CN111863300A - 一种purex流程污溶剂中保留钚的洗脱方法 - Google Patents

一种purex流程污溶剂中保留钚的洗脱方法 Download PDF

Info

Publication number
CN111863300A
CN111863300A CN202010522369.4A CN202010522369A CN111863300A CN 111863300 A CN111863300 A CN 111863300A CN 202010522369 A CN202010522369 A CN 202010522369A CN 111863300 A CN111863300 A CN 111863300A
Authority
CN
China
Prior art keywords
plutonium
elution method
solvent
dioxime
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010522369.4A
Other languages
English (en)
Other versions
CN111863300B (zh
Inventor
杨素亮
杨志红
朱礼洋
柳倩
田国新
周今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN202010522369.4A priority Critical patent/CN111863300B/zh
Publication of CN111863300A publication Critical patent/CN111863300A/zh
Application granted granted Critical
Publication of CN111863300B publication Critical patent/CN111863300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/04Obtaining plutonium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/007Recovery of isotopes from radioactive waste, e.g. fission products
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

本发明属于放射性废物处理技术领域,涉及一种PUREX流程污溶剂中保留钚的洗脱方法。所述的洗脱方法包括将含戊二酰偕亚胺二肟、四甲基氢氧化铵、NaOH的溶液加入所述的污溶剂中进行处理的步骤。利用本发明的PUREX流程污溶剂中保留钚的洗脱方法,能够更好的从PUREX流程污溶剂中洗脱回收钚。

Description

一种PUREX流程污溶剂中保留钚的洗脱方法
技术领域
本发明属于放射性废物处理技术领域,涉及一种PUREX流程污溶剂中保留钚的洗脱方法。
背景技术
PUREX(Plutonium Uranium Reduction Extraction)流程是当前唯一的商用乏燃料后处理流程。该流程的主要目的是将乏燃料中未燃烧的或新生成的燃料(通常为铀和钚)提取出来,同时分离一些有用核素(如用于钚-238生产的原料镎-237等)。该流程为多循环的溶剂萃取流程,水相为含金属离子的硝酸溶液,有机相萃取剂为磷酸三丁酯(TBP),稀释剂为化学惰性的氢化煤油、氢化四丙烯(TPH)或正十二烷等。
在该流程中,TBP-煤油-HNO3体系受到化学和射线的作用会发生化学和辐射降解。主要降解产物除TBP降解产物磷酸二丁酯(HDBP)、磷酸一丁酯(H2MBP)和H3PO4外,还有溶剂降解产物及次级降解产物,如硝化的有机酸酯(RONO2、RNO2)、有机磷酸酯及醇类等,其中部分降解产物会与钚形成非常稳定的配合物。如降解产物含量达到一定浓度,如HDBP的含量达到1×10-3mol/L以上,会导致钚反萃的效果明显变差(一方面降低钚的化学收率,另一方面会产生高钚保留污溶剂)。
当前,乏燃料后处理已从以生产堆乏燃料为主转向以核电站(动力堆)乏燃料为主。核电站(动力堆)乏燃料燃耗深度比生产堆高约百倍,有机溶剂降解和金属离子保留问题更为严重,这使得原本就很复杂的PUREX流程化学工艺在技术上要求更高,实施起来难度更大。因此,在科研、调试和运行过程中,不免会有意料之外的工况,使洗脱后有机相(即污溶剂)中钚的浓度不能降到工艺设计水平。由于钚含量、降解产物含量及总放射性含量均超过标准,这种高钚保留污溶剂既不能排放到废液处理单元,也不能回到流程复用。更为严重的是,随着放置时间增长,由于辐照、金属离子催化等作用,污溶剂中的降解产物会进一步增多,其中保留的钚会更为难以洗脱(目前洗脱采用较多的方法是用Na2CO3溶液、硝酸溶液或四价铀溶液进行钚洗脱处理,但效果往往并不理想)。
因此,亟需开发一种可高效从乏燃料PUREX流程污溶剂(尤其是长时间放置的高钚保留污溶剂)中洗脱保留钚的方法。
发明内容
本发明的目的是提供一种PUREX流程污溶剂中保留钚的洗脱方法,以能够更好的从PUREX流程污溶剂中洗脱回收钚。
为实现此目的,在基础的实施方案中,本发明提供一种PUREX流程污溶剂中保留钚的洗脱方法,所述的洗脱方法包括将含戊二酰偕亚胺二肟、四甲基氢氧化铵、NaOH的溶液加入所述的污溶剂中进行处理的步骤。
本发明首先将戊二酰偕亚胺二肟、四甲基氢氧化铵以及氢氧化钠配制为混合溶液,然后将该混合溶液与污溶剂混合,振荡或搅拌一定时间反应后,离心或静置后进行分相操作,这样钚大部分会被洗脱到水相中。
在进一步回收水相中钚元素时,加入浓硝酸,将水相转为酸性离心,清液流经阴离子交换柱吸附硝酸钚,然后采用稀硝酸-还原剂洗脱以回收钚。
本发明使用的戊二酰偕亚胺二肟的结构如下:
Figure BDA0002532597810000021
本发明使用的四甲基氢氧化铵的结构如下:
Figure BDA0002532597810000022
在一种优选的实施方案中,本发明提供一种PUREX流程污溶剂中保留钚的洗脱方法,其中所述的含戊二酰偕亚胺二肟、四甲基氢氧化铵、NaOH的溶液中戊二酰偕亚胺二肟的浓度为0.1-0.4mol/L,四甲基氢氧化铵的浓度为0.1-0.5mol/L,NaOH除用于中和污溶剂中的余酸外,剩余NaOH浓度为戊二酰偕亚胺二肟浓度的2-2.5倍。
在一种优选的实施方案中,本发明提供一种PUREX流程污溶剂中保留钚的洗脱方法,其中所述的含戊二酰偕亚胺二肟、四甲基氢氧化铵、NaOH的溶液与所述的污溶剂的体积比为1:1-1:10。
在一种优选的实施方案中,本发明提供一种PUREX流程污溶剂中保留钚的洗脱方法,其中所述的处理的温度为20-50℃,时间为5-20min。
在一种优选的实施方案中,本发明提供一种PUREX流程污溶剂中保留钚的洗脱方法,其中所述的洗脱方法还包括在处理步骤后进行分相操作,然后用硝酸调节水相中硝酸浓度为7.0-8.0mol/L,离心后用阴离子交换树脂吸附硝酸钚,并用0.3-0.4mol/L硝酸-还原剂溶液洗脱回收钚的步骤。
在一种更加优选的实施方案中,本发明提供一种PUREX流程污溶剂中保留钚的洗脱方法,其中所述的分相操作为离心分相或静置分相操作。
在一种更加优选的实施方案中,本发明提供一种PUREX流程污溶剂中保留钚的洗脱方法,其中所述的阴离子交换树脂选自D201(润华)、Amberlite IRA-900(沃凯)、DiaionPA 308(三菱化学)或Dowex 1(sigma aldrich)。
在一种更加优选的实施方案中,本发明提供一种PUREX流程污溶剂中保留钚的洗脱方法,其中所述的0.3-0.4mol/L硝酸-还原剂溶液中还原剂选自羟胺、羟肟酸、羟基脲中的一种或几种,还原剂总浓度为0.1-0.5mol/L。
本发明的有益效果在于,利用本发明的PUREX流程污溶剂中保留钚的洗脱方法,能够更好的从PUREX流程污溶剂中洗脱回收钚。
本发明对高钚保留污溶剂中的钚有很好的洗脱效果,单级洗脱操作可将污溶剂中大于99.9%的钚洗脱下来,如采用多级洗脱操作,钚洗脱率可大于99.99%,洗脱后污溶剂中钚含量可达1.0×10-5g/L以下,从而达到废物处理环节对有机相中钚含量的要求。因此,预期本发明的洗脱方法在乏燃料后处理厂高钚保留污溶剂的处理以及正常运行污溶剂的深度净化方面有较好的应用前景。
具体实施方式
以下通过实施例对本发明的具体实施方式作出进一步的说明。
实施例1:
以中国原子能科学研究院PUREX流程工艺研究某次热实验所得的2BW料液为处理对象。该料液为钚纯化循环所得的钚含量超标污溶剂,试验过程中分别采用稀酸溶液、四价铀溶液、N,N-二甲基羟胺溶液和碳酸钠溶液进行过钚洗脱操作。其主要化学组成为:30%(体积百分比)磷酸三丁酯(TBP)和70%(体积百分比)加氢煤油,其中钚含量为0.057g/L,硝酸含量为0.03mol/L,磷酸二丁酯酸(DBP)含量为0.90×10-3mol/L,磷酸一丁酯酸(MBP)含量为2.30×10-4mol/L,其它降解产物和金属离子含量未测定。在本次实验前,该料液放置时间已大于4年,外观为黄褐色的清亮溶液。洗脱操作过程如下:
(1)取10μL上述污溶剂进行液闪测量,计算后得到其中239+240Pu的含量为0.057g/L;
(2)取1.0mL上述污溶剂于15mL聚丙烯材质离心管(Cornering品牌)中,加入1mL0.4mol/L戊二酰偕亚胺二肟-0.5mol/L四甲基氢氧化铵–0.8mol/L氢氧化钠溶液,室温振荡5分钟;
(3)离心后取10μL有机相进行液闪测量,然后计算钚的洗脱率,得到钚的洗脱率为99.95%
Figure BDA0002532597810000041
(4)取走步骤(3)中水相后,在有机相中加入0.1ml 8mol/L HNO3,恒温振荡24h,离心分相,在有机相中加入1mL 0.4mol/L戊二酰偕亚胺二肟-0.5mol/L四甲基氢氧化铵–0.8mol/L氢氧化钠溶液,室温振荡5分钟,离心后取上层有机相0.1mL进行液闪测量,计算得到钚的总洗脱率>99.99%;
(5)合并步骤(3)与步骤(4)所得水相,加入1mL浓硝酸,调节酸度为7.5M,充分振荡混合10min后离心,取澄清溶液,50℃保温1.0h,冷却至室温后,将该溶液以自然流速通过已用50.0mL 7.5mol/L硝酸平衡的Dowex 1×4阴离子交换柱(粒径为50-100目,柱床为Φ5×50mm),冲洗柱后用0.3M硝酸-0.5M羟胺洗脱,收集洗脱液。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。上述实施例或实施方式只是对本发明的举例说明,本发明也可以以其它的特定方式或其它的特定形式实施,而不偏离本发明的要旨或本质特征。因此,描述的实施方式从任何方面来看均应视为说明性而非限定性的。本发明的范围应由附加的权利要求说明,任何与权利要求的意图和范围等效的变化也应包含在本发明的范围内。

