CN111826403A - 一种有机废弃物厌氧消化的方法 - Google Patents

一种有机废弃物厌氧消化的方法 Download PDF

Info

Publication number
CN111826403A
CN111826403A CN202010505660.0A CN202010505660A CN111826403A CN 111826403 A CN111826403 A CN 111826403A CN 202010505660 A CN202010505660 A CN 202010505660A CN 111826403 A CN111826403 A CN 111826403A
Authority
CN
China
Prior art keywords
anaerobic digestion
magnet
ferroferric oxide
organic waste
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010505660.0A
Other languages
English (en)
Other versions
CN111826403B (zh
Inventor
戴晓虎
李磊
蔡辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202010505660.0A priority Critical patent/CN111826403B/zh
Priority to NL2026413A priority patent/NL2026413B1/en
Publication of CN111826403A publication Critical patent/CN111826403A/zh
Application granted granted Critical
Publication of CN111826403B publication Critical patent/CN111826403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/15Treatment of sludge; Devices therefor by de-watering, drying or thickening by treatment with electric, magnetic or electromagnetic fields; by treatment with ultrasonic waves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明涉及一种有机废弃物厌氧消化的方法,该方法为:将有机废弃物、接种物和富集高效微生物的催化剂加入到反应器中,进行搅拌反应,生产甲烷。催化剂以磁铁为基体,以四氧化三铁为表面吸附物,用于富集可高效厌氧转化有机废弃物的电活性微生物,使微生物快速与四氧化三铁结合在磁铁表面形成生物膜,加快厌氧消化产甲烷的速率,可提高厌氧消化系统的有机负荷和产甲烷量,减少反应周期。与现有技术相比,本发明的催化剂用于富集可高效厌氧转化有机废弃物的电活性微生物,使微生物快速与四氧化三铁结合在磁铁表面形成生物膜,加快厌氧消化产甲烷的速率,可提高厌氧消化系统的有机负荷和产甲烷量,减少反应周期。

Description

一种有机废弃物厌氧消化的方法
技术领域
本发明涉及有机废弃物处理与资源化领域,尤其是涉及一种有机废弃物厌氧消化的方法。
背景技术
随着资源消耗速度越来越快,面临的环境问题也随之增多。其中,有机废弃物中有机碳含量相当于10亿吨标准煤。厌氧消化技术在促进有机固体废弃物减量化、稳定化、无害化的同时实现了资源回收,是提高资源利用效率,支撑生态文明建设的重要技术保障。在有机废弃物厌氧消化过程中,复杂有机物需要经历水解、酸化、乙酸化等一系列生化步骤变成乙酸等小分子有机物,再进行产甲烷过程。
而在传统有机废弃物,比如城市污泥、餐厨或厨余垃圾、农作物秸秆的厌氧消化过程中,存在传质效果差、产甲烷效率低、反应周期长等一系列问题,限制了有机废弃物领域厌氧消化技术的应用。如何强化有机废弃物厌氧消化、提高厌氧消化产甲烷的效率是研究者关注的重点。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种提高高效微生物物种丰度,强化有机废弃物厌氧消化,促进甲烷生成的有机废弃物厌氧消化的方法。
本发明的目的可以通过以下技术方案来实现:
互养产甲烷过程涉及到产酸微生物与产甲烷微生物的传质和种间电子传递过程。以氢气或甲酸为电子载体的种间间接电子传递过程受氢气、甲酸等电子载体的浓度梯度、传质速率的影响,互养产甲烷过程无法高效进行,而一旦系统产酸增加,极易出现氢气积累而使产氢产乙酸过程无法自发进行,从而系统酸化崩溃。
研究表明,地杆菌等微生物具有通过菌毛或细胞色素c等进行种间直接电子传递的能力,在厌氧消化产甲烷过程也观察到了这种现象。通过微生物培养或外源物质添加,可以在某些产酸微生物和产甲烷微生物之间形成电子传递的“通道”,加快种间电子传递的速率,从而加速产甲烷过程。四氧化三铁作为有稳定晶体结构、良好导电性和生物相容性的磁性材料,在厌氧消化系统的添加也能帮助建立和强化互养产甲烷微生物间的种间直接电子传递过程。
与此同时,添加四氧化三铁,有助于富集异化铁还原菌,促进有机物的水解酸化过程,提高厌氧消化的效率。然而城市污泥等有机废弃物组分复杂,可进行厌氧转化和种间直接电子传递的高效互养微生物在系统中丰度很低,系统流动和传质效果差,简单添加四氧化三铁既难以在复杂有机废弃物体系富集高效微生物,又难以和高效微生物紧密结合发挥稳定的效果,同时会出现大量的流失问题。
本发明在如上理论基础上改进后提供了一种可以富集并结合高效微生物,稳定提高有机废弃物厌氧消化产甲烷效率的经济可行的方法,具体方案如下:
一种有机废弃物厌氧消化的方法,该方法为:将有机废弃物、接种物和富集高效微生物的催化剂加入到反应器中,进行搅拌反应,生产甲烷。相比于传统有机固体废弃物厌氧消化,在同等有机负荷条件下,具有更高的有机物降解速率、产甲烷速率、甲烷在沼气中比例、产甲烷量。
进一步地,所述的催化剂以磁铁为基体,以四氧化三铁为表面吸附物。该催化剂用于富集可高效厌氧转化有机废弃物的电活性微生物,使微生物快速与四氧化三铁结合在磁铁表面形成生物膜,加快厌氧消化产甲烷的速率,可提高厌氧消化系统的有机负荷和产甲烷量,减少反应周期。所谓富集高效微生物,指的是富集具有分解或转化有机物、参与厌氧消化过程的细菌或古菌,尤其是可进行高效直接种间电子传递的电活性细菌和甲烷菌。高效微生物物种相对丰度与运用该催化剂前或未运用该催化剂相比丰度增加。
进一步地,所述的四氧化三铁与磁铁的质量比为1:(1-10)。
进一步地,所述的磁铁包括铁氧体磁铁或钕铁硼磁铁。
进一步地,所述的磁铁的形状包括球体、椭球体、圆柱体或长方体;磁铁的结构为实心结构、空心结构、多孔结构或板状结构;所述的四氧化三铁的粒径为10nm-0.5mm,纯度85%以上,可为纳米或微米级粒径。
进一步地,所述的有机废弃物的来源包括城市污泥、餐厨垃圾、厨余垃圾或农作物秸秆中的一种或多种。其中,有机废弃物的VS/TS=45.1-80.9%,TS=1.5-23.3%。
进一步地,所述的生产方式包括批次、半连续或连续生产方式。方法适用于低温、中温、高温厌氧消化系统,可采用连续搅拌振荡或间歇搅拌振荡等运行方式,均可以在催化剂表面形成生物膜。半连续或连续生产中固体停留时间SRT=10-20d。
进一步地,所述的接种物取自污泥厌氧消化反应器的出泥;即厌氧消化污泥,厌氧消化污泥中包含各种细菌,比如可高效进行种间电子传递的细菌和产甲烷菌等等;其中,厌氧消化污泥的VS/TS=31.6-48.9%,TS=2.0-6.3%。所述的接种物中挥发性固体和有机废弃物中挥发性固体的质量比为1:(0.5-2)。
进一步地,所述的四氧化三铁与有机废弃物中总固体的质量比为1:(1-6)。
进一步地,所述反应的温度为35-55℃,所述搅拌转速为75-120r/min。
与现有技术相比,本发明具有以下优点:
(1)本发明首次采用以磁铁为基体,以四氧化三铁为表面吸附物的催化剂,该催化剂用于富集可高效厌氧转化有机废弃物的电活性微生物,使微生物快速与四氧化三铁结合在磁铁表面形成生物膜,加快厌氧消化产甲烷的速率,可提高厌氧消化系统的有机负荷和产甲烷量,减少反应周期;
(2)由于厌氧消化污泥中的电活性细菌与产甲烷菌在磁铁表面与四氧化三铁颗粒紧密结合,加快了传质与种间电子传递的速率,促进了有机物的转化,提高了产甲烷的效率;
(3)四氧化三铁在磁铁表面紧密吸附,在有机废弃物厌氧消化过程中效果稳定且不易流失,反应结束后可通过磁选等方式进行分离和重复利用,提高厌氧消化效率的同时降低了成本,具有良好的经济效益和应用前景;
(4)本发明的催化剂适用于低温、中温、高温厌氧消化系统,可采用连续搅拌振荡或间歇搅拌振荡等运行方式,均可以在催化剂表面形成生物膜。
附图说明
图1为本发明的催化剂富集高效微生物的原理图;
图2为实施例1、对比例1和对比例2中厌氧消化实验中累积产甲烷曲线;
图3为实施例2、对比例3-5中厌氧消化系统中相对丰度最高的二十种细菌;
图4为实施例2、对比例3-5中厌氧消化系统中相对丰度最高的二十种古菌;
图5为实施例3、对比例6中厌氧消化实验中产甲烷速率曲线。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
本实施例旨在以城市污泥为基质的批次产甲烷实验中实施一种富集高效微生物强化有机废弃物厌氧消化的方法。
采用污水处理厂的二沉池剩余污泥(VS/TS=45.1-70.8%,TS=1.5-5.1%)作为基质,稳定运行的反应器中的厌氧消化污泥(VS/TS=33.2-48.9%,TS=2.1-6.3%)做接种物,在500mL血清瓶中进行批次厌氧产甲烷实验。
再加入了磁铁-四氧化三铁催化剂,其中磁铁为直径3cm的球状铁氧体磁铁,四氧化三铁粒径为200nm,四氧化三铁与磁铁质量比为1:2。剩余污泥的VS与接种物的VS质量比为2:1,四氧化三铁与剩余污泥TS的质量比为1:1。同时设置了只有接种物的空白组以消除接种物的影响。
实验在37℃空气浴、100r/min摇床中开展。实验过程中监测挥发性脂肪酸含量,测定沼气产量和气体组分,测定厌氧消化前后的TS(Total Solid,总固体)、VS(VolatileSolid,挥发性固体)。
对比例1
与实施例1的不同之处在于,用等质量的四氧化三铁代替磁铁-四氧化三铁催化剂。
对比例2
与实施例1的不同之处在于,不添加磁铁-四氧化三铁催化剂。
如图2所示,对比例1与对比例2相比,在产甲烷速率和产甲烷量上没有明显区别,说明直接加入四氧化三铁未能强化城市污泥厌氧消化产甲烷,而实施例1和对比例1或对比例2相比,加入磁铁-四氧化三铁催化剂后,系统产甲烷速率得到了明显提高,在13d即达到了产气最大值,产的沼气中甲烷气体比例由65%提高到了75%以上,降解每克VS所产的甲烷量有明显提高。连续进行两次批次实验,对出泥中铁元素含量进行分析,结果如表1所示。
表1厌氧消化后出泥中的铁元素含量(%TS)a
Table 1 Iron content(%TS)in effluent sludge after anaerobicdigestiona
Figure BDA0002526443770000051
由表1中数据,对比例1中只加入四氧化三铁,有大量的铁元素流失,在批次一和批次二两次批式厌氧消化实验后流失铁元素含量占污泥TS的29%和18.9%,而在加入磁铁和四氧化三铁的实施例1中,铁元素的流失大大减少,在提高厌氧消化效率的同时降低了成本,具有良好的经济效益和应用前景。
实施例2
本实施例旨在以餐厨垃圾为基质的半连续产甲烷实验中实施一种富集高效微生物强化有机废弃物厌氧消化的方法。
采用经粉碎后的餐厨垃圾(VS/TS=58.7-80.9%,TS=10.6-23.3%)作为基质,稳定运行的厌氧消化反应器中的厌氧消化污泥(VS/TS=31.6-48.9%,TS=2.3-5.7%)做接种物,在工作容积为2L的反应器中进行半连续厌氧产甲烷实验。
再加入了磁铁-四氧化三铁催化剂,其中磁铁为直径4cm,高1cm的圆柱体钕铁硼磁铁,四氧化三铁粒径为100nm,四氧化三铁与磁铁质量比为1:10,加入四氧化三铁质量与餐厨垃圾TS比为1:3,餐厨垃圾的VS与接种物的VS质量比为2:1。同时设置了只有接种物的空白组以消除接种物的影响。
半连续反应器每日出料200mL、进料200mL,污泥停留时间SRT=10d。反应器采用35-45℃空气浴加热,每搅拌1分钟停半分钟,搅拌速率为80-100r/min。实验过程中监测进出料挥发性脂肪酸、TS、VS含量,测定沼气产量和气体组分。
对比例3
与实施例2不同之处在于,用等质量四氧化三铁代替磁铁-四氧化三铁催化剂。
对比例4
与实施例2不同之处在于,用等质量磁铁代替磁铁-四氧化三铁催化剂。
对比例5
与实施例2的不同之处在于,不添加磁铁-四氧化三铁催化剂。
如图3-4所示,对比例3-5中出料的微生物(细菌、古菌)组成十分相似,未富集出高效电活性细菌,说明单独加入四氧化三铁或者磁铁均不能实现高效微生物的富集。相比于对比例3-5,实施例2中加入磁铁-四氧化三铁催化剂后,出料的微生物组成和丰度有明显差异,富集出可高效进行种间电子传递的细菌1和细菌2,古菌中产甲烷菌3,4和5丰度都有明显提高,实现了有效富集。实施例2中挥发性脂肪酸含量未出现积累,每日甲烷产量提高20%以上,甲烷在沼气中比例提高11%,并且保持了稳定运行。
实施例3
本实施例旨在连续流产甲烷实验中实施一种富集高效微生物强化有机废弃物厌氧消化的方法。
采用二沉池剩余污泥(VS/TS=50.9-68.8%,TS=1.7-4.8%)作为基质,稳定运行的厌氧消化反应器中的厌氧消化污泥(VS/TS=33.1-45.8%,TS=2.0-5.5%)做接种物,在工作容积为4L的反应器中进行连续流产甲烷实验。
再加入了磁铁-四氧化三铁催化剂,其中磁铁为内径2cm,外径4cm,高1cm的铁氧体磁铁环,四氧化三铁粒径为150nm,四氧化三铁与磁铁质量比为1:1,剩余污泥的VS与接种物的VS质量比为2:1。同时设置了只有接种物的空白组以消除接种物的影响。
采取连续进出料方式启动,SRT=20d。反应器采用42℃水浴加热,每搅拌1分钟停1分钟,搅拌速率为75r/min。实验过程中监测进出料挥发性脂肪酸、TS、VS含量,测定沼气产量和气体组分。
对比例6
与实施例3的不同之处在于,用等质量的四氧化三铁代替磁铁-四氧化三铁催化剂。
由图5所示,将实施例3与对比例6对比后发现,在启动初期实施例3和对比例6产气速率均快速增加,在十四天后,实施例3的产气速率高于对比例6,且速率差距随时间逐渐变大。在实施例3与对比例6均运行稳定时,实施例3的产气速率较对比例6增加约50%,且挥发性脂肪酸未出现积累,证明了加入了磁铁-四氧化三铁催化剂的反应器稳定运行的效果。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种有机废弃物厌氧消化的方法,其特征在于,该方法为:将有机废弃物、接种物和富集高效微生物的催化剂加入到反应器中,进行搅拌反应,生产甲烷。
2.根据权利要求1所述的一种有机废弃物厌氧消化的方法,其特征在于,所述的催化剂以磁铁为基体,以四氧化三铁为表面吸附物。
3.根据权利要求2所述的一种有机废弃物厌氧消化的方法,其特征在于,所述的四氧化三铁与磁铁的质量比为1:(1-10)。
4.根据权利要求2所述的一种有机废弃物厌氧消化的方法,其特征在于,所述的磁铁包括铁氧体磁铁或钕铁硼磁铁。
5.根据权利要求2所述的一种有机废弃物厌氧消化的方法,其特征在于,所述的磁铁的形状包括球体、椭球体、圆柱体或长方体;磁铁的结构为实心结构、空心结构、多孔结构或板状结构;所述的四氧化三铁的粒径为10nm-0.5mm。
6.根据权利要求1所述的一种有机废弃物厌氧消化的方法,其特征在于,所述的有机废弃物的来源包括城市污泥、餐厨垃圾、厨余垃圾或农作物秸秆中的一种或多种。
7.根据权利要求1所述的一种有机废弃物厌氧消化的方法,其特征在于,所述的生产方式包括批次、半连续或连续生产方式。
8.根据权利要求1所述的一种有机废弃物厌氧消化的方法,其特征在于,所述的接种物取自污泥厌氧消化反应器的出泥;所述的接种物中挥发性固体和有机废弃物中挥发性固体的质量比为1:(0.5-2)。
9.根据权利要求1或2所述的一种有机废弃物厌氧消化的方法,其特征在于,所述的四氧化三铁与有机废弃物中总固体的质量比为1:(1-6)。
10.根据权利要求1所述的一种有机废弃物厌氧消化的方法,其特征在于,所述反应的温度为35-55℃,所述搅拌转速为75-120r/min。
CN202010505660.0A 2020-06-05 2020-06-05 一种有机废弃物厌氧消化的方法 Active CN111826403B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010505660.0A CN111826403B (zh) 2020-06-05 2020-06-05 一种有机废弃物厌氧消化的方法
NL2026413A NL2026413B1 (en) 2020-06-05 2020-09-04 Method for anaerobic digestion of organic wastes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010505660.0A CN111826403B (zh) 2020-06-05 2020-06-05 一种有机废弃物厌氧消化的方法

Publications (2)

Publication Number Publication Date
CN111826403A true CN111826403A (zh) 2020-10-27
CN111826403B CN111826403B (zh) 2021-05-11

Family

ID=72898386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010505660.0A Active CN111826403B (zh) 2020-06-05 2020-06-05 一种有机废弃物厌氧消化的方法

Country Status (2)

Country Link
CN (1) CN111826403B (zh)
NL (1) NL2026413B1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680480A (zh) * 2021-01-04 2021-04-20 同济大学 一种有机固体废弃物厌氧发酵方法
CN113526818A (zh) * 2021-08-02 2021-10-22 江苏理工学院 一种负载铁磁性催化剂加速有机固体废物产生甲烷的工艺
CN115124140A (zh) * 2022-05-11 2022-09-30 郑州大学 一种利用铁改性火山石强化有机废水厌氧消化的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323970A1 (en) * 1986-09-16 1989-07-19 Commw Scient Ind Res Org WASTEWATER.
JP2000237785A (ja) * 1999-02-19 2000-09-05 Japan Science & Technology Corp 廃水処理に適した磁性スラッジおよびその製造方法と廃水処理方法
CN105771918A (zh) * 2016-05-04 2016-07-20 济南大学 一种磁性厌氧颗粒污泥-壳聚糖吸附剂的制备及应用
EP3138892A1 (en) * 2015-09-03 2017-03-08 Synthopetrol Use of multifunctional magnetic catalysts for the transformation of biomass
CN106517503A (zh) * 2016-10-18 2017-03-22 佛山慧创正元新材料科技有限公司 一种污泥活性炭厌氧颗粒污泥及其制备方法
CN108479429A (zh) * 2018-05-31 2018-09-04 中国科学院城市环境研究所 一种利用纳米Fe3O4改性PVDF微滤膜的制备方法及其运用
CN110551765A (zh) * 2019-09-02 2019-12-10 安徽舜禹水务股份有限公司 一种垃圾渗滤液厌氧制备甲烷的方法
CN110776228A (zh) * 2019-10-31 2020-02-11 同济大学 一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323970A1 (en) * 1986-09-16 1989-07-19 Commw Scient Ind Res Org WASTEWATER.
JP2000237785A (ja) * 1999-02-19 2000-09-05 Japan Science & Technology Corp 廃水処理に適した磁性スラッジおよびその製造方法と廃水処理方法
EP3138892A1 (en) * 2015-09-03 2017-03-08 Synthopetrol Use of multifunctional magnetic catalysts for the transformation of biomass
CN105771918A (zh) * 2016-05-04 2016-07-20 济南大学 一种磁性厌氧颗粒污泥-壳聚糖吸附剂的制备及应用
CN106517503A (zh) * 2016-10-18 2017-03-22 佛山慧创正元新材料科技有限公司 一种污泥活性炭厌氧颗粒污泥及其制备方法
CN108479429A (zh) * 2018-05-31 2018-09-04 中国科学院城市环境研究所 一种利用纳米Fe3O4改性PVDF微滤膜的制备方法及其运用
CN110551765A (zh) * 2019-09-02 2019-12-10 安徽舜禹水务股份有限公司 一种垃圾渗滤液厌氧制备甲烷的方法
CN110776228A (zh) * 2019-10-31 2020-02-11 同济大学 一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ESKANDARI KHALIL等: "An Eco-friendly Solvent-free Synthesis of Trisubstituted Methane Derivatives Catalyzed by Magnetic Iron Oxide Nanoparticles as a Highly Efficient and Recyclable Catalyst", 《LETTERS IN ORGANIC CHEMISTRY》 *
郭红红等: "纳米四氧化三铁对甲烷生物合成途径的影响", 《可再生能源》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680480A (zh) * 2021-01-04 2021-04-20 同济大学 一种有机固体废弃物厌氧发酵方法
CN112680480B (zh) * 2021-01-04 2021-10-15 同济大学 一种有机固体废弃物厌氧发酵方法
US11345934B1 (en) 2021-01-04 2022-05-31 Tongji University Method for anaerobically fermenting organic solid waste
CN113526818A (zh) * 2021-08-02 2021-10-22 江苏理工学院 一种负载铁磁性催化剂加速有机固体废物产生甲烷的工艺
CN115124140A (zh) * 2022-05-11 2022-09-30 郑州大学 一种利用铁改性火山石强化有机废水厌氧消化的方法

Also Published As

Publication number Publication date
NL2026413A (en) 2022-01-11
NL2026413B1 (en) 2022-09-20
CN111826403B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
CN112047590B (zh) 一种利用餐厨垃圾预醇化强化污泥厌氧消化的方法
CN111826403B (zh) 一种有机废弃物厌氧消化的方法
Yang et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition
Gou et al. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste
CN110734933B (zh) 提高废弃活性污泥厌氧发酵的中链脂肪酸产量的方法
CN102300977A (zh) 用于从工业有机废弃物和生物质生产氢和甲烷的集成系统
CN103555566B (zh) 一种促进厌氧消化产甲烷的外置电解设备
CN108866115B (zh) 利用酒糟和污泥联合厌氧发酵高效生产挥发性脂肪酸的方法
Zhu et al. The role of endogenous and exogenous hydrogen in the microbiology of biogas production systems
Zhao et al. Application of biogas recirculation in anaerobic granular sludge system for multifunctional sewage sludge management with high efficacy energy recovery
CN103343145A (zh) 利用还原铁粉促进污泥厌氧发酵生产短链脂肪酸的方法
CN112938963A (zh) 一种利用秸秆和芬顿污泥制备磁性碳的方法与应用
WO2015104554A1 (en) A method for the recovery of organic compounds from wastewater for generating electricity
Najafpour et al. Bioconversion of cheese whey to methane in an upflow anaerobic packed bed bioreactor
CN109401947B (zh) 一种污泥与餐厨垃圾共消化系统及其运行方法
CN113501646B (zh) 一种基于催化-导电材料耦合强化污泥两相厌氧消化的方法
CN109019852B (zh) 用于削减纳米氧化锌对污水厌氧生物处理不利影响的方法
Bian et al. Simultaneous biohythane and volatile fatty acids production from food waste in microbial electrolysis cell-assisted acidogenic reactor
CN108033555B (zh) 一种快速启动垃圾焚烧厂渗沥液的厌氧生物处理系统的方法
Wu et al. Effect of activated carbon/graphite on enhancing anaerobic digestion of waste activated sludge
CN111777162A (zh) 一种铁碳微电解与厌氧生物耦合处理废水的方法
CN116732111A (zh) 采用过硫酸盐氧化协同硫酸盐还原菌新体系促进废弃生物质能源转化的方法
CN115181284A (zh) 一种Fe-MOF/Ben@CNTs复合导电材料、制备方法及其应用
CN108249725B (zh) 一种预发酵强化剩余污泥厌氧消化产甲烷的方法
CN109851058B (zh) 一种猪场养殖废水的微生物石墨烯联合处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant