CN111850422A - 高氮无镍奥氏体不锈钢无缝薄壁管材及其制备方法 - Google Patents

高氮无镍奥氏体不锈钢无缝薄壁管材及其制备方法 Download PDF

Info

Publication number
CN111850422A
CN111850422A CN202010367220.3A CN202010367220A CN111850422A CN 111850422 A CN111850422 A CN 111850422A CN 202010367220 A CN202010367220 A CN 202010367220A CN 111850422 A CN111850422 A CN 111850422A
Authority
CN
China
Prior art keywords
equal
pipe
nitrogen
stainless steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010367220.3A
Other languages
English (en)
Other versions
CN111850422B (zh
Inventor
李文
白树功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Yi'an Medical Technology Beijing Co ltd
Original Assignee
Zhongke Yi'an Medical Technology Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Yi'an Medical Technology Beijing Co ltd filed Critical Zhongke Yi'an Medical Technology Beijing Co ltd
Priority to CN202010367220.3A priority Critical patent/CN111850422B/zh
Priority to EP20933365.7A priority patent/EP4144387A1/en
Priority to PCT/CN2020/125095 priority patent/WO2021218089A1/zh
Priority to US17/922,109 priority patent/US20230166010A1/en
Publication of CN111850422A publication Critical patent/CN111850422A/zh
Application granted granted Critical
Publication of CN111850422B publication Critical patent/CN111850422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明提供一种高氮无镍奥氏体不锈钢无缝薄壁管材及其制备方法。该管材的N含量为0.7~1.3重量%,在固溶状态和66%以下冷变形状态下为单一奥氏体组织,晶粒度≥7级,壁厚60~200μm,外径尺寸偏差±0.03mm,壁厚尺寸偏差±0.02mm,屈服强度≥600MPa,抗拉强度≥1000MPa,轴向延伸率≥50%,点蚀电位≥1000mV。该管材的制备方法是将氮含量<0.7重量%的高氮无镍奥氏体不锈钢管坯,通过冷变形和热处理相结合的方式,在管材成型和控制尺寸精度的同时实现表面层无锰挥发,并提高管材中的氮含量,在单道次内,实施梯度递减的2~3次冷变形,道次累计变形量≤50%,单次冷变形量≤30%,在每道次实施所述2~3次冷变形后实施热处理,所述热处理温度为1000~1150℃,处理时间为5~90分钟。