Claims (8)

1.一种PUREX流程污溶剂中保留钚的洗脱方法,其特征在于:所述的洗脱方法包括将含戊二酰偕亚胺二肟、四甲基氢氧化铵、NaOH的溶液加入所述的污溶剂中进行处理的步骤。
2.根据权利要求1所述的洗脱方法,其特征在于:所述的含戊二酰偕亚胺二肟、四甲基氢氧化铵、NaOH的溶液中戊二酰偕亚胺二肟的浓度为0.1-0.4mol/L,四甲基氢氧化铵的浓度为0.1-0.5mol/L。
3.根据权利要求1所述的洗脱方法,其特征在于:所述的含戊二酰偕亚胺二肟、四甲基氢氧化铵、NaOH的溶液与所述的污溶剂的体积比为1:1-1:10。
4.根据权利要求1所述的洗脱方法,其特征在于:所述的处理的温度为20-50℃,时间为5-20min。
5.根据权利要求1所述的洗脱方法,其特征在于:所述的洗脱方法还包括在处理步骤后进行分相操作,然后用硝酸调节水相中硝酸浓度为7.0-8.0mol/L,离心后用阴离子交换树脂吸附硝酸钚,并用0.3-0.4mol/L硝酸-还原剂溶液洗脱回收钚的步骤。
6.根据权利要求5所述的洗脱方法,其特征在于:所述的分相操作为离心分相或静置分相操作。
7.根据权利要求5所述的洗脱方法,其特征在于:所述的阴离子交换树脂选自D201、Amberlite IRA-900、Diaion PA 308或Dowex 1。
8.根据权利要求5所述的洗脱方法,其特征在于:所述的0.3-0.4mol/L硝酸-还原剂溶液中还原剂选自羟胺、羟肟酸、羟基脲中的一种或几种,还原剂总浓度为0.1-0.5mol/L。
CN202010522369.4A 2020-06-10 2020-06-10 一种purex流程污溶剂中保留钚的洗脱方法 Active CN111863300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010522369.4A CN111863300B (zh) 2020-06-10 2020-06-10 一种purex流程污溶剂中保留钚的洗脱方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010522369.4A CN111863300B (zh) 2020-06-10 2020-06-10 一种purex流程污溶剂中保留钚的洗脱方法

Publications (2)

Publication Number Publication Date
CN111863300A true CN111863300A (zh) 2020-10-30
CN111863300B CN111863300B (zh) 2023-03-24

Family

ID=72987160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010522369.4A Active CN111863300B (zh) 2020-06-10 2020-06-10 一种purex流程污溶剂中保留钚的洗脱方法

Country Status (1)

Country Link
CN (1) CN111863300B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593081A (zh) * 2020-11-09 2021-04-02 中核四0四有限公司 一种含钚活性炭中钚的浸取方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949049A (en) * 1968-03-13 1976-04-06 Gesellschaft Fur Kernforschung M.B.H. Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes
JP3049320B1 (ja) * 1999-09-07 2000-06-05 科学技術庁原子力局長 プルトニウムの分離回収方法
EP2223305A1 (en) * 2008-08-18 2010-09-01 The Secretary, Department Of Atomic Energy, Govt. of India Wash solution suitable for use in continuous reprocessing of nuclear fuel and a system thereof
CN105734310A (zh) * 2016-03-02 2016-07-06 中国原子能科学研究院 一种以二肟亚酰胺为还原反萃剂的钚纯化浓缩方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949049A (en) * 1968-03-13 1976-04-06 Gesellschaft Fur Kernforschung M.B.H. Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes
JP3049320B1 (ja) * 1999-09-07 2000-06-05 科学技術庁原子力局長 プルトニウムの分離回収方法
EP2223305A1 (en) * 2008-08-18 2010-09-01 The Secretary, Department Of Atomic Energy, Govt. of India Wash solution suitable for use in continuous reprocessing of nuclear fuel and a system thereof
CN105734310A (zh) * 2016-03-02 2016-07-06 中国原子能科学研究院 一种以二肟亚酰胺为还原反萃剂的钚纯化浓缩方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAOHITO UETAKE,FUMIO KAWAMURA: "Alternative solvent wash process using Tetramethylammonium hydroxide solution as salt-free wash reagent", 《JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY》 *
XIAN LIANG; TIAN GUOXIN; BEAVERS CHRISTINE M; TEAT SIMON J; SHUH: "Glutarimidedioxime: A Complexing and Reducing Reagent for Plutonium Recovery from Spent Nuclear Fuel Reprocessing", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 *
梁俊福,康君波: "草酸体系中镎、钚的阴离子交换分离", 《原子能科学技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593081A (zh) * 2020-11-09 2021-04-02 中核四0四有限公司 一种含钚活性炭中钚的浸取方法

Also Published As

Publication number Publication date
CN111863300B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
Chen et al. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin
CN110144471B (zh) 从核燃料后处理废液中提取锝的方法
EP0216473A1 (en) Extraction of cesium and strontium from nuclear waste
CN111863301B (zh) 一种purex流程废有机相中保留钚的洗脱方法
GB1566200A (en) Process for recovering molybdenum-99 from a matrix containing neutron irradiated fissionable materials and fission products
CN111863300B (zh) 一种purex流程污溶剂中保留钚的洗脱方法
CN111863298B (zh) 一种purex流程污溶剂的深度净化方法
US4460547A (en) Separating actinide ions from aqueous, basic, carbonate containing solutions using mixed tertiary and quaternary amino anion exchange resins
Dileep et al. Distribution of technetium in PUREX process streams
CN111485125B (zh) 一种从乏燃料后处理废液中回收锝的方法
US2924506A (en) Solvent extraction process for plutonium
CN116246812A (zh) 一种中性络合剂洗脱后处理流程污溶剂中保留钚的方法
CN112851573B (zh) 一种从核燃料后处理废液中回收锝的方法
CN113470843A (zh) 生产放射性同位素的方法
CN109811126B (zh) 一种从冶炼厂酸性废水中回收铊和铀的方法
Cheng et al. Study on the separation of molybdenum-99 and recycling of uranium to water boiler reactor
CN111863303B (zh) 一种purex流程含钚团聚物的溶解与回收方法
Brown et al. The significance of certain complexes of ruthenium, niobium, zirconium and uranium in plant processes
GB1563967A (en) Process for recovering molybdenum-99 from a matrix containing neutron irradiated fissionable materials and fisson products
US3694370A (en) Process for palladium recovery
US2990242A (en) Extraction of hexavalent plutonium from aqueous acidic solutions with ethyl sulfide
US3000697A (en) Transuranic element, composition thereof, and methods for producing, separating and purifying same
US3208819A (en) Method for decontaminating nuclear fuels containing ruthenium complexes
Kochnov et al. Production of fission 99Mo at the VVR-Ts nuclear reactor in a closed-loop process with respect to U
US3443912A (en) Separation of uranium and thorium from plutonium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant