CN111830290A - 扫描电化学显微镜系统及其控制方法 - Google Patents

扫描电化学显微镜系统及其控制方法 Download PDF

Info

Publication number
CN111830290A
CN111830290A CN202010735727.XA CN202010735727A CN111830290A CN 111830290 A CN111830290 A CN 111830290A CN 202010735727 A CN202010735727 A CN 202010735727A CN 111830290 A CN111830290 A CN 111830290A
Authority
CN
China
Prior art keywords
probe
scanning
test signal
microscope system
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010735727.XA
Other languages
English (en)
Inventor
刘振邦
牛利
马英明
包宇
王伟
韩冬雪
何颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Dingcheng Electronic Technology Co ltd
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202010735727.XA priority Critical patent/CN111830290A/zh
Publication of CN111830290A publication Critical patent/CN111830290A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/60SECM [Scanning Electro-Chemical Microscopy] or apparatus therefor, e.g. SECM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种扫描电化学显微镜系统及其控制方法,应用在扫描电化学显微镜技术之中,系统包括:探针,用于检测电信号;探针定位系统,用于驱动所述探针移动;双恒电位仪,用于向所述探针施加测试信号并检测所述探针的反馈信号;计算机,用于控制所述探针定位系统驱动所述探针移动;以及控制所述双恒电位仪在所述探针停留在一个检测位置时,向所述探针施加长时间的电位或至少两个具有不同电位等级的测试信号,以及记录每个测试信号对应的所述反馈信号;以及根据电位等级相同的所有检测位置的反馈信号得到各电位等级所对应的扫描图像。本发明相对于现有技术效率更高,并且每次扫描可以获得更加多的测试数据。

Description

扫描电化学显微镜系统及其控制方法
技术领域
本发明涉及扫描电化学显微镜技术,尤其是一种扫描电化学显微镜系统及其控制方法。
背景技术
扫描电化学显微镜(Scanning Electrochemical Microscope,SECM)是Bard等人借鉴扫描隧道显微镜(Scanning Tunnel Microscope,STM)的技术原理,在微尺度空间位置上进行电化学测量信息采集测量。SECM不但可以研究扫描探针与基底上的异相反应动力学及溶液中的均相反应动力学,并且可以分辨电极表面微区的电化学不均匀性、给出导体和绝缘体表面的形貌,甚至还可以对材料进行微加工,研究许多重要的生物过程等。SECM自被研究在药理学释放、相转移催化、动态过程等研究的检测称为现实。
对于SECM实验而言,最常见的检测模式是正负反馈模式。反馈工作模式主要用于确定探针相对于被测基底的高度,分为正反馈模式和负反馈模式,主要是按照探针接近被测基底时电流增大还是减小来区分的。当探针与基底的距离小到一定程度时,这时的电流会发生剧烈变化,如果探针下方是导体,那边电流会迅速上升,反之则迅速下降。正负反馈模式是采集电流的主要方法,依靠该方法可以使得扫描探针下移至离基底足够近的距离,而控制扫描探针通过步进电机或压电晶体进行移动。上位机软件依据设置的位移方向、位移距离(水平、纵向位移)、移动速度、位移间距等参数可以生成一个矩阵的扫描区域,在扫描区域内进行电流采集。在这个高度上对被测基底进行一个区域扫描后就会得到被测基底电化学活性的一个图像信息。那么实际的成像测量结果是基底电化学性质和物理形貌综合作用的结果。
但是现在的SECM系统只能以固定电位进行单张图像扫描,其效率低且每次扫描提供的测试数据少、信息单一。
发明内容
为解决上述技术问题的至少之一,本发明的目的在于:提供一种扫描电化学显微镜系统及其控制方法,可以在一个扫描周期中生成多个图像帧,增加扫描效率且可以在一个扫描周期中提供出更多的测试数据。
第一方面,本发明实施例提供了:
一种扫描电化学显微镜系统,包括:
探针,用于检测电信号;
电解容器,用于装载溶液和测试样品;
探针定位系统,用于驱动所述探针移动;
双恒电位仪,用于向所述探针施加测试信号并检测所述探针的反馈信号;
计算机,用于控制所述探针定位系统驱动所述探针移动;以及控制所述双恒电位仪在所述探针停留在一个检测位置时,向所述探针依次施加至少两个具有不同电位等级的测试信号,以及记录每个测试信号对应的所述反馈信号;以及根据电位等级相同的所有检测位置的反馈信号得到各电位等级所对应的扫描图像;其中,每个测试信号的维持时间相同。
进一步,所述计算机还用于获取配置参数,所述配置参数用于指定所述探针的移动区域、移动步进、测试信号以及所述测试信号的电位等级的变化规律。
进一步,所述计算机还用于根据所述测试信号的电位等级的变化规律,将对应于不同电位等级的扫描图像进行编排,以形成基于时间先后排列的图像序列。
进一步,所述计算机还用于获取输入指令,根据输入指令确定被选择的时间,显示与所述被选择的时间对应的扫描图像。
进一步,所述测试信号的波形为线性波形、阶梯波形、或者线性波形和阶梯波形的组合之中的至少之一。
进一步,所述双恒电位仪包括工作电极、参比电极和对电极,其中,所述工作电极与所述探针连接,所述参比电极和所述对电极用于放置在电解质溶液中。
第二方面,本发明实施例提供了:
一种扫描电化学显微镜系统的控制方法,包括以下步骤:
获取配置参数;
根据所述配置参数控制所述探针定位系统驱动所述探针移动;
控制所述双恒电位仪在所述探针停留在一个检测位置时,向所述探针依次施加至少两个具有不同电位等级的测试信号,以及记录每个测试信号对应的所述反馈信号;其中,每个测试信号的维持时间相同;
根据电位等级相同的所有检测位置的反馈信号得到各电位等级所对应的扫描图像。
进一步,所述配置参数用于指定所述探针的移动区域、移动步进、测试信号以及所述测试信号的电位等级的变化规律。
进一步,还包括以下步骤:
根据所述测试信号的电位等级的变化规律,将对应于不同电位等级的扫描图像进行编排,以形成基于时间先后排列的图像序列。
进一步,还包括以下步骤:
获取输入指令,根据输入指令确定被选择的时间,显示与所述被选择的时间对应的扫描图像。
本发明实施例的有益效果是:本发明在同一个测试位置施加不同电位等级的测试信号并记录对应的反馈信号,这样可以通过一次扫描形成不同的电位等级的测试信号对应的扫描图像,本发明相对于现有技术效率更高,并且每次扫描可以获得更加多的测试数据,以满足不同分析测试体系需求,拓展SECM应用范围。
附图说明
图1为根据本发明实施例提供的一种扫描电化学显微镜系统的结构示意图;
图2为根据本发明实施例提供的一种循环伏安法的测试信号波形图;
图3为根据本发明实施例提供的一种方波伏安法的测试信号波形图;
图4为根据本发明实施例提供的一种线性伏安法的测试信号波形图;
图5为根据本发明实施例提供的一种扫描电化学显微镜系统的控制方法流程图;
图6为根据本发明实施例提供的另一种扫描电化学显微镜系统的控制方法流程图。
具体实施方式
下面结合说明书附图和具体的实施例对本发明进行进一步的说明。
参照图1,本实施例公开了一种扫描电化学显微镜系统,其包括:
探针101,用于检测电信号,该探针为SECM微探针。
电化学检测池102,用于装载电解质溶液和测试样品106;其形状可以根据实际需要更换。
探针定位系统103,用于驱动所述探针移动;在本实施例中,探针定位系统可以包括步进电机和压电晶体。
双恒电位仪104,包括工作电极1041、参比电极1042、对电极1043,用于向所述探针101施加测试信号并检测所述探针的反馈信号;通常对电极应用比参比电极细一半的长柱,下面连接一根长铂丝。
计算机105,用于控制所述探针定位系统驱动所述探针移动;以及控制所述双恒电位仪在所述探针停留在一个检测位置时,向所述探针依次施加至少两个具有不同电位等级的测试信号,以及记录每个测试信号对应的所述反馈信号;以及根据电位等级相同的所有检测位置的反馈信号得到各电位等级所对应的扫描图像。其中,每个测试信号的维持时间相同。
其中,在本实施例中,用户可以通过计算机105先设置探针101的移动范围和移动步进。移动范围和移动步进的大小决定了分辨率的大小,计算机通过控制探针定位系统来驱动探针移动到每个测试位置的上方。并在每个测试位置都控制双恒电位仪输出多个电位等级的测试信号。需要理解的是,这里的测试信号,可以是一个具有一定波形的信号,电位等级可以用于表征该信号的平均电位。
通过本实施例,可以在一个扫描周期内采用多个电位等级的测试信号进行测试,从而形成多个电位等级对应的扫描图像,将这些扫描图像按照时间顺序进行排列后,可以反映测试的时间属性。本实施例相对于现有技术可以拓展应用领域范围、增加扫描效率,在每次扫描可以获得更加多的测试数据。此外,相对于现有技术,在获取相同的数据量的前提下可以针对不同测量体系施加不同的测试方法,减少探针的移动次数,延长装置的寿命。
在一些实施例中,所述计算机还用于获取配置参数,所述配置参数用于指定所述探针的移动区域、移动步进、测试信号以及所述测试信号的电位等级的变化规律。
在本实施例中,用户可以通过诸如键盘、触屏或者手机等输入设备向计算机输入配置参数,这些配置参数可以用于指定探针的移动区域,其中,在本实施例中移动区域可以采用系统坐标来描述。配置参数也可以用于配置探针的移动步进,移动步进是指探针每次移动的距离。本实施例中指定测试信号是指指定测试类型或者指定测试信号的波形。测试信号的电位等级的变化规律是指电位等级的随着时间的趋势,在本实施例中,一般是一个设定的时间维持一个电位等级,需要理解的是,这里的电位等级是针对整个测试信号而言的一个等级,意味着在一个信号内,电位大小是可以变化的。
在一些实施例中,所述计算机还用于根据所述测试信号的电位等级的变化规律,将对应于不同电位等级的扫描图像进行编排,以形成基于时间先后排列的图像序列。
在本实施例中,电位等级可以按照一定的周期发生变化,例如,电位等级可以从平均1V、2V到3V各维持0.1秒。因此会产生对应于1V、2V和3V三个扫描图像,按照产生的先后顺序对这些对象进行排列,可以产生时间维度的信息。在部分实施例中,采样率足够高的情况下,电位等级的数量可以看作是无穷多的,电位等级的变化可以看作是线性。例如,从1V~3V连续变化,从而可以产生连续变化的扫描图像。本实施例可以便于用户根据电位等级或者时间来选择需要观察的扫描图像。
在一些实施例中,所述计算机还用于获取输入指令,根据输入指令确定被选择的时间,显示与所述被选择的时间对应的扫描图像。
在本实施例中,基于用户对测试时间的选择,筛选出该时间点所对应的扫描图像进行显示。以便于用户观测某一时间点的扫描图像。
在一些实施例中,所述测试信号的波形为线性波形、阶梯波形、或者线性波形和阶梯波形的组合之中的至少之一。
参照图2,其示出一种循环伏安法的测试信号波形。参照图3,其示出一种方波伏安法的测试信号的波形图。参照图4,其示出一种线性伏安法的测试信号的波形图。由此可知,测试信号的波形可以是具有一定时间的电位信号,可以是线性波形、阶梯波形、或者线性波形和阶梯波形的组合信号。本实施例可以根据实验需要选用不同的测试波形。
参照图1,在一些实施例中,所述双恒电位仪包括工作电极、参比电极和对电极,其中,所述工作电极与所述探针连接,所述参比电极和所述对电极用于放置在电解质溶液中。通过配置参比电极,可以增加双恒电位仪的施加电位的准确度。
参照图5,本实施例公开了一种扫描电化学显微镜系统的控制方法,应用在该系统的计算机之中,包括以下步骤:
步骤510、获取配置参数;在本实施例中,用于指定所述探针的移动区域、移动步进、测试信号以及所述测试信号的电位等级的变化规律。
步骤520、根据所述配置参数控制所述探针定位系统驱动所述探针移动。
具体地,计算机根据配置参数,控制探针定位系统驱动所述探针按照上述移动步进在移动区域内移动到每个测试位置之上。
步骤530、控制所述双恒电位仪在所述探针停留在一个检测位置时,向所述探针依次施加至少两个具有不同电位等级的测试信号,以及记录每个测试信号对应的所述反馈信号;其中,每个测试信号的维持时间相同。
通过记录多个电位等级对应的反馈信号,可以形成不同的电位等级对应的扫描图像。
步骤540、根据电位等级相同的所有检测位置的反馈信号得到各电位等级所对应的扫描图像。
在本步骤中,假设测试位置有A、B、C、D四个,而每个测试位置设置三个电位等级的测试信号,对于点A而言,得到A1、A2和A3三个反馈信号,对于点B而言,得到B1、B2和B3三个反馈信号,对于点C而言,得到C1、C2和C3三个反馈信号,对于点D而言,得到D1、D2和D3三个反馈信号。其中这些回馈信号的获得顺序是A1、A2、A3、B1、B2、B3、C1、C2、C3、D1、D2、D3。因此,可以基于A1、B1、C1、D1四个反馈信号得到对应于第一种电位等级的扫描对象,基于A2、B2、C2、D2四个反馈信号得到对应于第二种电位等级的扫描对象,基于A3、B3、C3、D3四个反馈信号得到对应于第三种电位等级的扫描对象。
从上述实施例可知,通过对每个点进行多个电位等级的测试,可以在一个扫描周期内获得多个不同电位等级对应的扫描图像,不同的电位等级对于不同的实验体系具有实际价值的,如通过电位先进行富集再进行检测可具有更高的准确率,而且可以在一个扫描周期内获得更多测试数据。
在一些实施例中,所述配置参数用于指定所述探针的移动区域、移动步进、测试信号以及所述测试信号的电位等级的变化规律。
在一些实施例中,还包括以下步骤:
根据所述测试信号的电位等级的变化规律,将对应于不同电位等级的扫描图像进行编排,以形成基于时间先后排列的图像序列。
在一些实施例中,还包括以下步骤:
获取输入指令,根据输入指令确定被选择的时间,显示与所述被选择的时间对应的扫描图像。
参照图6,本实施例公开了一种扫描电化学显微镜系统的控制方法,包括以下主要的步骤:
在探针通过渐近曲线接近基底后,设置扫面探针扫面区域参数,如移动步长、移动方向、X方向距离、Y方向距离、位移后停止时间等参数。通过设置扫描参数主要用于生成扫描探针的位移矩阵,矩阵有多个扫描点构成,进而确立扫描区域。
选择扫描区中每个扫描点需要进行的联用的电化学实验,联用的电化学实验只能选择运行时间可以量化的实验,比如CV、LSV、ITC等。该步骤的目的是在每个扫描点进行运行时间固定的电化学实验方法。电化学实验方法为根据设置的参数施加固定的波形、采集相关的电流、电压信号或对采集的信号进行处理。
运行实验,上位机根据选择的联用实验与扫描区域设置生成执行的任务序列。其执行序列首先判断是否完成位移,进行联用实验,直至实验完成保存实验数据,扫描探针进行位移直至完成整个扫描范围。
实验完成后,对所有扫描点的实验数据进行处理,由于每个点采用相同的电化学实验,且电化学实验可以通过时间进行量化。以实验时间对数据进行整理,添加时间轴。时间轴的长度为选择联用的电化学实验运行时间长度。
使用者通过输入时间参数,采集每个联用实验的时间节点对应的数据绘制成热力图,该热力图包括三维数据轴,其中X、Y为位移距离、Z轴为每个扫描点对应的联用实验采集数据点。
通过施加不同方法可以更好的针对不同研究体系进行分析。通过加入时间轴可以增加扫面电化学显微镜的时间分辨率,进而对扫面区域进行分析。
上述实施例,在每个扫面点进行电化学实验扫描,对联用的电化学数据时间进行量化,并以输入的时间在联用的电化学实验中获取采集数据,即从每个测量点的实验中同一时间抽取数据,组成“一帧”数据。通过该方法可以单独观察一帧数据,或动态观看扫描区域的采集数据变化。
根据本发明可以将原本平面化的扫面电化学数据增加时间分辨率,可以拓宽扫描电化学显微镜的应用范围。
对于上述方法实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
以上是对本发明的较佳实施进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种扫描电化学显微镜系统,其特征在于,包括:
探针,用于检测电信号;
探针定位系统,用于驱动所述探针移动;
双恒电位仪,用于向所述探针施加测试信号并检测所述探针的反馈信号;
计算机,用于控制所述探针定位系统驱动所述探针移动;以及控制所述双恒电位仪在所述探针停留在一个检测位置时,向所述探针依次施加至少两个具有不同电位等级的测试信号,以及记录每个测试信号对应的所述反馈信号;以及根据电位等级相同的所有检测位置的反馈信号得到各电位等级所对应的扫描图像;其中,每个测试信号的维持时间相同。
2.根据权利要求1所述的扫描电化学显微镜系统,其特征在于,所述计算机还用于获取配置参数,所述配置参数用于指定所述探针的移动区域、移动步进、测试信号以及所述测试信号的电位等级的变化规律。
3.根据权利要求2所述的扫描电化学显微镜系统,其特征在于,所述计算机还用于根据所述测试信号的电位等级的变化规律,将对应于不同电位等级的扫描图像进行编排,以形成基于时间先后排列的图像序列。
4.根据权利要求3所述的扫描电化学显微镜系统,其特征在于,所述计算机还用于获取输入指令,根据输入指令确定被选择的时间,显示与所述被选择的时间对应的扫描图像。
5.根据权利要求1所述的扫描电化学显微镜系统,其特征在于,所述测试信号的波形为线性波形、阶梯波形、或者线性波形和阶梯波形的组合之中的至少之一。
6.根据权利要求1所述的扫描电化学显微镜系统,其特征在于,所述双恒电位仪包括工作电极、参比电极和对电极,其中,所述工作电极与所述探针连接,所述参比电极和所述对电极用于放置在电解质溶液中。
7.一种如权利要求1所述的扫描电化学显微镜系统的控制方法,其特征在于,包括以下步骤:
获取配置参数;
根据所述配置参数控制所述探针移动;
在所述探针停留在一个检测位置时,向所述探针依次施加至少两个具有不同电位等级的测试信号,以及记录每个测试信号对应的所述反馈信号;其中,每个测试信号的维持时间相同;
根据电位等级相同的所有检测位置的反馈信号得到各电位等级所对应的扫描图像。
8.根据权利要求7所述的扫描电化学显微镜系统的控制方法,其特征在于,所述配置参数用于指定所述探针的移动区域、移动步进、测试信号以及所述测试信号的电位等级的变化规律。
9.根据权利要求8所述的扫描电化学显微镜系统的控制方法,其特征在于,还包括以下步骤:
根据所述测试信号的电位等级的变化规律,将对应于不同电位等级的扫描图像进行编排,以形成基于时间先后排列的图像序列。
10.根据权利要求7所述的扫描电化学显微镜系统的控制方法,其特征在于,还包括以下步骤:
获取输入指令,根据输入指令确定被选择的时间,显示与所述被选择的时间对应的扫描图像。
CN202010735727.XA 2020-07-28 2020-07-28 扫描电化学显微镜系统及其控制方法 Pending CN111830290A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010735727.XA CN111830290A (zh) 2020-07-28 2020-07-28 扫描电化学显微镜系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010735727.XA CN111830290A (zh) 2020-07-28 2020-07-28 扫描电化学显微镜系统及其控制方法

Publications (1)

Publication Number Publication Date
CN111830290A true CN111830290A (zh) 2020-10-27

Family

ID=72926349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010735727.XA Pending CN111830290A (zh) 2020-07-28 2020-07-28 扫描电化学显微镜系统及其控制方法

Country Status (1)

Country Link
CN (1) CN111830290A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281396A (zh) * 2021-05-11 2021-08-20 南京工业大学 一种基于改良secm探针的催化剂性能表征方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258014A (ja) * 1993-03-05 1994-09-16 Canon Inc 走査型プローブ顕微鏡、およびそれを用いた記録装置および/または再生装置
US5495109A (en) * 1995-02-10 1996-02-27 Molecular Imaging Corporation Electrochemical identification of molecules in a scanning probe microscope
CN101493397A (zh) * 2009-02-27 2009-07-29 中山大学 一种静电力显微镜及其测量方法
CN102507986A (zh) * 2011-10-13 2012-06-20 中山大学 一种静电力显微镜的间歇接触式测量方法
CN104034765A (zh) * 2014-07-07 2014-09-10 中国船舶重工集团公司第七二五研究所 局部区域形貌扫描的电化学检测方法
CN107192858A (zh) * 2016-03-14 2017-09-22 江苏卓芯电子科技有限公司 与电化学发光同时测量的超分辨电化学成像测量装置
CN107430148A (zh) * 2015-02-03 2017-12-01 Fei Efa有限公司 利用扫描探针显微镜对特征成像的方法
CN206848303U (zh) * 2017-06-14 2018-01-05 广州市本原纳米仪器有限公司 一种多频扫描探针声学显微镜系统
CN109490399A (zh) * 2018-10-18 2019-03-19 京东方科技集团股份有限公司 电化学检测设备及电化学检测方法
CN110376261A (zh) * 2019-08-06 2019-10-25 南京大学 一种基于石墨烯可调光散射性质的电化学成像系统及方法
CN111157769A (zh) * 2020-01-06 2020-05-15 广州大学 一种电致化学发光成像系统及其成像方法
US20220221401A1 (en) * 2019-03-21 2022-07-14 Oxford University Innovation Limited Scattering microscopy

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258014A (ja) * 1993-03-05 1994-09-16 Canon Inc 走査型プローブ顕微鏡、およびそれを用いた記録装置および/または再生装置
US5495109A (en) * 1995-02-10 1996-02-27 Molecular Imaging Corporation Electrochemical identification of molecules in a scanning probe microscope
CN101493397A (zh) * 2009-02-27 2009-07-29 中山大学 一种静电力显微镜及其测量方法
CN102507986A (zh) * 2011-10-13 2012-06-20 中山大学 一种静电力显微镜的间歇接触式测量方法
CN104034765A (zh) * 2014-07-07 2014-09-10 中国船舶重工集团公司第七二五研究所 局部区域形貌扫描的电化学检测方法
CN107430148A (zh) * 2015-02-03 2017-12-01 Fei Efa有限公司 利用扫描探针显微镜对特征成像的方法
CN107192858A (zh) * 2016-03-14 2017-09-22 江苏卓芯电子科技有限公司 与电化学发光同时测量的超分辨电化学成像测量装置
CN206848303U (zh) * 2017-06-14 2018-01-05 广州市本原纳米仪器有限公司 一种多频扫描探针声学显微镜系统
CN109490399A (zh) * 2018-10-18 2019-03-19 京东方科技集团股份有限公司 电化学检测设备及电化学检测方法
US20220221401A1 (en) * 2019-03-21 2022-07-14 Oxford University Innovation Limited Scattering microscopy
CN110376261A (zh) * 2019-08-06 2019-10-25 南京大学 一种基于石墨烯可调光散射性质的电化学成像系统及方法
CN111157769A (zh) * 2020-01-06 2020-05-15 广州大学 一种电致化学发光成像系统及其成像方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈阵 等: "酸性介质中HR-2不锈钢表面活性的SECM三维图像表征研究", 《中国腐蚀与防护学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281396A (zh) * 2021-05-11 2021-08-20 南京工业大学 一种基于改良secm探针的催化剂性能表征方法

Similar Documents

Publication Publication Date Title
US4924091A (en) Scanning ion conductance microscope
Kang et al. Frontiers in nanoscale electrochemical imaging: faster, multifunctional, and ultrasensitive
Momotenko et al. High-speed electrochemical imaging
Lazenby et al. Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM): visualizing interfacial reactions and fluxes from surfaces to bulk solution
CN109142797B (zh) 一种液滴型扫描离子电导显微镜及其探针和扫描方法
JP2013533497A (ja) 電解質および電極を含むピペット
CN104034765A (zh) 局部区域形貌扫描的电化学检测方法
CN111830290A (zh) 扫描电化学显微镜系统及其控制方法
Li et al. Determining live cell topography by scanning electrochemical microscopy
Stephens et al. Evaluating the use of edge detection in extracting feature size from scanning electrochemical microscopy images
CN102353818A (zh) 一种评估pc12细胞的神经元样分化程度的装置及方法
US10006935B2 (en) Scanning electrochemical microscopy
CN202256386U (zh) 一种评估pc12细胞的神经元样分化程度的装置
CN113092824A (zh) 检测铁电信号的方法和压电式力显微镜设备
CN104062324B (zh) 局部区域形貌扫描的电化学检测装置
JP2001194284A (ja) 探針の走査方法
JP4284535B2 (ja) アレイ製造方法
CN106290539A (zh) 检测溶液中酪氨酸浓度的方法
CN109580714A (zh) 一种固结法测量分子电学性能的测量系统
Wang et al. A rate adaptive control method for improving the imaging speed of atomic force microscopy
CN111537576A (zh) 脑内神经化学物质检测方法
KR102517102B1 (ko) 정전위 전기화학 계측 장치를 통해 바이오 진단을 수행하는 방법
JP6842750B2 (ja) 走査型プローブ顕微鏡及びその制御方法
CN113670997A (zh) 基于脚本解析的扫描电化学显微镜路径规划方法及装置
Tonello et al. Organic substrates for novel printed sensors in neural interfacing: A measurement method for cytocompatibility analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210120

Address after: 510000 building 4, No.6 Huafeng Road, Huangpu District, Guangzhou City, Guangdong Province

Applicant after: Guangdong Dingcheng Electronic Technology Co.,Ltd.

Address before: 510006 No. 230 West Ring Road, University of Guangdong, Guangzhou

Applicant before: Guangzhou University

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201027