Description

高氮无镍奥氏体不锈钢无缝薄壁管材及其制备方法
技术领域
本发明涉及高氮钢管材领域,尤其涉及一种高氮无镍奥氏体不锈钢无缝薄壁管材及其制备方法。该制备方法可应用于铬-锰-氮类不锈钢薄壁管材制备。
背景技术
镍是一种人体必需的微量元素,但过多摄入,会引发过敏、导致畸形、癌变和其它病变。针对镍的危害,许多国家对日用和医用金属材料中的镍含量限制越来越严格。1994年颁布的欧洲议会标准(94/27/EC)规定,植入人体内的材料中,镍含量不应超过0.05%;而长期接触人体皮肤的合金(首饰、手表、戒指、手镯等),镍每周渗入皮肤的数量不应超过0.5μg/cm2。鉴于镍对人体的危害,研究开发医用低镍和无镍奥氏体不锈钢已经成为国际上医用不锈钢的一个主要发展趋势。
铬-锰-氮类高氮无镍奥氏体不锈钢,是通过增加材料中锰元素含量提高氮的固溶度,从而获得稳定的奥氏体不锈钢。具有高强高韧、变形抗力大、腐蚀性能与生物学性能好等特点。
发明内容
发明所要解决的问题
对于铬-锰-氮类高氮无镍奥氏体不锈钢而言,由于锰的饱和蒸气压很高,材料在进行高温热处理时,锰会从约束力较低的自由表面挥发,在表面形成贫锰层。图1示出了管材表面形成贫锰层的金相照片。在薄壁管材的制备过程中,随着热处理次数的增加,管材表面贫锰层不断变厚,当壁厚与贫锰层达到一定比例时,管材开裂。图2示出了管材表面严重贫锰发生开裂的金相照片。
另外,薄壁管材的制备中必然经历形变和热处理这两个过程。对于本发明所述材料和用途,由于材料变形抗力大,常规工艺制备的管材难以实现高尺寸精度且易产生裂纹。而且,普通热处理工艺会导致管材表面形成贫锰层,改变表面材料成分、表面不能形成稳定奥氏体且会导致变形过程中的开裂。产品难以满足常规行业的要求,尤其难以满足医疗器械等特殊行业对不锈钢管材高精度、高稳定性的要求。
鉴于现有技术所存在的上述问题,本发明的目的在于,提供一种高锰(Mn≥10重量%)高氮(N:0.7~1.3重量%)无镍(Ni≤0.05重量%)奥氏体不锈钢无缝薄壁管材,并且,提供该高氮无镍奥氏体不锈钢无缝薄壁管材的尺寸精度高、氮含量及锰含量可控的制备方法。
用于解决问题的方法
为了解决上述问题,本发明人对高氮无镍奥氏体不锈钢无缝薄壁管材的制备方法进行了深入研究,首次得到了以下的(1)~(3)的发现。
(1)针对材料高强高变形抗力的特点,采用单道次梯度递减多次冷变形可在控制管材尺寸精度的同时避免形成微裂纹。
(2)在热处理过程中,通过施加炉内保护气氛正压可实现管材表面层无锰挥发,同时通过施加氮分压可调控材料中的氮含量及管材综合性能。
(3)在管材热处理后机械清除热处理所带来的内外表面富氮硬质层后再进行下一道次冷变形,可以防止冷变形过程中管材开裂和外来物引入。
本发明是基于以上的发现而完成的,即,本发明的主旨如下。
本发明提供一种高氮无镍奥氏体不锈钢无缝薄壁管材,其特征在于,N含量为0.7~1.3重量%,在固溶状态和66%以下冷变形状态下均为单一奥氏体组织,具有7级以上(含7级)的晶粒度(依据GB/T6394-2002金属平均晶粒度测定方法测得),壁厚60~200μm,外径尺寸偏差±0.03mm,壁厚尺寸偏差±0.02mm,屈服强度≥600MPa,抗拉强度≥1000MPa,轴向延伸率≥50%,点蚀电位≥1000mV。
本发明的上述高氮无镍奥氏体不锈钢无缝薄壁管材优选以重量%计,具有如下成分组成:Cr:17~20%、Mn:14~18%、Mo:1~4%、N:0.7~1.3%、Si:≤0.75%、Cu:≤0.25%、C:≤0.03%、Si:≤0.01%、P:≤0.025%、Ni:≤0.05%,余量为Fe。
本发明的上述高氮无镍奥氏体不锈钢无缝薄壁管材适合用于医疗器械、食品药品器械、首饰、仪器仪表等领域,优选用于外科植入物。该外科植入物优选为人体管腔支架,更优选为血管支架。
本发明还提供了上述高氮无镍奥氏体不锈钢无缝薄壁管材的制备方法,其特征在于,将氮含量<0.7重量%的高氮无镍奥氏体不锈钢管坯,通过冷变形和热处理相结合的方式,在管材成型和控制尺寸精度的同时实现表面层无锰挥发,并提高管材中的氮含量。在该制备方法中,针对材料特性,在单道次内实施梯度递减的2~3次冷变形,道次累计变形量≤50%,单次冷变形量≤30%,由此控制管材尺寸精度。在每道次实施所述梯度递减的2~3次冷变形后实施热处理,所述热处理温度为1000~1150℃,处理时间视装炉量和管材壁厚而定,介于5~90分钟之间。
本发明的上述制备方法中,优选的是,在所述热处理过程中施加氩气和氮气混合气体的正压气氛,冷态总气压为0.12~0.30MPa,氮气分压为5%~30%。通过调节保护气氛的总气压和氮分压,能够在实现管材氮含量在0.7~1.3重量%范围内可控的同时,防止表面锰挥发。
本发明的上述制备方法中,优选的是,管材外径≥3.0mm时,每道次实施3次冷变形,每次变形量依次为该道次变形量的45~50%、30~35%和20~25%;管材外径<3.0mm时,每道次实施2次冷变形,每次变形量依次为该道次变形量的55~60%和40~45%。
本发明的上述制备方法中,优选的是,管材在热处理后机械清除内外表面富氮硬质层后再进行下一道次冷变形。由此,能够防止再次冷变形时管材开裂和外来物引入。
发明效果
根据本发明,可以提供高尺寸精度、高表面质量的综合性能优良的高锰高氮无镍奥氏体不锈钢薄壁管材。
附图说明
图1是管材表面形成贫锰层的金相照片。
图2是管材表面严重贫锰发生开裂的金相照片。
图3是示出实施例1的Φ3.0×0.11mm管材轴向剖面的金相组织照片。其为依据GB/T 6397-2017金属平均晶粒度测量方法,用Zeiss Observer Z1M金相显微镜拍摄的放大倍数为100倍的金相组织照片。
图4是示出实施例2的Φ1.8×0.09mm管材轴向剖面的金相组织照片。其为依据GB/T 6397-2017金属平均晶粒度测量方法,用Zeiss Observer Z1M金相显微镜拍摄的放大倍数为100倍的金相组织照片。
图5是示出实施例3的Φ4.5×0.19mm管材轴向剖面的金相组织照片。其为依据GB/T 6397-2017金属平均晶粒度测量方法,用Zeiss Observer Z1M金相显微镜拍摄的放大倍数为100倍的金相组织照片。
图6是实施例3中第七道次冷变形及热处理后得到的Φ12×1.1mm高氮无镍不锈钢固溶态管材(N:0.92重量%)及其经21%、43%、66%冷变形后的高氮无镍不锈钢管材的X射线衍射谱。
具体实施方式
以下,基于实施例对本发明进行详细说明。但实施例只不过是本发明的例示,不对本发明的范围进行限定。
实施例1
取氮含量为0.62重量%、锰含量为15.4重量%的高氮无镍不锈钢锻造态棒材,经深孔钻机加工制得管坯,管坯尺寸为Φ30×6mm。设计成品管材尺寸为Φ3.0×0.11mm。冷变形道次为17,每道次变形量为40~50%。每道次分三次冷变形,单次变形量依次为该道次变形量的45~50%、30~35%和20~25%。每道次冷变形后对管材表面进行超声清洗,去除表面润滑剂。干燥后装入可抽真空和加压的热处理炉胆内,炉胆材料为2520高温合金,内有三个测温热偶实时监测温度。炉胆内抽真空至10-1Pa后持续抽气10分钟以上,关闭抽真空系统阀门。向炉胆内充入氮气与氩气的混合气体,总气压为0.15MPa,氮气与氩气比例为1:9,即氮分压为10%。当加热炉温度达到1100℃时,将炉胆送入管式加热炉内,待炉胆温度达到1100℃并稳定时计时,保温时间根据装炉量和管材壁厚而定,范围为5~60分钟。在每道次热处理后,对管材进行内外表面机械磨抛处理。
成品管材检验结果如下:外径3.0±0.02mm,壁厚0.11±0.01mm,氮含量为0.81重量%,锰含量15.42重量%,屈服强度608MPa、抗拉强度1019MPa、轴向延伸率51%,点蚀电位1000mV。其中,屈服强度、抗拉强度以及延伸率的测定方法如下所述:依据GB/T 228.1-2010金属材料拉伸试验第1部分:室温试验方法,用Z150力学试验机对金属管材进行拉伸试验。管材轴向剖面金相组织如图3所示,为单一奥氏体组织,晶粒度≥7级。并且,依据“GB/T3505-2009、GB/T1031-2009、GB/T10610-2009”标准,用Alpha-Step IQ接触式表面形貌仪,对管材的内、外表面粗糙度进行测定,测定结果分别为Ra=0.046μm、Ra=0.039μm。
实施例2
取氮含量为0.62重量%、锰含量为15.4重量%的高氮无镍不锈钢锻造态棒材,经深孔钻机加工制得管坯,管坯尺寸为Φ30×6mm。设计成品管材尺寸为Φ1.8×0.09mm。冷变形道次为21,每道次变形量为40~50%。管材外径≥3.0mm时,每道次分三次冷变形,每次变形量依次为该道次变形量的45~50%、30~35%和20~25%;管材外径<3.0mm时,每道次分两次冷变形,每次变形量依次为该道次变形量的55~60%和40~45%。每道次冷变形后对管材表面进行超声清洗,去除表面润滑剂。干燥后装入可抽真空和加压的热处理炉胆内,炉胆材料为2520高温合金,内有三个测温热偶实时监测温度。炉胆内抽真空至10-1Pa后持续抽气10分钟以上,关闭抽真空系统阀门。向炉胆内充入氮气与氩气的混合气体,总气压为0.25MPa,氮气与氩气比例为1:4,即氮分压为20%。当加热炉温度到达1050℃时,将炉胆送入管式加热炉内,待炉胆温度达到1050℃并稳定时计时,保温时间根据装炉量和管材壁厚而定,范围为5~60分钟。在每道次热处理后,对管材进行内外表面机械磨抛处理。
成品管材检验结果如下:外径1.8±0.02mm,壁厚0.09±0.01mm,氮含量1.15重量%,锰含量15.45重量%,屈服强度781MPa、抗拉强度1215MPa、轴向延伸率56%,点蚀电位1090mV。其中,屈服强度、抗拉强度以及延伸率的测定方法与实施例1中相同。管材轴向剖面金相组织如图4所示,为单一奥氏体组织,晶粒度≥7级。并且,按照实施例1中所述的粗糙度测定方法测得的管材的内表面粗糙度Ra=0.07μm、外表面粗糙度Ra=0.05μm。
实施例3
取氮含量为0.62重量%、锰含量为15.4重量%的高氮无镍不锈钢锻造态棒材,经深孔钻机加工制得管坯,管坯尺寸为Φ30×6mm。设计成品管材尺寸为Φ4.5×0.19mm。冷变形道次为15,每道次变形量为40~50%。每道次分三次冷变形,每次变形量依次为该道次变形量的45~50%、30~35%和20~25%。每道次冷变形后对管材表面进行超声清洗,去除表面润滑剂。干燥后装入可抽真空和加压的热处理炉胆内,炉胆材料为2520高温合金,内有三个测温热偶实时监测温度。炉胆内抽真空至10-1Pa后持续抽气10分钟以上,关闭抽真空系统阀门。向炉胆内充入氮气与氩气的混合气体,总气压为0.30MPa,氮气与氩气比例为1:3,即氮分压为25%。当加热炉温度到达1100℃时,将炉胆送入管式加热炉内,待炉胆温度达到1100℃并稳定时计时,保温时间根据装炉量和管材壁厚而定,范围为15~60分钟。在每道次热处理后,对管材进行内外表面磨抛处理。
成品管材检验结果如下:外径4.5±0.02mm,壁厚0.19±0.01mm,氮含量为1.08重量%,锰含量15.41重量%,屈服强度711MPa、抗拉强度1112MPa、轴向延伸率55%,点蚀电位1040mV。其中,屈服强度、抗拉强度以及延伸率的测定方法与实施例1中相同。管材轴向剖面金相组织如图5所示,为单一奥氏体组织,晶粒度≥7级。并且,按照实施例1中所述的粗糙度测定方法测得的管材的内表面粗糙度Ra=0.058μm、外表面粗糙度Ra=0.053μm。
实验例1氮增加前后的力学性能变化
对于实施例1~3中使用的高氮无镍不锈钢锻造态棒材以及经高温渗氮进一步提高了材料内氮含量后得到的实施例1~3的成品管材进行了力学性能测定,屈服强度、抗拉强度以及延伸率的测定方法如下所述。依据GB/T 228.1-2010金属材料拉伸试验第1部分:室温试验方法,用Z150力学试验机对金属管材进行拉伸试验。
表1汇总示出了管材在不同氮含量下的力学性能,由该结果可知,随着氮含量的增加,材料的强度增加,塑性未见本质性变化。即,本发明实施例1~3得到了高尺寸精度、高表面质量的综合性能优良的高锰高氮无镍奥氏体不锈钢薄壁管材。
表1
Figure BDA0002477044880000081
实验例2冷变形前后的组织结构变化
对于实施例3中第七道次冷变形及热处理后得到的Φ12×1.1mm高氮无镍不锈钢固溶态管材(N:0.92重量%)及其经21%、43%、66%冷变形后的高氮无镍不锈钢管材进行了X射线衍射谱测定,具体测定方法是依据JY/T 009-1996转靶多晶体X射线衍射方法通则,用Rigaku(理学)D/max 2500PC型X射线衍射仪对金属管材试样进行测定。
图6示出了管材在固溶状态和上述三种冷变形状态下高氮无镍不锈钢(N:0.92重量%)的X射线衍射谱,图中(111)晶面、(200)晶面、(220)晶面的X射线衍射谱是标准的奥氏体X射线衍射谱,所有衍射峰均未发生偏移,表明该材料在固溶状态和小于66%的冷变形状态下,均保持稳定的奥氏体组织。即,本发明得到的高氮无镍奥氏体不锈钢薄壁管材,在小于66%的冷变形状态下使用,不会影响奥氏体组织的稳定性。

Claims (10)

1.一种高氮无镍奥氏体不锈钢无缝薄壁管材,其特征在于,
N含量为0.7~1.3重量%,在固溶状态和66%以下冷变形状态下为单一奥氏体组织,晶粒度≥7级,
所述管材的壁厚60~200μm,外径尺寸偏差±0.03mm,壁厚尺寸偏差±0.02mm,屈服强度≥600MPa,抗拉强度≥1000MPa,轴向延伸率≥50%,点蚀电位≥1000mV。
2.根据权利要求1所述的高氮无镍奥氏体不锈钢无缝薄壁管材,其特征在于,以重量%计,具有如下成分组成:Cr:17~20%、Mn:14~18%、Mo:1~4%、N:0.7~1.3%、Si:≤0.75%、Cu:≤0.25%、C:≤0.03%、Si:≤0.01%、P:≤0.025%、Ni:≤0.05%,余量为Fe。
3.根据权利要求1或2所述的高氮无镍奥氏体不锈钢无缝薄壁管材,其特征在于,该管材用于医疗器械、食品药品器械、首饰、仪器仪表领域。
4.根据权利要求3所述的高氮无镍奥氏体不锈钢无缝薄壁管材,其特征在于,该管材用于外科植入物。
5.根据权利要求4所述的高氮无镍奥氏体不锈钢无缝薄壁管材,其特征在于,所述外科植入物为人体管腔支架。
6.根据权利要求5所述的高氮无镍奥氏体不锈钢无缝薄壁管材,其特征在于,所述人体管腔支架为血管支架。
7.权利要求1~6中任一项所述的高氮无镍奥氏体不锈钢无缝薄壁管材的制备方法,其特征在于,将氮含量<0.7重量%的高氮无镍奥氏体不锈钢管坯,通过冷变形和热处理相结合的方式,在管材成型和控制尺寸精度的同时实现表面层无锰挥发,并提高管材中的氮含量,
在单道次内,实施梯度递减的2~3次冷变形,道次累计变形量≤50%,单次冷变形量≤30%,
在每道次实施所述梯度递减的2~3次冷变形后实施热处理,所述热处理温度为1000~1150℃,处理时间为5~90分钟。
8.根据权利要求7所述的制备方法,其特征在于,在所述热处理过程中施加氩气和氮气混合气体的正压气氛,冷态总气压为0.12~0.30MPa,氮气分压为5%~30%。
9.根据权利要求7或8所述的制备方法,其特征在于,管材外径≥3.0mm时,每道次实施3次冷变形,每次变形量依次为该道次变形量的45~50%、30~35%和20~25%;管材外径<3.0mm时,每道次实施2次冷变形,每次变形量依次为该道次变形量的55~60%和40~45%。
10.根据权利要求7或8所述的制备方法,其特征在于,管材在热处理后机械清除内外表面富氮硬质层后再进行下一道次冷变形。
CN202010367220.3A 2020-04-30 2020-04-30 高氮无镍奥氏体不锈钢无缝薄壁管材及其制备方法 Active CN111850422B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010367220.3A CN111850422B (zh) 2020-04-30 2020-04-30 高氮无镍奥氏体不锈钢无缝薄壁管材及其制备方法
EP20933365.7A EP4144387A1 (en) 2020-04-30 2020-10-30 High-nitrogen nickel-free austenitic stainless steel seamless thin-walled tube
PCT/CN2020/125095 WO2021218089A1 (zh) 2020-04-30 2020-10-30 高氮无镍奥氏体不锈钢无缝薄壁管材、
US17/922,109 US20230166010A1 (en) 2020-04-30 2020-10-30 High-nitrogen nickel-free austenitic stainless steel seamless thin-walled tube, a high-safety nickel-free metal drug-eluting vascular stent manufactured therefrom, and manufacturing methods therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010367220.3A CN111850422B (zh) 2020-04-30 2020-04-30 高氮无镍奥氏体不锈钢无缝薄壁管材及其制备方法

Publications (2)

Publication Number Publication Date
CN111850422A true CN111850422A (zh) 2020-10-30
CN111850422B CN111850422B (zh) 2022-01-11

Family

ID=72985003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010367220.3A Active CN111850422B (zh) 2020-04-30 2020-04-30 高氮无镍奥氏体不锈钢无缝薄壁管材及其制备方法

Country Status (1)

Country Link
CN (1) CN111850422B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113373289A (zh) * 2021-04-27 2021-09-10 常州市联谊特种不锈钢管有限公司 一种提高奥氏体不锈钢管弯曲性能的形变热处理方法
CN114182178A (zh) * 2021-12-09 2022-03-15 广州金南磁性材料有限公司 一种高氮无镍奥氏体不锈钢及其制备方法和应用
CN114934240A (zh) * 2022-04-25 2022-08-23 中国科学院金属研究所 一种超高强高耐蚀高氮奥氏体不锈钢的制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1519387A (zh) * 2003-01-20 2004-08-11 中国科学院金属研究所 一种医用植入奥氏体不锈钢材料
CN101623719A (zh) * 2009-08-10 2010-01-13 江苏银环精密钢管股份有限公司 核电热交换器用不锈钢传热管的制造方法
CN101633999A (zh) * 2009-05-26 2010-01-27 山西太钢不锈钢股份有限公司 一种奥氏体不锈钢及其钢管和钢管的制造方法
EP2220261A1 (en) * 2007-11-29 2010-08-25 ATI Properties, Inc. Lean austenitic stainless steel
WO2011096592A1 (ja) * 2010-02-04 2011-08-11 小田産業株式会社 高強度・高延性で優れた耐食性・耐熱性を有する高窒素ステンレス鋼管及びそれらの製造方法
CN102439188A (zh) * 2009-04-28 2012-05-02 现代制铁株式会社 具有高强度和高延展性的高锰氮钢板及其制造方法
CN102560268A (zh) * 2010-12-08 2012-07-11 中国科学院金属研究所 一种超低碳高强度不锈钢细径导管及其制备方法
EP2662462A1 (en) * 2012-05-07 2013-11-13 Valls Besitz GmbH Low temperature hardenable steels with excellent machinability
CN104152804A (zh) * 2014-08-01 2014-11-19 山西太钢不锈钢股份有限公司 一种无镍亚稳奥氏体不锈钢材料及其制备方法
CN104862609A (zh) * 2015-03-13 2015-08-26 东北大学 一种分阶段控制压力的加压感应冶炼高氮不锈钢的方法
KR101550738B1 (ko) * 2015-04-29 2015-09-08 성기천 연성이 우수한 스테인리스강 및 이를 이용한 냉매 배관용 스테인리스 파이프
CN105177257A (zh) * 2015-09-29 2015-12-23 东北大学 一种高氮无镍奥氏体不锈钢抗晶间腐蚀处理工艺
DE102015102255A1 (de) * 2015-02-17 2016-08-18 Sandvik Materials Technology Deutschland Gmbh Verfahren zum Herstellen eines Strangs aus Edelstahl sowie Strang aus Edelstahl
JP2017039998A (ja) * 2015-08-18 2017-02-23 Jfeスチール株式会社 油井用継目無ステンレス鋼管およびその製造方法
CN106555042A (zh) * 2015-09-24 2017-04-05 宝山钢铁股份有限公司 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法
EP3360980A1 (en) * 2017-02-09 2018-08-15 TerraPower LLC Iron-based composition for fuel element
CN110241380A (zh) * 2019-06-02 2019-09-17 邢晓英 一种医用无镍不锈钢的处理工艺
CN110284076A (zh) * 2019-06-24 2019-09-27 中科益安医疗科技(北京)股份有限公司 一种冠脉支架植入用医用不锈钢材料及其制备方法和应用

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1519387A (zh) * 2003-01-20 2004-08-11 中国科学院金属研究所 一种医用植入奥氏体不锈钢材料
EP2220261A1 (en) * 2007-11-29 2010-08-25 ATI Properties, Inc. Lean austenitic stainless steel
CN102439188A (zh) * 2009-04-28 2012-05-02 现代制铁株式会社 具有高强度和高延展性的高锰氮钢板及其制造方法
CN101633999A (zh) * 2009-05-26 2010-01-27 山西太钢不锈钢股份有限公司 一种奥氏体不锈钢及其钢管和钢管的制造方法
CN101623719A (zh) * 2009-08-10 2010-01-13 江苏银环精密钢管股份有限公司 核电热交换器用不锈钢传热管的制造方法
WO2011096592A1 (ja) * 2010-02-04 2011-08-11 小田産業株式会社 高強度・高延性で優れた耐食性・耐熱性を有する高窒素ステンレス鋼管及びそれらの製造方法
CN102560268A (zh) * 2010-12-08 2012-07-11 中国科学院金属研究所 一种超低碳高强度不锈钢细径导管及其制备方法
EP2662462A1 (en) * 2012-05-07 2013-11-13 Valls Besitz GmbH Low temperature hardenable steels with excellent machinability
CN104152804A (zh) * 2014-08-01 2014-11-19 山西太钢不锈钢股份有限公司 一种无镍亚稳奥氏体不锈钢材料及其制备方法
DE102015102255A1 (de) * 2015-02-17 2016-08-18 Sandvik Materials Technology Deutschland Gmbh Verfahren zum Herstellen eines Strangs aus Edelstahl sowie Strang aus Edelstahl
US10501820B2 (en) * 2015-02-17 2019-12-10 Sandvik Materials Technology Deutschland Gmbh Method for producing a strand from stainless steel and strand made of stainless steel
CN104862609A (zh) * 2015-03-13 2015-08-26 东北大学 一种分阶段控制压力的加压感应冶炼高氮不锈钢的方法
KR101550738B1 (ko) * 2015-04-29 2015-09-08 성기천 연성이 우수한 스테인리스강 및 이를 이용한 냉매 배관용 스테인리스 파이프
JP2017039998A (ja) * 2015-08-18 2017-02-23 Jfeスチール株式会社 油井用継目無ステンレス鋼管およびその製造方法
CN106555042A (zh) * 2015-09-24 2017-04-05 宝山钢铁股份有限公司 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法
CN105177257A (zh) * 2015-09-29 2015-12-23 东北大学 一种高氮无镍奥氏体不锈钢抗晶间腐蚀处理工艺
EP3360980A1 (en) * 2017-02-09 2018-08-15 TerraPower LLC Iron-based composition for fuel element
CN110241380A (zh) * 2019-06-02 2019-09-17 邢晓英 一种医用无镍不锈钢的处理工艺
CN110284076A (zh) * 2019-06-24 2019-09-27 中科益安医疗科技(北京)股份有限公司 一种冠脉支架植入用医用不锈钢材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
任伊宾: "医用高氮无镍不锈钢的研究及应用现状", 《新材料产业》 *
王成焘等: "《骨科植入物工程学 上》", 31 October 2006, 上海交通大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113373289A (zh) * 2021-04-27 2021-09-10 常州市联谊特种不锈钢管有限公司 一种提高奥氏体不锈钢管弯曲性能的形变热处理方法
CN114182178A (zh) * 2021-12-09 2022-03-15 广州金南磁性材料有限公司 一种高氮无镍奥氏体不锈钢及其制备方法和应用
CN114182178B (zh) * 2021-12-09 2022-10-18 广州金南磁性材料有限公司 一种高氮无镍奥氏体不锈钢的制备方法和应用
CN114934240A (zh) * 2022-04-25 2022-08-23 中国科学院金属研究所 一种超高强高耐蚀高氮奥氏体不锈钢的制备方法
CN114934240B (zh) * 2022-04-25 2023-10-10 中国科学院金属研究所 一种超高强高耐蚀高氮奥氏体不锈钢的制备方法

Also Published As

Publication number Publication date
CN111850422B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN111850422B (zh) 高氮无镍奥氏体不锈钢无缝薄壁管材及其制备方法
AU2015248303C9 (en) Austenitic stainless steel and method for producing the same
JP4379804B2 (ja) 高窒素オーステナイト系ステンレス鋼
WO2019035329A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
RU2552805C2 (ru) Труба из аустенитного сплава и способ ее получения
US11389308B2 (en) Lumen stent and preform thereof, and methods for preparing lumen stent and preform thereof
CN111621697B (zh) 铁基可吸收植入医疗器械与预制管及其制备方法
JP5846555B2 (ja) ニッケルフリー高窒素ステンレス製材料の圧延・抽伸加工方法、ニッケルフリー高窒素ステンレス製シームレス細管及びその製造方法
WO2020241176A1 (ja) NiTi系合金材料、NiTi系合金材料の製造方法およびNiTi系合金材料からなる線材または管材
WO2019131954A1 (ja) オーステナイト系耐熱合金
EP3480331A1 (en) Ferritic heat-resistant steel and ferritic heat transfer member
EP4108797A1 (en) High-strength stainless steel seamless pipe for oil well, and method for producing same
JPS62149859A (ja) β型チタン合金線材の製造方法
US11969368B2 (en) Lumen stent and preform thereof, and methods for preparing the lumen stent and preform thereof
KR102502785B1 (ko) 시계 무브먼트를 위한 밸런스 스프링 및 그 제조 방법
CN106062227B (zh) 表面硬化钢及由其获得的渗碳部件
CN110777247A (zh) 一种ns1403铁镍基合金耐蚀无缝管及其制备工艺
CN110743931B (zh) 一种高强度ns1402镍基合金无缝管及其制备工艺
JP2006291261A (ja) 高強度細線及びその製造方法
JP7438252B2 (ja) 計時器用ムーブメントのためのバランスばね
WO2023027012A1 (ja) コバルトクロム合金部材及びその製造方法、並びにこれを用いたデバイス
CN110573631A (zh) 装配组件
CN118180153A (zh) 一种镍基合金uns n06625无缝钢管的制造方法
Ozerets The effect of thermoplastic processing on the structure and mechanical properties of metastable austenitic steel
JPH05305458A (ja) クラッド管継手の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant