧中的165m的距离),这可以解释为完全对称的噪声,因此LIDAR可能会错过对目标的检测。根据本文描述的实施例,在交替为相移帧后,可以识别两个目标(一个在155m-165m的相移子帧,另一个在165m-175m的相移子帧),并且接收检测器输出的处理单元可以推断目标的正确位置。类似地,噪声可能不是完全对称的,并且可能导致错误的目标读数,例如,指示目标存在于166m的距离处。在根据本文描述的实施例的相移帧期间,由于在155m-165m子帧中未检测到目标,因此可能需要更大的偏置才能在165m-175m子帧中产生166m的平均范围,第一读数可以被标记或以其它方式由处理单元识别为假。
如以上参考图1至图3所讨论,本文描述的一些实施例针对制造和操作可调光学滤波器(例如,可调滤波器212、312)的方法,其通带可以跟踪或以其它方式改变以对应于一个或多个LIDAR发射器(例如,阵列115、215)的发光带或波长范围,例如,响应于发射器的操作温度的变化(例如,如由温度监测器213所指示)。可变光学滤波器的调谐可以通过控制电路对一个或多个致动器元件(例如,344)的致动来实现。在一些实施例中,响应于一个或多个致动器元件的致动来控制光学滤波器的倾斜以提供期望的倾斜角可以影响或改变滤波器的光学透射特性。例如,滤波器可以被配置成随着倾斜角相对于法线入射角增大而透射较短波长的光。
在一些实施例中,如图25A和图25B中所示,可变或可调光学滤波器2512可以由诸如压电致动器的致动器控制。例如,在图25A中,光学窄带滤波器2512机械地耦合到一个或多个电极2507、2511。在图25A的示例中,将滤波器2512安装在刚性基板(例如,印刷电路板(PCB))2508、2510上,该刚性基板在滤波器2512的相对侧上包括电极2507、2511。可替代地,可以例如通过溅射,通过化学气相沉积或其它沉积方法将一个或多个电极2507、2511沉积在滤波器2512本身上。
在一些实施例中,基板2502、2504在其面对电极2507、2511的表面上包括至少一个电极2501、2501'、2506、2506'。阻抗测量电路2509耦合到两个电极2501'、2506',并且电压驱动电路2503耦合到阻抗测量电路2509。电压驱动电路2503向两个基板电极2501、2506提供射频(RF)电压信号。RF信号电容性地耦合到浮置PCB电极2507、2511,并且返回到基板电极2501'、2506'。阻抗测量电路2509测量两条路径上的阻抗(例如2501→2511和2511→2501',或2506→2507和2507→2506')。
在一些实施例中,安装的滤波器2512通过至少一个致动器2544附接到基板2502、2504。例如,如图25B中所示,安装的滤波器2512可以通过作为致动器2544的两个压电晶体附接到基板2502、2504,其可以由压电驱动器2511基于来自阻抗测量电路2509的阻抗测量来控制。
控制电路2505可以作为输入接收来自阻抗测量电路2509的两个测得的阻抗,来自发射器阵列(例如,来自温度监测器213)的温度测量以及来自校准表的数据(输入的阻抗为角度的函数)。控制电路2505生成电压以驱动电极对2501、2511/2506、2507之间的静电力或致动压电级2544,使得滤波器2512的透射频谱跟踪或对应于发射器的发射频谱。
在一些实施例中,可以执行校准过程以生成查找表。例如,在一些实施例中,当宽带准直源照射滤波器时,可以向压电元件2544施加一系列电压。滤波器另一侧的频谱仪可以测量透射频谱。阻抗测量电路2509可以测量滤波器2512两侧的阻抗。使用透射波长λ(θ)与入射角θ的关系的公式,其中λ0是法向入射的波长,而neff是有效折射率,
Figure BDA0002676292190000551
可以生成表格,包括作为每个倾斜角的函数的测量的阻抗。在一些实施例中,可以针对多个温度或温度范围进行该校准。在一些实施例中,可以将温度校正因子应用于阻抗测量,以便适合于校正或对应的倾斜角。在一些实施例中,校准表被存储在控制电路2505可访问的存储器中。
在一些实施例中,发射波长的温度依赖性可以是已知的,例如,每摄氏度0.08nm。在一些实施例中,在操作期间,温度传感器(例如,213)可以测量发射器阵列的温度,并且可以将该信息传输到控制电路2505或其它处理单元。处理单元可以确定与倾斜角相对应的一组阻抗,该倾斜角与所测量的发射器温度匹配。处理单元还可以从阻抗测量电路2509接收输入,并且可以确定到压电致动器2544中任一个的驱动电压应该增大还是减少。操作可以继续直到达到期望的阻抗值。
在一些实施例中,可以经由磁体而不是压电元件来实现致动,并且可以通过调节通过基板上的线圈的电流来控制倾斜力的大小。
在一些实施例中,可以经由充当电容器的一对电极之间的静电力来实现致动。例如但不失一般性的情况下,滤波器PCB 2508、2510上的电极2507、2511可以带负电。当应当增大滤波器2512的一侧上的一对电极之间的距离以实现期望的倾斜时,将负电荷施加到滤波器2512的该侧上的基板电极2501或2506,反之亦然。
在一些实施例中,可以机械地实现致动。例如,可以利用螺钉的旋转来推动或拉动滤波器2512的一侧,以实现期望的倾斜。
本文描述的其它实施例涉及通过温度调谐来调谐可变或可调光学滤波器(例如,可调滤波器212、312)的光学通带。特别地,代替改变光学带通滤波器的机械位置(或除了这个之外),可以改变滤波器的温度以影响或改变滤波器的光学透射特性。为了实现这样的系统,可以对光通带的温度系数进行表征和已知(例如,经由校准过程),使得可以根据发射器的波长来设置和改变可变光学滤波器的期望温度。光学滤波器通常对温度有一些(虽然很小)依赖性。这种依赖性可能很复杂,并且可能是由各种影响导致的,这些影响包括(但不限于)薄膜滤波器中材料的密度和折射率的变化,以及热膨胀导致的堆叠中的各层(例如,薄膜层)的物理厚度的变化。许多介电滤波器的温度系数可以小于发射器的温度系数(例如,对于VCSEL为0.06nm/度),使得经过温度调谐的光学带通滤波器可以基于介电堆叠。
根据本文描述的实施例的提供温度可调光学滤波器的另一种方法可以是并入与接收器/检测器上的带通滤波器相同的用于发射器的材料组(例如,与发射器VCSEL的输出耦合器分布布拉格反射器(DBR)的材料相同)。例如,在一些实施例中,温度可调光学滤波器可以是AlGaAs/GaAs DBR,其沉积在GaAs基板的顶部上(其中带隙足够大,以允许对期望的光子波长(例如940nm)呈透明)。因为在该温度调谐的带通滤波器中使用相同的材料和设计(例如,相对于发射器有源区域),所以光学滤波器的特性将以与发射器相同的方式随温度而变化。本文描述的一些实施例可以以无源方式热耦合两者(发射器和接收器/检测器带通滤波器),使得可变光学带通滤波器的温度可以保持等于发射器的温度(或相对于其恒定偏移),并且接收器/检测器上滤波器的通带将随发射器的波长而变化。
下面参考图22描述与相关和背景校正有关的其它实施例。特别地,相关器电路可以被配置成仅当在由相关器电路指定的预定相关时间或时间窗内发生一对雪崩事件时才生成相关信号。如图22中所示,本文实施例可用于区分两种类型的相关信号输出:由于响应于作为信号光子“s”(标记为α或“alpha(阿尔法)”)的输入雪崩中的至少一个引起的那些信号输出以及由于响应于仅由背景光子“b”(标记为“β”或“beta(贝塔)”)产生的输入雪崩事件对而生成的检测信号引起的那些信号输出。
通过检测背景光子可能会破坏所计算的平均到达时间。计算出的相关器输出(tmeas1)上的平均到达时间可以是随机变量(R.V.),其是其它随机变量的函数:
Figure BDA0002676292190000571
tmeas1中的每个变量可以是随机变量。确定tmeas1的分布可以通过以下方式执行:(1)以蒙特卡洛方式重复计算tmeas1;(2)将在等式1(RHS)右侧的四个R.V.中每一个的分布的解析表达式进行代数组合。以下两种替代方案都提供了RHS上变量分布的表达式。
为这些随机变量中的每一个建模分布的一种方法是使用高斯正态分布。这样做的基础是中心极限定理,该极限定理表明控制任何大量随机变量之和的分布是高斯分布。中心极限定理的条件通常可以在上面的随机变量中得以满足。每个随机变量的分布平均值可以是:
Figure BDA0002676292190000572
其中ttarget=实际飞行时间;tp=脉冲宽度;而pα、pβ和Nopp定义如下。上面的等式2提供了一半的参数来定义高斯分布(期望值)。由于可能很难确定这些高斯分布的标准偏差,因此下面的描述单独查看每个随机变量,以确定控制其分布的解析函数。
使用随机变量Nα和Nβ,它们是在与上述情况α或β相对应的一帧上进行积分后,相关器输出(在给定的选通门内)的总数,假设每个单独事件的概率为“IID”(独立且分布均匀),则某些数量的事件发生的概率分布可以是伯努利过程。可以类似地考虑相关器的“beta输出”的概率:在积分过程中,相关器可能有Nopp=#的机会针对发生的beta事件输出相关信号。换句话说,在相关器上一个时间窗的时间跨度内,可能存在两种概率:可以报告或不报告beta相关事件。相关器输出的概率数(即Nopp)应等于总积分时间除以时间窗持续时间:
Figure BDA0002676292190000581
如果通过对相关器输出的这种解释满足了伯努利过程的条件,则伯努利成功次数的概率分布公式可以用来描述相关器的beta输出总数:
Figure BDA0002676292190000582
其中每个机会产生beta输出的概率是由时间窗期间发生的两个(或更多,k>=2)事件的泊松概率给出的:
Figure BDA0002676292190000583
其中在时间窗期间到达的雪崩预期数量(由BG光子产生)是平均bg光子到达率b与相关器时间窗的持续时间twin的乘积:
Figure BDA0002676292190000584
在以上示例中解决了beta输出(即仅两个BG光子之间的重合)。对于Alpha输出,可以重新检查有多少机会,以及相关器输出的概率对于Alpha输出是如何不同的,Alpha输出考虑了信号和背景的组合。
一些实施例不仅可以只专注于alpha输出(即,仅s+s、s+b、b+s)并排除beta输出(b+b),还可以计算所有可能的相关器输出的概率分布,然后扣除仅与beta输出相关的概率。
在着眼于当信号起作用的事件的总数时,可能的事件数量可以被限制为仅在脉冲回波的返回之内的时间(即仅在脉冲宽度之内)。在一些示例中,可能仅考虑相关时间窗短于脉冲持续时间(twin<tp)的情况。在这种情况下,每个选通周期可能有(tp/twin)个这些机会(假设在选通中有一个脉冲)。因此,机会数量(对于alpha或beta输出)现在为:
Figure BDA0002676292190000591
同样,在这些机会中的一个机会期间,相关信号的概率遵循与上述相同的形式,
Figure BDA0002676292190000592
但是根据信号光子到达率越高,在该机会期间光子到达的预期数量可能就会越高:
Figure BDA0002676292190000593
仅从脉冲的时间段产生的(alpha或beta)相关器输出数量的概率分布可能是:
Figure BDA0002676292190000594
其中βp指仅在脉冲期间发生的beta相关,而不是在门控期间发生的任何其它时间。
可能只需要用于alpha输出数量的PDF(概率密度函数),并且可以通过仅针对在脉冲期间发生的beta事件的数量Nβp计算PDF来确定该表达式。
Figure BDA0002676292190000595
结合这两个函数可以得出:
Figure BDA0002676292190000596
随机变量Tβ可以指所有beta相关器输出之和,这是由相关器的相关时间窗内的背景光子的重合产生的。这些事件的分布可以在门的持续时间0…Tgate内均匀分布。均匀分布的随机变量的期望值tβ(i)为1/2Tgate。该分布可以是“欧文·霍尔”分布或均匀和分布。适当地替换,关于期望值(1/2Tgate)的可能值的分布的表达式可以是:
Figure BDA0002676292190000601
这种分布可以取决于随机变量tβ(i)对和Tβ有贡献的实例数Nβ。Nβ越大,分布越紧密,就越有可能接近期望值。
此外,Tβ和Nβ可以被“链接”。例如,如果将一特定的值用于Nβ(例如,113),则在生成Tβ的值时可以使用完全相同的数字(113)(即,不能重新生成Nβ用于生成Tβ的目的)。均匀分布随机变量的和与均值分布的参考:
欧文·霍尔(和):
Figure BDA0002676292190000602
贝茨(平均值):
Figure BDA0002676292190000603
对于随机变量Tα(假设twindow<<tpulse=tp),根据定义,由至少一个信号光子雪崩的重合引起的相关器事件发生在脉冲持续时间内:ttarget<tα(i)<ttarg+tpulse。对于(平方)脉冲的持续时间,可以假设该域内所有值的似然性是均匀的。因此,可以认为该问题与Tb或Tβ的问题相同,不同之处在于可能发生相关事件的时域不同:大致为Tgate→Tpulse。另外,预期的事件数量可能会有所不同,Nβ→Nα。进行这些替换后,可以得出仅在时间间隔(0…tpulse)+ttarget上定义的PDF:
Figure BDA0002676292190000604
该分布可以仅在脉冲持续时间内定义,否则可以为零。此外,Na越大,PDF越接近以ttarg+1/2tp为中心的delta函数。考虑到这些,可以考虑极限情况:
Figure BDA0002676292190000605
在根据本文所述的一些实施例实现背景校正时,表达式(等式1)描述了随机变量,其表示在信号和背景均存在的情况下相关器输出事件的平均到达时间的给定测量。此外,构成等式1右侧的随机变量已经使用用于概率分布的解析表达式进行描述。信号光子“s”的到达时间在上面的表达式中指定为ttarg,并作为域0…Tgate内的值进行测量。
已知等式1中每个其它数量,以重新获得ttarg的值,等式13中描述的极限可以代入到等式1以用于Ta(或Tα):
Figure BDA0002676292190000611
重新排列以隔离期望数量:
Figure BDA0002676292190000612
可以通过考虑误差传播模型来实现多个随机变量与其PDF的组合。等式1(或等式14)可用于在右侧导出tmeas1的PDF表示。同样,可以确定ttarg的实际结果的分布(在等式15中)。在一些实施例中,基于上述分析的BG校正可以如下实现:
1.为ttarg、ttarg,true选择一个“true”值。
2.选择参数值:
a.tp=脉冲持续时间;Tgate=门持续时间;
b.s=信号光子到达率(仅在脉冲期间)
c.b=背景光子到达率(在整个门上)
d.Tinteg=对该像素的积分时间。如果使用闪速LIDAR,则将其设置为帧持续时间
e.Ngates=必须共享总积分时间的选通门的数量。
3.计算PDF函数
4.针对给定的积分时间开始一次迭代(例如,蒙特卡洛分析)。注意:单次迭代可能具有确定的激光周期数和Nopp值等。此单次迭代可能会产生一组唯一的值:
a.Nα
b.Nβ
c.Tβ
d.以及tmeas1=等式14。
5.重复步骤4中的迭代可能会得出tmeas1的分布
6.对于第4步中用于计算tmeas1的每个迭代,可以计算出第二组背景值(以质数表示):
a.N’β
b.T’β
7.每次迭代的误差可以通过以下计算:
Figure BDA0002676292190000621
其中RHS上的tmeas1(蒙特卡洛)来自步骤4,而其它数量来自步骤6。
因此,本文描述的实施例提供了集成的固态系统,其可以在三个维度上以及在变化的阳光条件下识别和定位物体。在一些实施例中,该系统包括脉冲光源,具有单光子雪崩检测器(SPAD)阵列和片上数据缩减或最小化电路的检测器,以及控制和处理单元。驱动具有至少一个激光源的基板以发射一系列脉冲,这些脉冲照射宽而深的视场。对反射的光信号进行滤波以去除环境光并触发SPAD阵列中各个像素的雪崩。对于给定的方位角和高度,处理电路将生成的数据量减少到与目标和传感器之间的距离相对应的电压。处理单元生成三维点云。
本文所述的一些实施例可以应用于LIDAR系统,以用于例如ADAS(高级驾驶员辅助系统)、自动驾驶汽车、UAV(无人飞行器)、工业自动化、机器人技术、生物识别、建模、增强和虚拟化现实、3D映射和安全性。在一些实施例中,发射器阵列的发射器元件可以是垂直腔表面发射激光器(VCSEL)。在一些实施例中,发射器阵列可以包括其上串联和/或并联电连接的数千个分立的发射器元件的非本征基板,其中驱动器电路由集成在非本征基板上与发射器阵列的相应行和/或列相邻的驱动器晶体管实现,例如在2017年4月12日提交的题为“光检测和测距(激光)设备及其制造方法(LIGHT DETECTION AND RANGING(LIDAR)DEVICESAND METHODS OF FABRICATING THE SAME)”的美国临时专利申请第62/484,701号以及在2018年1月5日向美国专利商标局提交的题为“超小型垂直腔表面发射激光(VCSEL)和并入其的阵列(ULTRA-SMALL VERTICAL CAVITY SURFACE EMITTING LASER(VCSEL)AND ARRAYSINCORPORATING THE SAME)”的美国专利申请第62/613,985号中所描述,其公开内容以引用的方式并入本文中。
本文已经参考示出示例实施例的附图描述了各种实施例。然而,这些实施例可以以不同的形式具体实施,并且不应被解释为限于本文阐述的实施例。更确切而言,提供这些实施例使本公开透彻和完整,并将本发明构思充分传达给本领域技术人员。对本文描述的示例实施例以及一般原理和特征的各种修改将是显而易见的。在附图中,层和区域的尺寸和相对尺寸未按比例示出,并且在一些情况下为了清楚起见可能被放大。
主要根据特定实现方式中提供的特定方法和设备来描述示例实施例。然而,这些方法和设备可以在其它实现方式中有效地操作。诸如“示例实施例”、“一个实施例”和“另一实施例”的短语可以指相同或不同的实施例以及多个实施例。将关于具有某些组件的系统和/或设备来描述实施例。然而,系统和/或设备可以包括比所示的更少或更多的组件,并且可以在不脱离本发明构思的范围的情况下对组件的布置和类型进行变更。还将在具有某些步骤或操作的特定方法的背景下描述示例实施例。然而,该方法和设备可以针对具有不同和/或附加的步骤/操作以及以与示例实施例不矛盾的不同顺序的步骤/操作的其它方法有效地操作。因此,本发明构思不旨在限于所示出的实施例,而是应被赋予与本文所描述的原理和特征一致的最宽范围。
本文使用的术语仅出于描述特定实施例的目的,并不旨在限制示例实施例。如本文所使用,单数形式“一”、“一个”和“该”也旨在包括复数形式,除非上下文另外明确指出。还应理解,如本文所使用,术语“包括”是开放式的,并且包括一个或多个所述元件、步骤和/或功能,而不排除一个或多个未陈述的元件、步骤和/或功能。术语“和/或”包括一个或多个相关列出项目的任何和所有组合。
为了便于描述,在本文中可以使用空间相对术语,诸如“在...下方”,、“在...下面”、“底部”、“下方”、“以上”、“顶部”、“上方”等来描述一个元件或特征与另一元件或特征的关系,如附图中所示。将理解,除了附图中描绘的定向之外,空间相对术语还旨在涵盖设备在使用或操作中的不同定向。例如,如果附图中的设备被翻转,则被描述为在其它元件或特征“下面”或“下方”的元件将被定向为在其它元件或特征“以上”。因此,术语“在……下面”可以涵盖“在……上方”和“在……下方”两个方位。可以以其它方式定向设备(旋转90度或其它定向),并且可以相应地解释本文中使用的空间相对描述语。另外,还将理解,当一层被称为在两层“之间”时,它可以是两层之间的唯一层,或者也可以存在一个或多个中间层。
将理解,虽然本文可以使用术语第一、第二等来描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于将一个元件与另一个元件区分开。因此,在不脱离本发明构思的范围的情况下,下面讨论的第一元件可以被称为第二元件。
应当理解,当诸如层、区域或基板的元件被称为在另一元件“上”或在另一元件“上”延伸时,它可以直接在另一元件上或直接在另一元件上延伸,或者也可以存在中间元件。相反,当一个元件被称为“直接在另一个元件上”或“直接在另一个元件上延伸”时,则不存在中间元件。还将理解,当一个元件被称为“连接”或“耦合”到另一个元件时,它可以直接连接或耦合到另一个元件,或者可以存在中间元件。相反,当一个元件被称为“直接连接”或“直接耦合”到另一个元件时,则不存在中间元件。然而,在任何情况下,“在...上”或“直接在...上”都不应被解释为要求一层覆盖下层。
本文参考作为理想化实施例(和中间结构)的示意图的截面图和/或透视图描述实施例。这样,例如由于制造技术和/或公差导致的图示形状的变化是可以预期的。因此,实施例不应被解释为限于本文示出的区域的特定形状,而应包括例如由制造引起的形状偏差。例如,示出为矩形的植入区域将通常在其边缘处具有圆形或弯曲的特征和/或植入物浓度的梯度,而不是从植入区域到非植入区域的二元变化。同样,通过植入形成的埋入区域可以导致在埋入区域与通过其发生植入的表面之间的区域中的一些注入。因此,附图中示出的区域本质上是示意性的,并且它们的形状并不旨在示出设备的区域的实际形状,也不旨在限制本发明构思的范围。
除非另有定义,否则本文中使用的所有术语(包括技术术语和科学术语)具有与本发明构思所属领域的普通技术人员通常所理解的含义相同的含义。还将理解,诸如在常用字典中定义的那些术语应被解释为具有与其在相关技术背景下的含义一致的含义,并且除非本文明确定义,否则将不会理想化或过度形式化地解释。
结合以上描述和附图,本文已经公开了许多不同的实施例。将理解,逐字地描述和说明这些实施例的每个组合和子组合将是过度重复和混淆的。因此,本说明书(包括附图)应被解释为构成本文描述的实施例的所有组合和子组合以及制造和使用它们的方式和过程的完整书面描述,并且应支持对任何这种组合或子组合的权利要求。
在附图和说明书中,已经公开了本发明的实施例,并且虽然采用了特定术语,但是它们仅在一般性和描述性意义上使用,而不是出于限制下面的权利要求中定义的本发明的范围的目的。

Claims (31)

1.一种光检测和测距LIDAR装置,包括:
脉冲光源,被配置成发射光信号;
检测器阵列,包括单光子检测器,所述单光子检测器被配置成输出指示入射到所述单光子检测器上的多个光子的相应到达时间的相应检测信号,其中,所述光子包括具有与来自所述脉冲光源的光信号相对应的波长的信号光子、以及具有与至少一个其他光源相对应的波长的背景光子;以及
处理电路,被配置成接收从所述单光子检测器输出的所述相应检测信号,其中,所述处理电路包括以下项中的一个或多个:
再充电电路,被配置成响应于相应选通信号而针对所述光信号的脉冲之间的相应选通窗并以相对于所述脉冲不同的相应延迟来启用和停用所述单光子检测器的子集;
相关器电路,被配置成输出表示对所述光子中的一个或多个的检测的相应相关信号,所述一个或多个光子的相应到达时间相对于所述光子中的至少一个其他光子的到达时间在预定相关时间内;
时间处理电路,包括:计数器电路,被配置成响应于所述相应相关信号或检测信号而增加计数值;以及时间积分器电路,被配置成基于由所述相应相关信号或检测信号指示的所述相应到达时间来相对于参考定时信号生成积分时间值,
其中,所述积分时间值与所述计数值之比指示所述光子的平均到达时间。
2.根据权利要求1所述的LIDAR装置,还包括:
可调光学滤波器元件,布置成透射入射在所述检测器阵列上的光子,所述可调光学滤波器元件具有透射带,所述透射带被配置成基于从所述脉冲光源输出的所述光信号的频谱、所述脉冲光源的温度和/或所述可调光学滤波器元件的温度而变化。
3.根据权利要求1或2所述的LIDAR装置,其中,所述处理电路还包括:
第一通道,被配置成响应于所述检测信号的第一子集而提供输出值,所述第一子集指示包括所述信号光子和所述背景光子在内的多个光子的相应到达时间;
第二通道,被配置成响应于所述检测信号的第二子集而提供参考值,所述第二子集指示所述背景光子的相应到达时间;以及
控制电路,被配置成基于所述输出值与所述参考值之间的关系来计算对所述光子的平均到达时间的估计。
4.根据权利要求1所述的LIDAR装置,其中,所述处理电路与所述检测器阵列集成在同一芯片或封装中,可选地,其中,所述单光子检测器是单光子雪崩检测器SPAD。
5.根据权利要求4所述的LIDAR装置,还包括:
控制电路,被配置成生成所述相应选通信号和/或计算对所述光子的平均到达时间的估计,
可选地,其中,所述控制电路与所述检测器阵列集成在所述同一芯片或封装中。
6.一种光检测和测距LIDAR测量设备,包括:
检测器阵列,包括单光子检测器,所述单光子检测器被配置成输出指示入射到所述单光子检测器上的光子的相应到达时间的相应检测信号,其中,所述光子包括具有与从脉冲光源输出的光信号相对应的波长的信号光子;以及
处理电路,包括再充电电路,所述再充电电路被配置成响应于相应选通信号而针对所述光信号的脉冲之间的相应选通窗并以相对于所述脉冲不同的相应延迟来启用和停用所述单光子检测器的子集。
7.根据权利要求6所述的LIDAR测量设备,其中,所述相应选通窗的持续时间不同。
8.根据权利要求7所述的LIDAR测量设备,其中,所述光信号的脉冲之间的时间对应于距离范围,并且其中,所述相应选通窗的持续时间根据所述距离范围的子范围而不同,
可选地,其中,与相对于所述LIDAR测量设备的所述距离范围的较近子范围对应的所述相应选通窗的持续时间大于与相对于所述LIDAR测量设备的所述距离范围的较远子范围对应的所述相应选通窗的持续时间。
9.根据权利要求6至8中任一项所述的LIDAR测量设备,其中,所述再充电电路被配置成响应于所述相应选通信号,基于所述检测器阵列中的所述单光子检测器的子集的相对位置来启用和停用用于所述相应选通窗的所述单光子检测器的子集,
可选地,其中,所述相对位置对应于不同的方位角和高度。
10.根据权利要求6至8中任一项所述的LIDAR测量设备,其中,所述再充电电路被配置成响应于所述相应选通信号而动态地调节所述相应选通窗的持续时间,
可选地,以改变与所述相应选通窗对应的所述子范围的边界,或者基于由先前检测信号指示的目标的亮度。
11.一种光检测和测距LIDAR测量设备,包括:
检测器阵列,包括单光子检测器,所述单光子检测器被配置成输出指示入射到所述单光子检测器上的多个光子的相应到达时间的相应检测信号,其中,所述光子包括具有与从发射源输出的光信号相对应的波长的信号光子、以及具有与至少一个其他光源相对应的波长的背景光子;以及
处理电路,被配置成接收从所述单光子检测器输出的所述相应检测信号,其中,所述处理电路包括:
时间处理电路,包括:计数器电路,被配置成响应于所述相应检测信号而增加计数值;以及时间积分器电路,被配置成基于由所述相应检测信号指示的所述相应到达时间来相对于参考定时信号生成积分时间值,
其中,所述积分时间值与所述计数值之比指示所述光子的平均到达时间。
12.根据权利要求11所述的LIDAR测量设备,其中,所述处理电路还包括:
再充电电路,被配置成响应于相应选通信号而针对所述光信号的脉冲之间的相应选通窗并以相对于所述脉冲不同的相应延迟来启用和停用所述单光子检测器的子集。
13.根据权利要求11或12所述的LIDAR测量设备,其中,所述处理电路还包括:
相关器电路,被配置成:接收所述相应检测信号,并输出表示对所述光子中的一个或多个光子的检测的相应相关信号,所述一个或多个光子的相应到达时间相对于所述光子中的至少一个其他光子的相应到达时间在预定相关时间内,
其中,所述计数器电路被配置成响应于与所述相关信号相对应的所述相应检测信号的子集而增加所述计数值,并且所述时间积分器电路被配置成对由与所述相关信号相对应的所述相应检测信号的子集指示的所述相应到达时间进行积分。
14.根据权利要求11或12所述的LIDAR测量设备,还包括:
可调光学滤波器元件,布置成透射入射在所述检测器阵列上的光子,所述可调光学滤波器元件具有透射带,所述透射带被配置成基于透射的光信号的频谱和/或所述发射源的温度而变化。
15.根据权利要求11或12所述的LIDAR测量设备,其中,所述时间处理电路包括:第一通道,被配置成响应于所述检测信号的第一子集而提供所述计数值和所述积分时间值,所述第一子集指示包括所述信号光子和所述背景光子在内的多个光子的相应到达时间;以及第二通道,被配置成响应于所述检测信号的第二子集而提供参考计数值和参考积分时间值,所述第二子集指示所述背景光子的相应到达时间,并且所述时间处理电路还包括:
控制电路,被配置成基于所述积分时间值与所述参考积分时间值之间以及所述计数值与参考计数值之间的关系来计算对所述光子的平均到达时间的估计。
16.一种光检测和测距LIDAR测量设备,包括:
检测器阵列,包括单光子检测器,所述单光子检测器被配置成输出指示入射到所述单光子检测器上的多个光子的相应到达时间的相应检测信号;以及
处理电路,被配置成接收从所述单光子检测器输出的所述相应检测信号,其中,所述处理电路包括:
相关器电路,被配置成输出表示对所述光子中的一个或多个光子的检测的相应相关信号,所述一个或多个光子的相应到达时间相对于所述光子中的至少一个其他光子的到达时间在预定相关时间内。
17.根据权利要求16所述的LIDAR测量设备,其中,所述相关器电路被配置成基于所述检测信号来与存储的数据独立地输出指示所述相应到达时间的相关信号,可选地,不将所述相应到达时间存储在一个或多个直方图中。
18.根据权利要求16所述的LIDAR测量设备,其中,所述预定相关时间是相对于所述相应检测信号的前沿的,所述相应检测信号指示所述一个或多个光子的相应到达时间,
可选地,其中,所述预定相关时间对应于从脉冲光源输出的光信号的脉冲宽度。
19.根据权利要求16所述的LIDAR测量设备,其中,所述相关器电路包括:
相应缓冲元件,被配置成将所述相应检测信号延迟所述预定相关时间,并输出相应脉冲信号,所述相应脉冲信号具有与所述预定相关时间相对应的脉冲宽度;以及
逻辑电路,被配置成当所述相应脉冲信号中的至少两个脉冲信号的脉冲宽度在时间上重叠时输出所述相关信号。
20.根据权利要求16所述的LIDAR测量设备,其中,所述处理电路还包括:
时间处理电路,包括:计数器电路,被配置成响应于所述相关信号中的每一个而增加计数值;以及时间积分器电路,被配置成基于与所述相关信号相对应的所述相应到达时间来相对于参考定时信号生成积分时间值,
其中,所述积分时间值与所述计数值之比指示所述光子的估计的平均到达时间,
可选地,其中,所述处理电路被配置成:使所述相关器电路旁通,并且基于相对于预定阈值的所述相应检测信号,将所述相应检测信号提供给所述时间处理电路。
21.根据权利要求20所述的LIDAR测量设备,其中,所述时间处理电路包括:第一通道,被配置成响应于所述相关信号而提供所述计数值和所述积分时间值;以及第二通道,被配置成响应于与以下光子相对应的相应检测信号而提供参考计数值和参考积分时间值,其中所述光子的相应到达时间相对于彼此在所述预定相关时间之外,
可选地,其中,所述相关器电路被配置成:当与以下光子相对应的所述相应检测信号在阈值以下时,增大或减小所述预定相关时间,其中所述光子的相应到达时间相对于彼此在所述预定相关时间之外。
22.根据权利要求16至21中任一项所述的LIDAR测量设备,其中,所述处理电路还包括:
再充电电路,被配置成响应于相应选通信号而针对从脉冲光源输出的光信号的脉冲之间的相应选通窗并以相对于所述脉冲不同的相应延迟来启用和停用所述单光子检测器的子集。
23.根据权利要求16至21中任一项所述的LIDAR测量设备,还包括:
可调光学滤波器元件,布置成透射入射在所述检测器阵列上的光子,所述可调光学滤波器元件具有透射带,所述透射带被配置成基于从脉冲光源输出的光信号的频谱和/或所述脉冲光源的温度而变化。
24.一种光检测和测距LIDAR测量设备,包括:
可调光学滤波器元件,具有透射带,所述透射带被配置成基于从发射源输出的光信号的频谱、所述发射源的温度和/或所述可调光学滤波器元件的温度而变化;以及
检测器阵列,布置成接收透射通过所述可调光学滤波器元件的输出光,所述检测器阵列被配置成输出指示入射到所述检测器阵列上的多个光子的相应到达时间的相应检测信号。
25.根据权利要求24所述的LIDAR测量设备,还包括:
至少一个致动器,被配置成改变所述可调光学滤波器元件相对于参考角的倾斜角,其中,所述倾斜角能够在预定角度范围内连续变化,或者能够在多个离散的倾斜角之间变化,并且其中,所述透射带被配置成基于所述倾斜角而变化。
26.根据权利要求25所述的LIDAR测量设备,还包括:
阻抗测量电路,被配置成测量所述可调光学滤波器元件的相应区域处的相应阻抗;以及
驱动电路,耦合到所述阻抗测量电路,并被配置成控制所述至少一个致动器以基于所述相应阻抗来改变所述倾斜角。
27.根据权利要求24至26中任一项所述的LIDAR测量设备,其中,所述可调光学滤波器元件的温度被配置成随着所述发射源的温度而变化,
可选地,其中,所述可调光学滤波器元件热耦合到所述发射源,包括与所述发射源基本相似的基板,由具有与所述发射源的频谱温度系数基本相似的频谱温度系数的一种或多种材料组成,和/或包括在温度控制的壳体中。
28.一种光检测和测距LIDAR测量设备,包括:
检测器阵列,包括单光子检测器,所述单光子检测器被配置成输出指示入射到所述单光子检测器上的光子的相应到达时间的相应检测信号,其中,所述光子包括具有与发射源的光输出相对应的波长的信号光子以及具有与至少一个其他光源相对应的波长的背景光子;以及
处理电路,被配置成接收从所述单光子检测器输出的所述相应检测信号,其中,所述处理电路包括:
第一通道,被配置成响应于所述检测信号的第一子集而提供输出值,所述第一子集指示包括所述信号光子和所述背景光子在内的多个光子的相应到达时间;
第二通道,被配置成响应于所述检测信号的第二子集而提供参考值,所述第二子集指示所述背景光子而非所述信号光子的相应到达时间;并且所述处理电路还包括:
控制电路,被配置成基于所述输出值与所述参考值之间的关系来计算对所述光子的平均到达时间的估计。
29.根据权利要求28所述的LIDAR测量设备,其中,所述控制电路被配置成顺序地操作所述检测器阵列的单光子检测器中的一个或多个单光子检测器,以提供所述检测信号的第一子集和第二子集,
可选地,其中,所述控制电路被配置成顺序地操作所述一个或多个单光子检测器,以与所述发射源的停用相协调地提供所述第二子集。
30.根据权利要求28所述的LIDAR测量设备,其中,所述控制电路被配置成操作所述检测器阵列的一个或多个单光子检测器以与所述第一子集同时提供所述第二子集,其中,所述一个或多个单光子检测器包括光学滤波器,所述光学滤波器具有透射带,所述透射带被配置成防止所述信号光子通过到达所述一个或多个单光子检测器。
31.根据权利要求28至30中任一项所述的LIDAR测量设备,其中,所述处理电路还包括:
相关器电路,被配置成:接收所述相应检测信号并输出表示对所述光子中的一个或多个光子的检测的相应相关信号作为所述第一子集,所述一个或多个光子的相应到达时间相对于所述光子中的至少一个其他光子的到达时间在预定相关时间内,
可选地,其中,所述相关器电路被配置成:当所述检测信号的第二子集指示来自所述至少一个其他光源的光低于阈值时,增大或减小所述预定相关时间。
CN201980018556.4A 2018-02-13 2019-02-12 用于高分辨率远程闪速lidar的方法和系统 Pending CN111868556A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201862630079P 2018-02-13 2018-02-13
US62/630,079 2018-02-13
US201862637128P 2018-03-01 2018-03-01
US62/637,128 2018-03-01
US201862655000P 2018-04-09 2018-04-09
US62/655,000 2018-04-09
US201862684822P 2018-06-14 2018-06-14
US62/684,822 2018-06-14
PCT/US2019/017642 WO2020033001A2 (en) 2018-02-13 2019-02-12 Methods and systems for high-resolution long-range flash lidar

Publications (1)

Publication Number Publication Date
CN111868556A true CN111868556A (zh) 2020-10-30

Family

ID=67540482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980018556.4A Pending CN111868556A (zh) 2018-02-13 2019-02-12 用于高分辨率远程闪速lidar的方法和系统

Country Status (6)

Country Link
US (1) US11467286B2 (zh)
EP (1) EP3732501A4 (zh)
JP (1) JP2021513087A (zh)
KR (1) KR20200110451A (zh)
CN (1) CN111868556A (zh)
WO (1) WO2020033001A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112346076A (zh) * 2020-11-25 2021-02-09 Oppo(重庆)智能科技有限公司 电子装置的控制方法、电子装置及计算机可读存储介质
CN112596069A (zh) * 2020-12-04 2021-04-02 Oppo(重庆)智能科技有限公司 距离测量方法及系统、计算机可读介质和电子设备
CN112731350A (zh) * 2021-01-27 2021-04-30 复旦大学 一种激光雷达的扫描驱动电路及控制方法
CN113325429A (zh) * 2021-05-17 2021-08-31 武汉光迹融微科技有限公司 一种带有光子时间相关性检测功能的时间数字转换器
CN113375796A (zh) * 2021-05-11 2021-09-10 西安电子科技大学 一种面向线性apd阵列非均匀性的自适应校正电路
TWI757213B (zh) * 2021-07-14 2022-03-01 神煜電子股份有限公司 具線性電偏移校正的近接感測裝置
CN114924257A (zh) * 2022-04-18 2022-08-19 深圳阜时科技有限公司 接收模组、光电检测装置及电子设备
CN115954405A (zh) * 2023-03-14 2023-04-11 苏州识光芯科技术有限公司 一种单光子雪崩二极管器件、检测电路、激光雷达、制备方法、驱动方法及测距方法
CN113325429B (zh) * 2021-05-17 2024-05-17 武汉光迹融微科技有限公司 一种带有光子时间相关性检测功能的时间数字转换器

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178276B (zh) 2017-01-16 2020-12-29 苹果公司 在同一基板上组合不同散度的发光元件
WO2019110447A1 (en) * 2017-12-04 2019-06-13 Ams International Ag Distance time-of-flight modules
US11978754B2 (en) 2018-02-13 2024-05-07 Sense Photonics, Inc. High quantum efficiency Geiger-mode avalanche diodes including high sensitivity photon mixing structures and arrays thereof
US11796679B2 (en) * 2018-05-29 2023-10-24 Sony Semiconductor Solutions Corporation Time of flight sensor and method
US11598861B2 (en) * 2018-06-04 2023-03-07 Analog Devices, Inc. Optical distance detection
CN112424639A (zh) * 2018-06-22 2021-02-26 ams有限公司 使用飞行时间和伪随机比特序列测量到物体的距离
CN113169243A (zh) 2018-10-30 2021-07-23 感觉光子公司 包括高灵敏度光子混合结构的高量子效率盖革模式雪崩二极管及其阵列
US11754686B2 (en) 2018-11-19 2023-09-12 The University Court Of The University Of Edinburgh Digital pixel
US11598862B2 (en) 2018-11-20 2023-03-07 The University Court Of The University Of Edinburgh Methods and systems for spatially distributed strobing comprising a control circuit to provide a strobe signal to activate a first subset of the detector pixels of a detector array while leaving a second subset of the detector pixels inactive
EP3881098A4 (en) * 2019-01-04 2022-08-31 Sense Photonics, Inc. HIGH DYNAMIC RANGE DIRECT TIME OF FLIGHT SENSOR WITH EFFECTIVE SIGNAL DEPENDENT READ RATE
US11639990B2 (en) * 2019-01-18 2023-05-02 The University Court Of The University Of Edinburgh Digital pixels and operating methods thereof
US11733384B2 (en) 2019-02-20 2023-08-22 Samsung Electronics Co., Ltd. Single pass peak detection in LIDAR sensor data stream
US11322910B2 (en) 2019-02-21 2022-05-03 Apple Inc. Indium-phosphide VCSEL with dielectric DBR
US11644549B2 (en) * 2019-03-06 2023-05-09 The University Court Of The University Of Edinburgh Extended dynamic range and reduced power imaging for LIDAR detector arrays
JP7015802B2 (ja) * 2019-03-18 2022-02-03 株式会社東芝 電子装置および方法
US11418010B2 (en) 2019-04-01 2022-08-16 Apple Inc. VCSEL array with tight pitch and high efficiency
IT201900007225A1 (it) * 2019-05-24 2020-11-24 Fond Bruno Kessler Sensore di immagine a stato solido con fotomoltiplicatore distribuito ad elevata risoluzione spaziale
DE102019207741A1 (de) * 2019-05-27 2020-12-03 Infineon Technologies Ag Ein LIDAR-System, ein Verfahren für ein LIDAR-System und ein Empfänger für ein LIDAR-System mit ersten und zweiten Umwandlungselementen
US11448767B2 (en) * 2019-06-07 2022-09-20 Wisconsin Alumni Research Foundation Systems, methods, and media for asynchronous single photon depth imaging with improved precision in ambient light
US11374381B1 (en) 2019-06-10 2022-06-28 Apple Inc. Integrated laser module
CN110244311B (zh) 2019-06-28 2021-07-02 深圳市速腾聚创科技有限公司 激光雷达接收装置、激光雷达系统和激光测距方法
JP7414440B2 (ja) 2019-09-18 2024-01-16 ソニーセミコンダクタソリューションズ株式会社 測距センサ
US20220334253A1 (en) * 2019-10-01 2022-10-20 Sense Photonics, Inc. Strobe based configurable 3d field of view lidar system
US20210109225A1 (en) * 2019-10-10 2021-04-15 GM Global Technology Operations LLC High dynamic range lidar
DE102019216932A1 (de) * 2019-11-04 2021-05-06 Robert Bosch Gmbh Optischer Sensor
US11378663B2 (en) * 2019-11-26 2022-07-05 Waymo Llc Systems and methods for biasing light detectors
US11385098B2 (en) * 2020-01-31 2022-07-12 Board Of Trustees Of Michigan State University Method and system for characterizing power in a high-power laser
CN115066634A (zh) * 2020-02-10 2022-09-16 上海禾赛科技有限公司 用于Lidar系统的自适应发射器和接收器
CN113433563B (zh) * 2020-03-06 2022-06-28 宁波飞芯电子科技有限公司 测距方法及测距装置
US11644553B2 (en) 2020-04-17 2023-05-09 Samsung Electronics Co., Ltd. Detection of reflected light pulses in the presence of ambient light
US11555998B2 (en) * 2020-05-13 2023-01-17 Beijing Voyager Technology Co., Ltd. Capacitance sensing in a mirror assembly with a biased substrate
US11476372B1 (en) 2020-05-13 2022-10-18 Apple Inc. SPAD-based photon detectors with multi-phase sampling TDCs
EP4155763A1 (en) 2020-05-22 2023-03-29 SOS Lab Co., Ltd. Lidar device
WO2021235640A1 (ko) * 2020-05-22 2021-11-25 주식회사 에스오에스랩 라이다 장치
CN111856485B (zh) * 2020-06-12 2022-04-26 深圳奥锐达科技有限公司 一种距离测量系统及测量方法
CN113970757A (zh) * 2020-07-23 2022-01-25 华为技术有限公司 一种深度成像方法及深度成像系统
WO2022016448A1 (en) * 2020-07-23 2022-01-27 Huawei Technologies Co., Ltd. Indirect tof sensor, stacked sensor chip, and method for measuring distance to object using the same
US11555901B2 (en) * 2020-07-27 2023-01-17 Nxp B.V. Photon-based detection using single-channel time-to-digital conversion
US20220035010A1 (en) * 2020-08-03 2022-02-03 Sense Photonics, Inc. Methods and systems for power-efficient subsampled 3d imaging
GB202013569D0 (en) * 2020-08-28 2020-10-14 Ams Int Ag Dynamic range extension of spad-based devices
GB202013579D0 (en) * 2020-08-28 2020-10-14 Ams Int Ag Dynamic range extension of spad-based devices
GB202013584D0 (en) * 2020-08-28 2020-10-14 Ams Int Ag Dynamic range extension of spad-based devices
US20220091266A1 (en) * 2020-09-18 2022-03-24 Denso International America, Inc. Systems and methods for enhancing outputs of a lidar
CN116348782A (zh) * 2020-10-30 2023-06-27 索尼半导体解决方案公司 模式定序器电路和模式定序方法
WO2022102856A1 (ko) * 2020-11-12 2022-05-19 주식회사 에스오에스랩 라이다 장치
US20220163636A1 (en) * 2020-11-24 2022-05-26 Beijing Voyager Technology Co., Ltd. Active temperature control for reducing background noise in a lidar system
US20220169279A1 (en) * 2020-12-02 2022-06-02 Micron Technology, Inc. Sunlight processing for autonomous vehicle control
CN112859098B (zh) * 2021-01-08 2023-11-17 南京大学 一种光子数分辨测量增强单光子激光雷达系统及测距方法
CN113093154B (zh) * 2021-03-04 2023-08-01 武汉大学 一种单光子激光测高卫星地面有源探测器
CN113325386B (zh) * 2021-04-16 2022-06-28 上海宏景智驾信息科技有限公司 Spad激光雷达双随机内存实时统计tdc的方法
US20220373658A1 (en) * 2021-05-21 2022-11-24 Argo AI, LLC Gmapd data normalization using bernoulli trials
JPWO2022255187A1 (zh) * 2021-06-02 2022-12-08
EP4102249A1 (de) * 2021-06-11 2022-12-14 Pepperl+Fuchs SE Verfahren und optischer sensor zum messen eines abstands eines objekts
JPWO2023058591A1 (zh) * 2021-10-06 2023-04-13
US20230114731A1 (en) * 2021-10-07 2023-04-13 Denso Corporation Methods and system for generating virtual sensor data of a virtual single-photon avalanche diode (spad) lidar sensor of a virtual vehicle simulator
KR20230061032A (ko) * 2021-10-28 2023-05-08 삼성전자주식회사 이미지 센서, 영상 획득 장치 및 이를 포함하는 전자 장치
CN116148812A (zh) * 2021-11-23 2023-05-23 深圳市速腾聚创科技有限公司 提高雷达系统激光测距能力的方法、装置及存储介质
EP4235219A1 (en) * 2022-02-28 2023-08-30 Imasenic Advanced Imaging, S.L. Depth scanning image sensor
WO2024004538A1 (ja) * 2022-06-30 2024-01-04 株式会社小糸製作所 測定装置、照射装置、及び、バンドパスフィルタ
KR20240030503A (ko) 2022-08-31 2024-03-07 주식회사 솔리드뷰 거리 측정 장치
WO2024081594A1 (en) * 2022-10-11 2024-04-18 Motional Ad Llc Lidar system and method for adaptive detection and emission control
CN117289398B (zh) * 2023-11-24 2024-01-30 中国科学院长春光学精密机械与物理研究所 一种基于微环谐振器开关的焦平面开关阵列光束扫描系统

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8700049D0 (en) * 1987-01-03 1987-02-11 Plessey Co Plc Optical detection systems
US4712007A (en) * 1985-04-01 1987-12-08 S.I.E., Inc. Pulsed neutron logging method using cumulative count curves
US5267015A (en) * 1990-10-09 1993-11-30 Nikon Corporation Photometric apparatus
US5521696A (en) * 1989-03-27 1996-05-28 Laser Technology, Inc. Laser-based speed measuring device
DE19513823A1 (de) * 1995-04-12 1996-10-17 Kompa Guenter Prof Dr Ing Optisches Impulsradar
JP2002082015A (ja) * 2000-09-05 2002-03-22 Optowave Laboratory Inc 光パルス試験器および後方散乱測定方法
US20020093640A1 (en) * 2001-01-18 2002-07-18 Takamoto Watanabe Time measuring system and related distance measuring system
DE10153742A1 (de) * 2001-10-31 2003-05-15 Siemens Ag Verfahren und Vorrichtung zur Aufnahme eines dreidimensionalen Abstandsbildes
CN1460176A (zh) * 2001-03-30 2003-12-03 大塚电子株式会社 光子相关器
US20060175529A1 (en) * 2003-11-06 2006-08-10 Harmon Eric S Large-area detector
CN101163988A (zh) * 2005-04-22 2008-04-16 皇家飞利浦电子股份有限公司 用于tof-pet的数字硅光电倍增管
WO2010149593A1 (en) * 2009-06-22 2010-12-29 Toyota Motor Europe Nv/Sa Pulsed light optical rangefinder
US20120063789A1 (en) * 2010-09-13 2012-03-15 Kabushiki Kaisha Toshiba Photon detector
US20130112848A1 (en) * 2011-11-07 2013-05-09 The Johns Hopkins University Flexible Readout and Signal Processing in a Computational Sensor Array
JP2013092385A (ja) * 2011-10-24 2013-05-16 Panasonic Corp 距離計測装置
US20130300838A1 (en) * 2010-12-23 2013-11-14 Fastree3D S.A. Methods and devices for generating a representation of a 3d scene at very high speed
DE202013101039U1 (de) * 2013-03-11 2014-03-12 Sick Ag Optoelektronischer Sensor zur Entfernungsmessung
US20140226166A1 (en) * 2011-09-08 2014-08-14 Fastree 3D Bv Time-to-digital converter and method therefor
DE102014007466B3 (de) * 2014-05-19 2015-08-06 Elmos Semiconductor Aktiengesellschaft Vorrichtung und Verfahren zur Vebesserung des Cpk-Wertes bei der Fertigung von CMOS Fotodedektoren für die schnelle Lichtlaufzeitmessung
CN104914446A (zh) * 2015-06-19 2015-09-16 南京理工大学 基于光子计数的三维距离图像时域实时去噪方法
US20150364635A1 (en) * 2013-01-31 2015-12-17 Malvern Instruments Limited Single photon counting
US20160010986A1 (en) * 2014-07-14 2016-01-14 Omnivision Technologies, Inc. Pixel-level oversampling for a time of flight 3d image sensor with dual range measurements
US9246041B1 (en) * 2012-04-26 2016-01-26 Id Quantique Sa Apparatus and method for allowing avalanche photodiode based single-photon detectors to be driven by the same electrical circuit in gated and in free-running modes
CN105277964A (zh) * 2015-10-30 2016-01-27 中国船舶重工集团公司第七一九研究所 一种脉冲信号计数率的计算方法
WO2016063028A1 (en) * 2014-10-20 2016-04-28 Heriot-Watt University Viewing and tracking of target objects
US20170052065A1 (en) * 2015-08-20 2017-02-23 Apple Inc. SPAD array with gated histogram construction
WO2017050633A1 (en) * 2015-09-21 2017-03-30 Photonic Vision Limited Time of flight distance sensor
US20170131143A1 (en) * 2014-07-02 2017-05-11 Andreas G. Andreou Photodetection circuit and operating method thereof
WO2017082218A1 (ja) * 2015-11-09 2017-05-18 国立研究開発法人理化学研究所 光子検出装置、光子検出方法、蛍光相関分光測定装置、蛍光相互相関分光測定装置、動的光散乱測定装置、及び、蛍光顕微鏡
WO2017149526A2 (en) * 2016-03-04 2017-09-08 May Patents Ltd. A method and apparatus for cooperative usage of multiple distance meters
CN107643272A (zh) * 2017-08-08 2018-01-30 华东师范大学 一种基于少通道tcspc和多探测器的时间分辨荧光测量系统
EP3903676A1 (en) * 2020-04-30 2021-11-03 Facebook Technologies, LLC Multi-speckle diffuse correlation spectroscopy

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL114278A (en) 1995-06-22 2010-06-16 Microsoft Internat Holdings B Camera and method
US7979172B2 (en) * 1997-10-22 2011-07-12 Intelligent Technologies International, Inc. Autonomous vehicle travel control systems and methods
JP5617159B2 (ja) * 2008-10-07 2014-11-05 トヨタ自動車株式会社 画像取得装置及び方法
EP2290403A1 (en) * 2009-08-28 2011-03-02 Paul Scherrer Institut X-ray detector with integrating readout chip for single photon resolution
US20110260036A1 (en) * 2010-02-22 2011-10-27 Baraniuk Richard G Temporally- And Spatially-Resolved Single Photon Counting Using Compressive Sensing For Debug Of Integrated Circuits, Lidar And Other Applications
KR101380675B1 (ko) * 2012-08-13 2014-04-02 한밭대학교 산학협력단 구름의 유무 결정 장치 및 방법
CA3178340A1 (en) 2012-08-20 2014-02-27 Illumina, Inc. Method and system for fluorescence lifetime based sequencing
EP2708913A1 (de) * 2012-09-18 2014-03-19 Sick Ag Optoelektronischer Sensor und Verfahren zur Objekterfassung
US20140158870A1 (en) 2012-12-07 2014-06-12 Lasen, Inc. Variable-wavelength lidar system
JP6531108B2 (ja) * 2013-10-23 2019-06-12 ナノヴィジョン・テクノロジー・(ベイジン)・カンパニー・リミテッド 光子計数に基づく放射線結像システム、方法、及びそのデバイス
US9831630B2 (en) 2014-02-06 2017-11-28 GM Global Technology Operations LLC Low cost small size LiDAR for automotive
US9952323B2 (en) 2014-04-07 2018-04-24 Samsung Electronics Co., Ltd. High resolution, high frame rate, low power image sensor
US10036803B2 (en) * 2014-10-20 2018-07-31 Quanergy Systems, Inc. Three-dimensional lidar sensor based on two-dimensional scanning of one-dimensional optical emitter and method of using same
US9574936B2 (en) * 2015-03-24 2017-02-21 Sharper Shape Oy Planar imaging sensor having plural photo detector groups with different detection windows
WO2017143217A1 (en) * 2016-02-18 2017-08-24 Aeye, Inc. Adaptive ladar receiver
US9866816B2 (en) * 2016-03-03 2018-01-09 4D Intellectual Properties, Llc Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis
US20170353649A1 (en) * 2016-06-07 2017-12-07 Stmicroelectronics, Inc. Time of flight ranging for flash control in image capture devices
DE102016114432A1 (de) 2016-08-04 2018-02-08 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung eines Objekts
US20190310375A1 (en) * 2018-04-09 2019-10-10 Sense Photonics, Inc. Automatic gain control for lidar for autonomous vehicles
WO2020037197A1 (en) * 2018-08-16 2020-02-20 Sense Photonics, Inc. Integrated lidar image-sensor devices and systems and related methods of operation
CN113169243A (zh) * 2018-10-30 2021-07-23 感觉光子公司 包括高灵敏度光子混合结构的高量子效率盖革模式雪崩二极管及其阵列
US11754686B2 (en) * 2018-11-19 2023-09-12 The University Court Of The University Of Edinburgh Digital pixel
US11598862B2 (en) * 2018-11-20 2023-03-07 The University Court Of The University Of Edinburgh Methods and systems for spatially distributed strobing comprising a control circuit to provide a strobe signal to activate a first subset of the detector pixels of a detector array while leaving a second subset of the detector pixels inactive
US11006876B2 (en) * 2018-12-21 2021-05-18 Hi Llc Biofeedback for awareness and modulation of mental state using a non-invasive brain interface system and method
EP3881098A4 (en) * 2019-01-04 2022-08-31 Sense Photonics, Inc. HIGH DYNAMIC RANGE DIRECT TIME OF FLIGHT SENSOR WITH EFFECTIVE SIGNAL DEPENDENT READ RATE
US11644549B2 (en) * 2019-03-06 2023-05-09 The University Court Of The University Of Edinburgh Extended dynamic range and reduced power imaging for LIDAR detector arrays
CN115038986A (zh) * 2019-10-15 2022-09-09 感应光子公司 具有全帧利用的选通闪光激光雷达
WO2021154594A1 (en) * 2020-01-27 2021-08-05 Sense Photonics, Inc. Dram-based lidar pixel
US11096620B1 (en) * 2020-02-21 2021-08-24 Hi Llc Wearable module assemblies for an optical measurement system
US11187575B2 (en) * 2020-03-20 2021-11-30 Hi Llc High density optical measurement systems with minimal number of light sources

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712007A (en) * 1985-04-01 1987-12-08 S.I.E., Inc. Pulsed neutron logging method using cumulative count curves
GB8700049D0 (en) * 1987-01-03 1987-02-11 Plessey Co Plc Optical detection systems
US5521696A (en) * 1989-03-27 1996-05-28 Laser Technology, Inc. Laser-based speed measuring device
US5267015A (en) * 1990-10-09 1993-11-30 Nikon Corporation Photometric apparatus
DE19513823A1 (de) * 1995-04-12 1996-10-17 Kompa Guenter Prof Dr Ing Optisches Impulsradar
JP2002082015A (ja) * 2000-09-05 2002-03-22 Optowave Laboratory Inc 光パルス試験器および後方散乱測定方法
US20020093640A1 (en) * 2001-01-18 2002-07-18 Takamoto Watanabe Time measuring system and related distance measuring system
CN1460176A (zh) * 2001-03-30 2003-12-03 大塚电子株式会社 光子相关器
DE10153742A1 (de) * 2001-10-31 2003-05-15 Siemens Ag Verfahren und Vorrichtung zur Aufnahme eines dreidimensionalen Abstandsbildes
US20060175529A1 (en) * 2003-11-06 2006-08-10 Harmon Eric S Large-area detector
CN101163988A (zh) * 2005-04-22 2008-04-16 皇家飞利浦电子股份有限公司 用于tof-pet的数字硅光电倍增管
WO2010149593A1 (en) * 2009-06-22 2010-12-29 Toyota Motor Europe Nv/Sa Pulsed light optical rangefinder
US20120063789A1 (en) * 2010-09-13 2012-03-15 Kabushiki Kaisha Toshiba Photon detector
US20130300838A1 (en) * 2010-12-23 2013-11-14 Fastree3D S.A. Methods and devices for generating a representation of a 3d scene at very high speed
US20140226166A1 (en) * 2011-09-08 2014-08-14 Fastree 3D Bv Time-to-digital converter and method therefor
JP2013092385A (ja) * 2011-10-24 2013-05-16 Panasonic Corp 距離計測装置
US20130112848A1 (en) * 2011-11-07 2013-05-09 The Johns Hopkins University Flexible Readout and Signal Processing in a Computational Sensor Array
US9246041B1 (en) * 2012-04-26 2016-01-26 Id Quantique Sa Apparatus and method for allowing avalanche photodiode based single-photon detectors to be driven by the same electrical circuit in gated and in free-running modes
US20150364635A1 (en) * 2013-01-31 2015-12-17 Malvern Instruments Limited Single photon counting
DE202013101039U1 (de) * 2013-03-11 2014-03-12 Sick Ag Optoelektronischer Sensor zur Entfernungsmessung
DE102014007466B3 (de) * 2014-05-19 2015-08-06 Elmos Semiconductor Aktiengesellschaft Vorrichtung und Verfahren zur Vebesserung des Cpk-Wertes bei der Fertigung von CMOS Fotodedektoren für die schnelle Lichtlaufzeitmessung
US20170131143A1 (en) * 2014-07-02 2017-05-11 Andreas G. Andreou Photodetection circuit and operating method thereof
US20160010986A1 (en) * 2014-07-14 2016-01-14 Omnivision Technologies, Inc. Pixel-level oversampling for a time of flight 3d image sensor with dual range measurements
WO2016063028A1 (en) * 2014-10-20 2016-04-28 Heriot-Watt University Viewing and tracking of target objects
CN104914446A (zh) * 2015-06-19 2015-09-16 南京理工大学 基于光子计数的三维距离图像时域实时去噪方法
US20170052065A1 (en) * 2015-08-20 2017-02-23 Apple Inc. SPAD array with gated histogram construction
WO2017050633A1 (en) * 2015-09-21 2017-03-30 Photonic Vision Limited Time of flight distance sensor
CN105277964A (zh) * 2015-10-30 2016-01-27 中国船舶重工集团公司第七一九研究所 一种脉冲信号计数率的计算方法
WO2017082218A1 (ja) * 2015-11-09 2017-05-18 国立研究開発法人理化学研究所 光子検出装置、光子検出方法、蛍光相関分光測定装置、蛍光相互相関分光測定装置、動的光散乱測定装置、及び、蛍光顕微鏡
WO2017149526A2 (en) * 2016-03-04 2017-09-08 May Patents Ltd. A method and apparatus for cooperative usage of multiple distance meters
CN107643272A (zh) * 2017-08-08 2018-01-30 华东师范大学 一种基于少通道tcspc和多探测器的时间分辨荧光测量系统
EP3903676A1 (en) * 2020-04-30 2021-11-03 Facebook Technologies, LLC Multi-speckle diffuse correlation spectroscopy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
尹文也;石峰;何伟基;顾国华;陈钱;: "时间相关单光子计数型激光雷达距离判别法", 光子学报, no. 05, 15 May 2015 (2015-05-15) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112346076A (zh) * 2020-11-25 2021-02-09 Oppo(重庆)智能科技有限公司 电子装置的控制方法、电子装置及计算机可读存储介质
CN112596069A (zh) * 2020-12-04 2021-04-02 Oppo(重庆)智能科技有限公司 距离测量方法及系统、计算机可读介质和电子设备
CN112731350A (zh) * 2021-01-27 2021-04-30 复旦大学 一种激光雷达的扫描驱动电路及控制方法
CN113375796A (zh) * 2021-05-11 2021-09-10 西安电子科技大学 一种面向线性apd阵列非均匀性的自适应校正电路
CN113325429A (zh) * 2021-05-17 2021-08-31 武汉光迹融微科技有限公司 一种带有光子时间相关性检测功能的时间数字转换器
CN113325429B (zh) * 2021-05-17 2024-05-17 武汉光迹融微科技有限公司 一种带有光子时间相关性检测功能的时间数字转换器
TWI757213B (zh) * 2021-07-14 2022-03-01 神煜電子股份有限公司 具線性電偏移校正的近接感測裝置
CN114924257A (zh) * 2022-04-18 2022-08-19 深圳阜时科技有限公司 接收模组、光电检测装置及电子设备
CN114924257B (zh) * 2022-04-18 2023-07-04 深圳阜时科技有限公司 接收模组、光电检测装置及电子设备
CN115954405A (zh) * 2023-03-14 2023-04-11 苏州识光芯科技术有限公司 一种单光子雪崩二极管器件、检测电路、激光雷达、制备方法、驱动方法及测距方法

Also Published As

Publication number Publication date
US11467286B2 (en) 2022-10-11
JP2021513087A (ja) 2021-05-20
KR20200110451A (ko) 2020-09-23
EP3732501A4 (en) 2021-08-25
US20190250257A1 (en) 2019-08-15
WO2020033001A3 (en) 2020-05-28
WO2020033001A2 (en) 2020-02-13
EP3732501A2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
CN111868556A (zh) 用于高分辨率远程闪速lidar的方法和系统
US11852727B2 (en) Time-of-flight sensing using an addressable array of emitters
Seo et al. Direct TOF scanning LiDAR sensor with two-step multievent histogramming TDC and embedded interference filter
JP6483725B2 (ja) 光学的イベントを感知する方法とそのための光学的イベントセンサ、及び距離測定モバイル装置
US11340109B2 (en) Array of single-photon avalanche diode (SPAD) microcells and operating the same
US11506765B2 (en) Hybrid center of mass method (CMM) pixel
CN211014629U (zh) 一种激光雷达装置
US7947939B2 (en) Detection of optical radiation using a photodiode structure
CN113196105A (zh) 数字像素
CN113272684A (zh) 具有信号相关有效读出率的高动态范围直接飞行时间传感器
CN113260874A (zh) 用于空间分布式选通的方法和系统
US11604259B2 (en) Scanning LIDAR receiver with a silicon photomultiplier detector
Keränen et al. $256\times8 $ SPAD Array With 256 Column TDCs for a Line Profiling Laser Radar
US9497440B2 (en) Burst-mode time-of-flight imaging
Aull et al. Three-dimensional imaging with arrays of Geiger-mode avalanche photodiodes
IL269455B2 (en) Time of flight sensor
CN111103057A (zh) 具有使用基于电容器的比较器的阈值检测的光子感测
US20220099814A1 (en) Power-efficient direct time of flight lidar
Jahromi et al. A single chip laser radar receiver with a 9× 9 SPAD detector array and a 10-channel TDC
Ruokamo et al. An 80× 25 pixel CMOS single-photon range image sensor with a flexible on-chip time gating topology for solid state 3D scanning
EP3789793A1 (en) An optical proximity sensor and corresponding method of operation
US20230395741A1 (en) High Dynamic-Range Spad Devices
US20230243928A1 (en) Overlapping sub-ranges with power stepping
US20230408699A1 (en) Time-of-flight image sensor with quantom dot photodetectors
Ruokamo Time-gating technique for a single-photon detection-based solid-state time-of-flight 3D range imager

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination