CN111840640A - 可降解复合纳米纤维三维材料及其在组织修复中的用途 - Google Patents

可降解复合纳米纤维三维材料及其在组织修复中的用途 Download PDF

Info

Publication number
CN111840640A
CN111840640A CN202010573729.3A CN202010573729A CN111840640A CN 111840640 A CN111840640 A CN 111840640A CN 202010573729 A CN202010573729 A CN 202010573729A CN 111840640 A CN111840640 A CN 111840640A
Authority
CN
China
Prior art keywords
dimensional material
composite nanofiber
nanofiber
solution
dopamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010573729.3A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Juetuo Technology Co ltd
Original Assignee
Jiaxing Juetuo Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Juetuo Technology Co ltd filed Critical Jiaxing Juetuo Technology Co ltd
Priority to CN202010573729.3A priority Critical patent/CN111840640A/zh
Publication of CN111840640A publication Critical patent/CN111840640A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了可降解复合纳米纤维三维材料及其在组织修复中的用途,可降解材料技术领域,由多巴胺接枝物制备复合纳米纤维三维材料,其中多巴胺接枝物采用京尼平苷酸对多巴胺进行接枝。本发明由于采用了多巴胺接枝物制备复合纳米纤维三维材料,所以在复合纳米纤维三维材料表面细胞DNA的总量至少提高了42.86%,复合纳米纤维三维材料的溶失率最高只有11%。本发明是一种可以用于组织修复材料中稳定、多孔、生物相容性好、溶失率低的的复合纳米纤维三维材料。

Description

可降解复合纳米纤维三维材料及其在组织修复中的用途
技术领域
本发明属于可降解材料技术领域,具体涉及一种可降解复合纳米纤维三维材料及其在组织修复中的用途。
背景技术
组织、器官的丧失以及功能障碍是人类健康所面临的主要危害之一,也是人类疾病和死亡的最主要原因。多年来,人们为提高器官移植技术做出了巨大的努力,但器官和组织短缺仍然是最主要的问题。这也就促进了更多可用于替代天然器官和组织的人工修复材料的研究工作。组织工程(Tissue Engineering)的概念由美国国家科学基金会于1987年最早正式提出,其定义是用生命科学和工程学的原理及技术,构建、培育活组织,研制生物替代物,以修复或重建组织器官的结构,维持或改善组织器官功能的一门新兴的边缘学科。其基本方法是将体外培养的高浓度组织细胞(即种子细胞),种植于一种生物相容性良好,具有三维空间结构,并可逐渐在生物体内降解吸收的生物材料上,使细胞能按预制形态的三维支架生长,以达到修复缺损和重建功能的目的。发展至今,人类建造的工程化组织已包括有:结构类,如人造皮肤、硬骨、软骨等;代谢类,如人造肝、脾、肾等;细胞类,即离体培养的体细胞等。
细胞外基质(extracellular matrix,ECM)是由细胞分泌至细胞外的大分子(主要为胶原蛋白及多糖类物质)所构成的错综复杂的网络,起到支持并连接组织结构、调节组织发生和细胞生理活动的作用。不同组织的细胞外基质,其与细胞表面接触的结构具有多样性。例如:角膜的细胞外基质为透明柔软的片层,肌腱的则坚韧如绳索。有研究表明,体内的细胞外基质可通过细胞传导系统影响组织细胞的形状、代谢、迁移、增殖和分化。因此可以认为同类型的不同细胞在作为生物网络支架的细胞外基质上黏附、增殖、分化,需要其特定的表面形貌。这种材料的表面形貌对细胞的定植和形态有着重要的影响。同理,基于细胞外基质的原理而制作的组织工程修复材料也应该具备同样的特性。
目前,合成高分子则存在亲水性差,不利于细胞粘附的问题。寻找新的适宜的纳米纤维材料对推动神经组织工程的发展和应用非常重要。
发明内容
本发明的目的在于提供一种可以用于组织修复材料中稳定、多孔、生物相容性好、溶失率低的复合纳米纤维三维材料。
本发明为实现上述目的所采取的技术方案为:
一种可降解复合纳米纤维三维材料的制备方法,包括:将丝素蛋白纳米纤维溶液、京尼平苷酸接枝多巴胺、明胶混合后,冷冻3-12h,真空干燥得到复合纳米纤维三维材料。京尼平苷酸中含有多元环结构,同多巴胺接枝后,拥有强的亲附性能,并且因其分子中的多元羟基使复合纳米纤维三维材料多种组分之间相互作用力强,紧紧结合在一起,对血液等含水组分具有高的亲和性,但因材料间的相互作用,并不会大量溶解导致材料解体,只会在生物酶的作用下慢慢降解。丝素蛋白纳米纤维溶液、京尼平苷酸接枝多巴胺、明胶在制备复合纳米纤维三维材料时,形成多孔结构。含有多个羟基的京尼平苷酸接枝物均匀分散在复合纳米纤维三维材料中,使得孔壁表面上多含有大量亲水基团,有利于细胞在材料上的粘附;并且京尼平苷酸因多环具有刚性效果,使得复合纳米纤维三维材料能够保持原有的整体形貌和多孔的微观结构,具有良好的稳定性。
优选地,京尼平苷酸接枝多巴胺的制备:将京尼平苷酸溶解于水中,调pH至5.0-6.5,加入催化剂1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和N-羟基琥珀酰亚胺,溶解后加入盐酸多巴胺,氮气氛围下,5-35℃的温度下反应12-36h,透析除去催化剂及未反应单体后,冷冻干燥得到多巴胺接枝物。
更优选地,京尼平苷酸的添加量为水溶液的1-5wt%,例如,1.15、1.5、2、2.5、3、3.5、4、4.5wt%。
更优选地,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐的添加量为水溶液的0.5-6wt%,例如,0.55、0.95、1.55、1.95、2.5、3、3.5、4、5、5.95wt%。
更优选地,N-羟基琥珀酰亚胺的添加量为水溶液的1.5-8wt%,例如,1.7、2.2、2.7、3.5、4、5、6、7、7.5wt%。
更优选地,盐酸多巴胺的添加量为水溶液的1-4wt%,例如,1.5、2、2.5、3、3.5、3.9wt%。
优选地,丝素蛋白纳米纤维溶液的制备:在沸腾的水中加入碳酸氢钠,溶解后加入蚕丝,搅拌10-60min后,洗涤烘干得到脱胶蚕丝;将脱胶蚕丝加入溴化锂溶液中,于40-80℃的温度下溶解2-6h,装入透析袋(截留分子量3500),去离子水透析48-96h后除去溴化锂,透析后的溶液经6000-12000r/min转速下离心10-30min,重复2-3次除去杂质得到丝素蛋白溶液,丝素蛋白溶液20-30℃干燥成膜,加水溶解制备得到3-15wt%的丝素蛋白纳米纤维溶液。
更优选地,碳酸氢钠的添加量为水溶液的0.05-0.5wt%,例如,0.1、0.15、0.2、0.25、0.35、0.45、0.49wt%。
更优选地,蚕丝的添加量为水溶液的0.05-2wt%,例如,0.08、0.15、0.3、0.5、1.3、1.8、1.9wt%。
更优选地,脱胶蚕丝的添加量为溴化锂溶液的10-30wt%,例如,10.5、11、12、15、20、25、26、27、29wt%.
更优选地,溴化锂的浓度为8-10M。
优选地,复合纳米纤维三维材料的制备:将丝素蛋白纳米纤维溶液、多巴胺接枝物、明胶于25-35℃的温度下混合均匀,将混合液于-25~-15℃的温度下冷冻6-24小时,真空干燥24-96h后得到可降解复合纳米纤维三维材料。
更优选地,多巴胺接枝物的添加量为丝素蛋白纳米纤维溶液的3-12wt%,例如,3.5、5、6、7、8、9、11、11.5wt%。
更优选地,明胶的添加量为丝素蛋白纳米纤维溶液的3-10wt%,例如,3.5、4、4.5、5.5、6、8、9.5、9.8wt%。
优选地,复合纳米纤维三维材料还可按以下条件制备:将丝素蛋白纳米纤维溶液、多巴胺接枝物、明胶、虾青素、矢车菊素-3-O-葡萄糖苷于25-35℃的温度下混合均匀,将混合液于-25~-15℃的温度下冷冻6-24小时,真空干燥24-96h后得到可降解复合纳米纤维三维材料;虾青素中含有长链、六元环及分子中含有羟基及羰基,矢车菊素-3-O-葡萄糖苷中含有支链、羟基和醚基,虾青素和矢车菊素-3-O-葡萄糖苷分子中部分含有极性,在复合纳米纤维三维材料中以氢键、范德华力相连接,提高分子间作用力,虾青素和矢车菊素-3-O-葡萄糖苷的链及相应的极性部分提高了复合纳米纤维三维材料的力学性能。同时因为虾青素和矢车菊素-3-O-葡萄糖苷的存在提供了一定的消炎效果,不引起生物有机体的免疫排斥效果。
更优选地,多巴胺接枝物的添加量为丝素蛋白纳米纤维溶液的3-12wt%,例如,3.5、4、6、8、10、11.3、11.8wt%。
更优选地,明胶的添加量为丝素蛋白纳米纤维溶液的3-10wt%,例如,3.5、4、5、6.5、7、8.5、9.5wt%。
更优选地,虾青素的添加量为丝素蛋白纳米纤维溶液的1-10wt%,例如,2、3.5、4、5.5、6、7、8、9.5wt%。
更优选地,矢车菊素-3-O-葡萄糖苷的添加量为丝素蛋白纳米纤维溶液的1-6wt%,例如,1.5、2、3、4、5、5.5wt%。
本发明由于在制备复合纳米纤维三维材料过程中采用了多巴胺接枝物、虾青素、矢车菊素-3-O-葡萄糖苷,因而具有如下有益效果:复合纳米纤维三维材料上接种的细胞增殖效果由DNA总量表征,三维材料表面细胞DNA的总量至少提高了42.86%,复合纳米纤维三维材料的溶失率最高只有11%,复合纳米纤维三维材料的拉伸强度至少提高了20%。因此,本发明是一种可以用于组织修复材料中稳定、多孔、生物相容性好、溶失率低的的复合纳米纤维三维材料。
附图说明
图1为多巴胺盐酸盐和多巴胺接枝物红外图;
图2为复合纳米纤维三维材料电镜图;
图3为复合纳米纤维三维材料表面DNA含量图;
图4为复合纳米纤维三维材料溶失率图;
图5为复合纳米纤维三维材料拉伸强度图。
具体实施方式
以下结合具体实施方式和附图对本发明的技术方案作进一步详细描述:
实施例1:
一种可降解复合纳米纤维三维材料的制备方法,
(1)多巴胺接枝物制备:将京尼平苷酸溶解于水中,调pH至5.5,加入催化剂1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和N-羟基琥珀酰亚胺,溶解后加入盐酸多巴胺,氮气氛围下,25℃的温度下反应24h,透析除去催化剂及未反应单体后,冷冻干燥得到多巴胺接枝物;京尼平苷酸的添加量为水溶液的3wt%,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐的添加量为水溶液的3wt%,N-羟基琥珀酰亚胺的添加量为水溶液的4wt%,盐酸多巴胺的添加量为水溶液的2wt%。
(2)丝素蛋白纳米纤维溶液制备:在沸腾的水中加入碳酸氢钠,溶解后加入蚕丝,搅拌20min后,洗涤烘干得到脱胶蚕丝;将脱胶蚕丝加入溴化锂溶液中,于60℃的温度下溶解4h,装入透析袋(截留分子量3500),去离子水透析48h后除去溴化锂,透析后的溶液经9000r/min转速下离心15min,重复2次除去杂质得到丝素蛋白溶液,丝素蛋白溶液25℃干燥成膜,加水溶解制备得到10wt%的丝素蛋白纳米纤维溶液;碳酸氢钠的添加量为水溶液的0.3wt%,蚕丝的添加量为水溶液的0.5wt%,脱胶蚕丝的添加量为溴化锂溶液的25wt%,溴化锂的浓度为9.3M。
(3)复合纳米纤维三维材料制备:将丝素蛋白纳米纤维溶液、多巴胺接枝物、明胶于30℃的温度下混合均匀,将混合液于-20℃的温度下冷冻12小时,真空干燥60h后得到可降解复合纳米纤维三维材料;多巴胺接枝物的添加量为丝素蛋白纳米纤维溶液的5wt%,明胶的添加量为丝素蛋白纳米纤维溶液的6wt%。
实施例2:
一种可降解复合纳米纤维三维材料的制备方法,
(1)多巴胺接枝物制备:将京尼平苷酸溶解于水中,调pH至5.5,加入催化剂1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和N-羟基琥珀酰亚胺,溶解后加入盐酸多巴胺,氮气氛围下,25℃的温度下反应24h,透析除去催化剂及未反应单体后,冷冻干燥得到多巴胺接枝物;京尼平苷酸的添加量为水溶液的3wt%,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐的添加量为水溶液的3wt%,N-羟基琥珀酰亚胺的添加量为水溶液的4wt%,盐酸多巴胺的添加量为水溶液的2wt%。
(2)丝素蛋白纳米纤维溶液制备:在沸腾的水中加入碳酸氢钠,溶解后加入蚕丝,搅拌20min后,洗涤烘干得到脱胶蚕丝;将脱胶蚕丝加入溴化锂溶液中,于60℃的温度下溶解4h,装入透析袋(截留分子量3500),去离子水透析48h后除去溴化锂,透析后的溶液经9000r/min转速下离心15min,重复2次除去杂质得到丝素蛋白溶液,丝素蛋白溶液25℃干燥成膜,加水溶解制备得到10wt%的丝素蛋白纳米纤维溶液;碳酸氢钠的添加量为水溶液的0.3wt%,蚕丝的添加量为水溶液的0.5wt%,脱胶蚕丝的添加量为溴化锂溶液的25wt%,溴化锂的浓度为9.3M。
(3)复合纳米纤维三维材料制备:将丝素蛋白纳米纤维溶液、多巴胺接枝物、明胶于30℃的温度下混合均匀,将混合液于-20℃的温度下冷冻12小时,真空干燥60h后得到可降解复合纳米纤维三维材料;多巴胺接枝物的添加量为丝素蛋白纳米纤维溶液的10wt%,明胶的添加量为丝素蛋白纳米纤维溶液的6wt%。
实施例3:
一种可降解复合纳米纤维三维材料的制备方法,
(1)多巴胺接枝物制备:将京尼平苷酸溶解于水中,调pH至5.5,加入催化剂1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和N-羟基琥珀酰亚胺,溶解后加入盐酸多巴胺,氮气氛围下,25℃的温度下反应24h,透析除去催化剂及未反应单体后,冷冻干燥得到多巴胺接枝物;京尼平苷酸的添加量为水溶液的3wt%,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐的添加量为水溶液的3wt%,N-羟基琥珀酰亚胺的添加量为水溶液的4wt%,盐酸多巴胺的添加量为水溶液的2wt%。
(2)丝素蛋白纳米纤维溶液制备:在沸腾的水中加入碳酸氢钠,溶解后加入蚕丝,搅拌20min后,洗涤烘干得到脱胶蚕丝;将脱胶蚕丝加入溴化锂溶液中,于60℃的温度下溶解4h,装入透析袋(截留分子量3500),去离子水透析48h后除去溴化锂,透析后的溶液经9000r/min转速下离心15min,重复2次除去杂质得到丝素蛋白溶液,丝素蛋白溶液25℃干燥成膜,加水溶解制备得到10wt%的丝素蛋白纳米纤维溶液;碳酸氢钠的添加量为水溶液的0.3wt%,蚕丝的添加量为水溶液的0.5wt%,脱胶蚕丝的添加量为溴化锂溶液的25wt%,溴化锂的浓度为9.3M。
(3)复合纳米纤维三维材料制备:将丝素蛋白纳米纤维溶液、多巴胺接枝物、明胶、虾青素、矢车菊素-3-O-葡萄糖苷于30℃的温度下混合均匀,将混合液于-20℃的温度下冷冻12小时,真空干燥60h后得到可降解复合纳米纤维三维材料;多巴胺接枝物的添加量为丝素蛋白纳米纤维溶液的10wt%,明胶的添加量为丝素蛋白纳米纤维溶液的6wt%,虾青素的添加量为丝素蛋白纳米纤维溶液的3wt%,矢车菊素-3-O-葡萄糖苷的添加量为丝素蛋白纳米纤维溶液的2wt%。
实施例4:
一种可降解复合纳米纤维三维材料的制备方法,
(1)多巴胺接枝物制备:将京尼平苷酸溶解于水中,调pH至5.5,加入催化剂1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和N-羟基琥珀酰亚胺,溶解后加入盐酸多巴胺,氮气氛围下,25℃的温度下反应24h,透析除去催化剂及未反应单体后,冷冻干燥得到多巴胺接枝物;京尼平苷酸的添加量为水溶液的3wt%,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐的添加量为水溶液的3wt%,N-羟基琥珀酰亚胺的添加量为水溶液的4wt%,盐酸多巴胺的添加量为水溶液的2wt%。
(2)丝素蛋白纳米纤维溶液制备:在沸腾的水中加入碳酸氢钠,溶解后加入蚕丝,搅拌20min后,洗涤烘干得到脱胶蚕丝;将脱胶蚕丝加入溴化锂溶液中,于60℃的温度下溶解4h,装入透析袋(截留分子量3500),去离子水透析48h后除去溴化锂,透析后的溶液经9000r/min转速下离心15min,重复2次除去杂质得到丝素蛋白溶液,丝素蛋白溶液25℃干燥成膜,加水溶解制备得到10wt%的丝素蛋白纳米纤维溶液;碳酸氢钠的添加量为水溶液的0.3wt%,蚕丝的添加量为水溶液的0.5wt%,脱胶蚕丝的添加量为溴化锂溶液的25wt%,溴化锂的浓度为9.3M。
(3)复合纳米纤维三维材料制备:将丝素蛋白纳米纤维溶液、多巴胺接枝物、明胶、虾青素、矢车菊素-3-O-葡萄糖苷于30℃的温度下混合均匀,将混合液于-20℃的温度下冷冻12小时,真空干燥60h后得到可降解复合纳米纤维三维材料;多巴胺接枝物的添加量为丝素蛋白纳米纤维溶液的10wt%,明胶的添加量为丝素蛋白纳米纤维溶液的6wt%,虾青素的添加量为丝素蛋白纳米纤维溶液的8wt%,矢车菊素-3-O-葡萄糖苷的添加量为丝素蛋白纳米纤维溶液的4wt%。
对比例1:
本对比例与实施例2相比,不同之处仅在于,第(3)步中未加入多巴胺接枝物。
对比例2:
本对比例与实施例2相比,不同之处仅在于,第(3)步中将多巴胺接枝物替换为多巴胺盐酸盐。
对比例3:
本对比例与实施例4相比,不同之处仅在于,第(3)步未添加矢车菊素-3-O-葡萄糖苷。
对比例4:
本对比例与实施例4相比,不同之处仅在于,第(3)步未添加虾青素。
试验例1:
1.多巴胺盐酸盐及多巴胺接枝物红外检测
对多巴胺盐酸盐及多巴胺接枝物的检测采用KBr压片法制样,用傅里叶变换红外光谱仪进行检测。
红外检测结果如图1所示,其中a为多巴胺盐酸盐,b为多巴胺接枝物;与多巴胺盐酸盐红外相比,多巴胺接枝物中2930cm-1处为烷烃氢的吸收峰更强,1630cm-1处有强烈的羰基吸收峰,表明成功合成了多巴胺接枝物。
2.形态表征
扫描电子显微镜(SEM)(型号为DXS 100,中国制造)观察制备的复合纳米纤维三维材料,分析电镜照片并计算复合纳米纤维三维材料平均孔径和孔隙率。
复合纳米纤维三维材料的扫描电镜图如图2所示,形成三维材料表面拥有大大小小的孔隙,成功制备得到高孔隙率的三维材料。
试验例2:
1.细胞相容性检测
通过DNA数量表征细胞的增殖效果。
将分离的大鼠原代骨髓间充质干细胞,用低糖DMEM培养基在CO2培养箱中培养,当细胞长满培养皿80%时进行传代。细胞传至第五代时接种到(直径5mm、厚度2mm)无菌的各实施例和对比例得到的复合纳米纤维三维材料上,细胞的接种密度为0.5×105个/mL。将接种细胞后的材料在CO2培养箱内放置2小时使细胞充分粘附到材料上,然后加入低糖DMEM培养基放置于37℃培养,每隔两天进行细胞换液。
接种细胞的材料分别于培养9天后,各取出5个放入无菌1.5ml离心管内,存放于-80℃冰箱中冻存。待实验全部结束后,将冻存的材料用眼科剪剪碎,用Omega公司的TissueDNA试剂盒进行细胞DNA的提取。
提取后的细胞DNA采用Invitrogen公司的Quant-iTTM PicoGreen@DNA试剂盒进行DNA含量的测定。在含有DNA的每个离心管内加入1ml的稀释后的PicoGreen试剂,混匀后避光反应30分钟。将反应后的混合液加入酶标板中,每孔加入100ul,每个样品重复6个孔。然后用Bio-Tek酶标仪测定反应后的溶液在激发波长为480nm,荧光发射强度为520nm处的荧光强度,根据DNA含量标准曲线和测得的荧光强度计算得出每个样品的DNA浓度。
细胞相容性测试结果如图3所示,实施例2得到的复合纳米纤维三维材料上DNA含量最高,表明细胞相容性最好,对比例1得到的复合纳米纤维三维材料上DNA含量最少,效果最差,实施例2与对比例1相比,表明多巴胺接枝物的添加提高了复合纳米纤维三维材料的细胞相容性,实施例2与实施例1相比,表明多巴胺接枝的添加量的提高同样可以增加复合纳米纤维三维材料的细胞相容性;实施例2与对比例2相比,表明多巴胺接枝物的效果优于多巴胺盐酸盐对于复合纳米纤维三维材料细胞相容性的提升,对比例2与对比例1相比,表明多巴胺盐酸盐同样可以提高复合纳米纤维三维材料的细胞相容性。
2.复合纳米纤维三维材料的溶失率测试
将各实施例和对比例得到的复合纳米纤维三维材料切割成大小基本一致的块,逐一称重,得到重量。准备若干个50ml离心管,每个离心管中加入一个样品,在离心管上做上标记。随后将离心管中的支架样品浸泡在去离子水中,放置到37℃恒温振荡水槽中进行溶失率实验,在72小时每种样品各取出3份。将取出的样品存放于-20℃冰箱中,待实验结束后一起放入真空干燥机内干燥,称重计算重量损失百分率。
复合纳米纤维三维材料的溶失率测试结果如图4所示,对比例1的溶失率最高,实施例2的溶失率最低,实施例2与对比例1相比,表明多巴胺接枝物的添加降低了复合纳米纤维三维材料在水溶液中的溶失率,实施例2与实施例1相比,表明多巴胺接枝的添加量的提高同样可以降低复合纳米纤维三维材料在水溶液中的溶失率;实施例2与对比例2相比,表明多巴胺接枝物的效果优于多巴胺盐酸盐对于复合纳米纤维三维材料在水溶液中的溶失率的降低,对比例2与对比例1相比,表明多巴胺盐酸盐同样可以提高复合纳米纤维三维材料在水溶液中的溶失率。
3.复合纳米纤维三维材料拉伸性能测试
将各实施例和对比例得到的复合纳米纤维三维材料制成4mm的复合管状材料,将复合管状材料剪成长度为1cm的管状,然后浸泡在PBS缓冲液中,待平衡后,使用半圆柱状的夹头,将半圆柱状的夹头伸入管中,保持管的内壁和夹头恰好完全重合。设置预压张力为0.1N,稳定3min后,拉伸速度为50mm/min,直至拉断为止,每个样品重复测试三次,求平均值。
复合纳米纤维三维材料拉伸性能测试结果如图5所示,实施例4得到的复合纳米纤维三维材料的拉伸强度最优,实施例2得到的复合纳米纤维三维材料拉伸强度最差,实施例4与对比例3相比,表明虾青素和矢车菊素-3-O-葡萄糖苷的共同添加产生的效果优于虾青素单一组分的添加,实施例4与对比例4相比,表明虾青素和矢车菊素-3-O-葡萄糖苷的共同添加产生的效果优于矢车菊素-3-O-葡萄糖苷单一组分的添加,对比例3、对比例4与实施例2相比,表明虾青素或矢车菊素-3-O-葡萄糖苷单一组分的添加可以相应提高复合纳米纤维三维材料一定的拉伸强度,综上所述,虾青素和矢车菊素-3-O-葡萄糖苷的添加提高了复合纳米纤维三维材料的拉伸强度,并且在两种组分共同添加使用时效果更佳。
以上实施方式仅用于说明本发明,而并非对本发明的限制,本领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此,所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (10)

1.一种可降解复合纳米纤维三维材料的制备方法,包括:将丝素蛋白纳米纤维溶液、多巴胺接枝物、明胶混合后,冷冻3-12h,真空干燥得到复合纳米纤维三维材料;所述多巴胺接枝物为京尼平苷酸接枝多巴胺。
2.根据权利要求1所述的一种可降解复合纳米纤维三维材料的制备方法,其特征是:所述明胶的添加量为丝素蛋白纳米纤维溶液的3-10wt%。
3.根据权利要求1所述的一种可降解复合纳米纤维三维材料的制备方法,其特征是:所述丝素蛋白纳米纤维溶液中丝素蛋白纳米纤维的含量为3-15wt%。
4.根据权利要求1所述的一种可降解复合纳米纤维三维材料的制备方法,其特征是:所述明胶的添加量为丝素蛋白纳米纤维溶液的3-10wt%。
5.根据权利要求1所述的一种可降解复合纳米纤维三维材料的制备方法,其特征是:所述多巴胺接枝物的制备条件为:将京尼平苷酸溶解于水中,调pH至5.0-6.5,加入催化剂1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和N-羟基琥珀酰亚胺,溶解后加入盐酸多巴胺,氮气氛围下,5-35℃的温度下反应12-36h,透析除去催化剂及未反应单体后,冷冻干燥得到多巴胺接枝物。
6.根据权利要求5所述的一种可降解复合纳米纤维三维材料的制备方法,其特征是:所述京尼平苷酸的添加量为水溶液的1-5wt%。
7.根据权利要求5所述的一种可降解复合纳米纤维三维材料的制备方法,其特征是:所述盐酸多巴胺的添加量为水溶液的1-4wt%。
8.根据权利要求1所述的一种可降解复合纳米纤维三维材料的制备方法,其特征是:所述多巴胺接枝物的添加量为丝素蛋白纳米纤维溶液的3-12wt%。
9.权利要求1-8任一所述方法制备得到的可降解复合纳米纤维三维材料。
10.权利要求9所述的可降解复合纳米纤维三维材料在组织修复材料中的应用。
CN202010573729.3A 2020-06-22 2020-06-22 可降解复合纳米纤维三维材料及其在组织修复中的用途 Withdrawn CN111840640A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010573729.3A CN111840640A (zh) 2020-06-22 2020-06-22 可降解复合纳米纤维三维材料及其在组织修复中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010573729.3A CN111840640A (zh) 2020-06-22 2020-06-22 可降解复合纳米纤维三维材料及其在组织修复中的用途

Publications (1)

Publication Number Publication Date
CN111840640A true CN111840640A (zh) 2020-10-30

Family

ID=72987791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010573729.3A Withdrawn CN111840640A (zh) 2020-06-22 2020-06-22 可降解复合纳米纤维三维材料及其在组织修复中的用途

Country Status (1)

Country Link
CN (1) CN111840640A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113123120A (zh) * 2021-05-24 2021-07-16 中山大学 一种可耐高温灭菌的pet细胞载体的制备方法及其应用
CN113786394A (zh) * 2021-08-21 2021-12-14 叶晓慧 一种防治脱发的给药系统及其制备方法及微针贴

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113123120A (zh) * 2021-05-24 2021-07-16 中山大学 一种可耐高温灭菌的pet细胞载体的制备方法及其应用
CN113123120B (zh) * 2021-05-24 2022-05-27 中山大学 一种可耐高温灭菌的pet细胞载体的制备方法及其应用
CN113786394A (zh) * 2021-08-21 2021-12-14 叶晓慧 一种防治脱发的给药系统及其制备方法及微针贴
CN113786394B (zh) * 2021-08-21 2023-06-16 武汉天时维璟微生物科技有限公司 一种防治脱发的给药系统及其制备方法及微针贴

Similar Documents

Publication Publication Date Title
Zhang et al. Biocompatibility evaluation of bacterial cellulose as a scaffold material for tissue-engineered corneal stroma
CN107988158B (zh) 一种三维肿瘤模型脱细胞多孔支架、构建方法及其应用
CN101549171B (zh) 一种ⅱ型胶原海绵支架及其用途
CN111840640A (zh) 可降解复合纳米纤维三维材料及其在组织修复中的用途
US20220145259A1 (en) Liver Tissue Model Constructs and Methods for Providing the Same
CN107789668B (zh) 具有多层结构的仿生胶原蛋白骨修复材料及其制备方法
LU504785B1 (en) Tissue-engineered liver based on decellularized plant-based scaffold, and preparation method thereof
CN108310463B (zh) 一种3d打印生物墨水及其制备方法
Zhu et al. Effects of chitosan on properties of novel human-like collagen/chitosan hybrid vascular scaffold
CN113621169B (zh) 一种聚对苯二甲酸乙二醇酯-肺组织脱细胞外基质复合材料的制备方法及其应用
CN101703807B (zh) 聚乳酸/壳聚糖复合纳米纤维支架及其制备方法与应用
CN108452378B (zh) 一种3d生物打印成型方法
US20210154371A1 (en) Biocompatible textile mesh and tissue constructs from manicaria saccifera, methods of growing cells and tissues, and methods of treating subjects with the biocompatible textile mesh and tissue constructs
CN112870452A (zh) 3d打印明胶-羟基磷灰石复合水凝胶支架的制作方法
CN112111162B (zh) 可快速固化的双网络水凝胶及其制备方法与应用
CN108084466B (zh) 一种基于蛋清和甲基丙烯酸衍生化聚合物的复合膜及其在培养干细胞方面的应用
CN111135344A (zh) 复合白蛋白的碳纳米管/胶原基软骨修复用支架及其制备方法
CN114686421B (zh) 一种肺组织脱细胞外基质微载体的制备方法及其应用
CN106581750A (zh) 一种高性能人工椎间盘支架及其制备方法
CN112691234B (zh) 基于纳米纤维空间结构可控的仿生组织工程支架及制法
CN113018517A (zh) 一种3d打印皮肤支架及其制备方法和应用
CN114957726A (zh) 一种纳米纤维素增强海藻酸钠水凝胶及其制备方法和应用
CN107715179A (zh) 复合型人工小血管支架及其制备方法
CN115386544B (zh) 用于间充质干细胞培养的水凝胶、培养基及其制备方法
CN117159803A (zh) 一种3d打印生物墨水及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20201030