CN111825077B - MoSi2—三维石墨烯复合材料的制备方法及应用 - Google Patents

MoSi2—三维石墨烯复合材料的制备方法及应用 Download PDF

Info

Publication number
CN111825077B
CN111825077B CN201910319908.1A CN201910319908A CN111825077B CN 111825077 B CN111825077 B CN 111825077B CN 201910319908 A CN201910319908 A CN 201910319908A CN 111825077 B CN111825077 B CN 111825077B
Authority
CN
China
Prior art keywords
dimensional graphene
mosi
micron
dimensional
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910319908.1A
Other languages
English (en)
Other versions
CN111825077A (zh
Inventor
刘若鹏
赵治亚
李妤婕
平昱航
付立顺
商院芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Kps Gang Creative Technology Ltd
Kuang Chi Institute of Advanced Technology
Original Assignee
Shenzhen Kps Gang Creative Technology Ltd
Kuang Chi Institute of Advanced Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Kps Gang Creative Technology Ltd, Kuang Chi Institute of Advanced Technology filed Critical Shenzhen Kps Gang Creative Technology Ltd
Priority to CN201910319908.1A priority Critical patent/CN111825077B/zh
Publication of CN111825077A publication Critical patent/CN111825077A/zh
Application granted granted Critical
Publication of CN111825077B publication Critical patent/CN111825077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供一种MoSi2‑三维石墨烯复合材料的制备方法,所述制备方法包括以下步骤:S1制备氧化石墨烯水溶液;S2制备三维石墨烯水凝胶;S3干燥三维石墨烯水凝胶得到三维石墨烯泡沫;S4将微米MoSi2、微米SiO2和微米H3BO3的混合物填充在三维石墨烯孔道内;S5将步骤S4中得到的复合物在惰性气氛中烧结得到MoSi2‑三维石墨烯复合材料。本发明中MoSi2‑三维石墨烯复合材料的制备工艺简单,且得到的复合材料具有较好的力学性能和吸波性能。

Description

MoSi2—三维石墨烯复合材料的制备方法及应用
【技术领域】
本发明涉及功能复合材料领域,尤其涉及一种MoSi2-三维石墨烯复合材料的制备方法及应用。
【背景技术】
三维石墨烯具有重量轻、密度小、柔性好、多孔结构等优异特点,有望解决现有航空航天、电子设备等用吸波材料存在密度高、厚度大等难题,但单一的三维石墨烯力学性能较差、吸波效果不突出。将微米粒子与石墨烯通过物理或化学的方式共混可以获得功能性复合材料,但石墨烯复合材料加工工艺复杂,且现有三维石墨烯复合材料力学性能不理想或不耐高温,因此有必要开发一种制备工艺简单、力学性能好、耐高温性能好以及吸波性能好的三维石墨烯复合材料。
【发明内容】
为解决上述技术问题,本发明提供一种MoSi2-三维石墨烯复合材料的制备方法,所述制备方法包括以下步骤:S1制备氧化石墨烯水溶液;S2制备三维石墨烯水凝胶;S3干燥三维石墨烯水凝胶得到三维石墨烯泡沫;S4 将微米MoSi2、微米SiO2和微米H3BO3的混合物填充在三维石墨烯孔道内; S5将步骤S4中得到的复合物在惰性气氛中烧结得到MoSi2-三维石墨烯复合材料。
在本发明的一些实施例中,MoSi2:SiO2:H3BO3为(20~70):(10~ 30):(3~5)。
在本发明的一些实施例中,按质量分数计,三维石墨烯泡沫:MoSi2为 1:(1~10)。
在本发明的一些实施例中,微米MoSi2的平均粒径为0.1~10um,微米 SiO2的平均粒径为0.1~10um,微米H3BO3的平均粒径为0.1~10um。
在本发明的一些实施例中,氧化石墨烯水溶液的浓度为1mg/ml~ 10mg/ml。
在本发明的一些实施例中,步骤S2为水热法制备三维石墨烯水凝胶,其中,按质量分数计,氧化石墨烯:还原助剂为1:(2~5)。
在本发明的一些实施例中,步骤S3为冷冻干燥工艺得到三维石墨烯泡沫,其中,冷冻温度为-40℃~-20℃,冷冻时间为10h~24h;冷冻结束后采用3~6℃/min的升温速度,升温至40℃~60℃,干燥时间24h~72h。
在本发明的一些实施例中,步骤S4包括(1)去除三维石墨烯泡沫表面的致密层,从而得到底部致密中间孔道疏松的三维石墨烯泡沫;(2)将微米 MoSi2、微米SiO2和微米H3BO3的混合物直接填充至三维石墨烯孔道内或将混合物通过溶剂分散后填充至三维石墨烯孔道内。
在本发明的一些实施例中,步骤S5中的烧结温度为600℃~1500℃。
本发明还公开一种由上述或下述的制备方法得到的MoSi2-三维石墨烯复合材料在吸波材料或隐身材料上的应用。
本发明提供一种MoSi2-三维石墨烯复合材料的制备方法,所述制备方法包括以下步骤:S1制备氧化石墨烯水溶液;S2制备三维石墨烯水凝胶; S3干燥三维石墨烯水凝胶得到三维石墨烯泡沫;S4将微米MoSi2、微米 SiO2和微米H3BO3的混合物填充在三维石墨烯孔道内;S5将步骤S4中得到的复合物在惰性气氛中烧结得到MoSi2-三维石墨烯复合材料。本发明通过在三维石墨烯泡沫内填充微米MoSi2、微米SiO2和微米H3BO3的混合物,将无机粒子与三维石墨烯直接复合,解决了无机粒子与石墨烯共混困难的问题。在烧结过程中,微米MoSi2在粘接剂SiO2和烧结助剂H3BO3的作用下形成陶瓷相结构,填充在三维石墨烯的内部孔道,能显著提高三维石墨烯的力学性能,且MoSi2与石墨烯在高温下,会发生化学反应生成MoxSiyCz化合物,可进一步提升材料的力学性能,因此,本发明中MoSi2-三维石墨烯复合材料的制备工艺简单,且制备的复合材料具有较好的力学性能和吸波性能。
【附图说明】
图1本发明MoSi2-三维石墨烯复合材料的制备流程图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
S1用hummer法制备浓度为1mg/ml的氧化石墨烯水溶液备用;S2将分散良好的氧化石墨烯溶液置于大烧杯中,并加入抗坏血酸得到氧化石墨烯反应液,其中,氧化石墨烯和还原助剂的质量比为1:2,充分混合后将反应液倒入尺寸为200mm×200mm~350mm×350mm的反应模具内,模具内表面覆盖一层保鲜膜以助于后面泡沫的取出,将模具置于烘箱中95℃,反应时间为2h;取出得到的水凝胶,用去离子水置换和静置2天,得到水凝胶; S3:设置冷冻干燥机的工艺参数,冷冻温度定为-40℃,冷冻时间为10h,对混合溶液进行冷冻处理,冷冻结束后,更改冷冻干燥机的工艺参数,采用梯度升温3℃/min的方法升温至60℃,干燥时间为30h后取出制得的石墨烯气凝胶泡沫样品;S4:将得到的石墨烯气凝胶仅除去上表面的致密层,得到底部致密、中间孔道较为疏松的石墨烯气凝胶泡沫,将微米MoSi2、微米 SiO2和微米H3BO3的混合物直接填充在三维石墨烯孔道内,其中,按质量分数计,MoSi2:SiO2:H3BO3为20:10:3,三维石墨烯与混合物的质量比为 1:1;S5将填充有混合物的三维石墨烯材料在氩气保护下1350℃烧结0.5h,然后以20℃/min的退火温度冷却至室温得到本发明中MoSi2-三维石墨烯复合材料。
实施例2
S1用hummer法制备浓度为6mg/ml的氧化石墨烯水溶液备用;S2将分散良好的氧化石墨烯溶液置于大烧杯中,并加入抗坏血酸得到氧化石墨烯反应液,其中,氧化石墨烯和还原助剂的质量比为1:3,充分混合后将反应液倒入尺寸为200mm×200mm~350mm×350mm的反应模具内,模具内表面覆盖一层保鲜膜以助于后面泡沫的取出,将模具置于烘箱中95℃,反应时间为2h;取出得到的水凝胶,用去离子水置换和静置2天,得到水凝胶;S3:设置冷冻干燥机的工艺参数,冷冻温度定为-40℃,冷冻时间为10h,对混合溶液进行冷冻处理,冷冻结束后,更改冷冻干燥机的工艺参数,采用梯度升温3℃/min的方法升温至60℃,干燥时间为30h后取出制得的石墨烯气凝胶泡沫样品;S4:将得到的石墨烯气凝胶仅除去上表面的致密层,得到底部致密、中间孔道较为疏松的石墨烯气凝胶泡沫,将微米MoSi2、微米SiO2和微米H3BO3的混合物分散于N-N-二甲基乙酰胺:环氧树脂=1:3的溶剂中,然后喷涂在三维石墨烯孔道内,其中,按质量分数计,MoSi2:SiO2:H3BO3为14:6:1,三维石墨烯与混合物的质量比为1:5;S5将填充有混合物的三维石墨烯材料在氩气保护下1350℃烧结0.5h,然后以20℃/min的退火温度冷却至室温得到本发明中MoSi2-三维石墨烯复合材料。
实施例3
S1用hummer法制备浓度为10mg/ml的氧化石墨烯水溶液备用;S2将分散良好的氧化石墨烯溶液置于大烧杯中,并加入抗坏血酸得到氧化石墨烯反应液,其中,氧化石墨烯和还原助剂的质量比为1:5,充分混合后将反应液倒入尺寸为200mm×200mm~350mm×350mm的反应模具内,模具内表面覆盖一层保鲜膜以助于后面泡沫的取出,将模具置于烘箱中95℃,反应时间为2h;取出得到的水凝胶,用去离子水置换和静置2天,得到水凝胶; S3:设置冷冻干燥机的工艺参数,冷冻温度定为-40℃,冷冻时间为10h,对混合溶液进行冷冻处理,冷冻结束后,更改冷冻干燥机的工艺参数,采用梯度升温3℃/min的方法升温至60℃,干燥时间为30h后取出制得的石墨烯气凝胶泡沫样品;S4:将得到的石墨烯气凝胶仅除去上表面的致密层,得到底部致密、中间孔道较为疏松的石墨烯气凝胶泡沫,将微米MoSi2、微米 SiO2和微米H3BO3的混合物分散于N-N-二甲基乙酰胺:环氧树脂=1:3的溶剂中,然后喷涂在三维石墨烯孔道内,其中,按质量分数计,MoSi2:SiO2:H3BO3为15:5:1,三维石墨烯与混合物的质量比为1:8;S5将填充有混合物的三维石墨烯材料在氩气保护下1350℃烧结0.5h,然后以20℃/min的退火温度冷却至室温得到本发明中MoSi2-三维石墨烯复合材料。
将实施例1至实施例3中得到的多孔三维石墨烯吸波材料裁切成 180mm*180mm大小的平板件,放入吸波暗室测试其在2-18GHz的反射率曲线,结果表明MoSi2/石墨烯三维复合材料在X波段的有效吸收频带宽均达 6~12GHz,实施例1的最大吸收强度达-13~-15dB、实施例2的最大吸收强度达-30~-37dB、实施例3的最大吸收强度达-25~-30dB。由测试数据可知, MoSi2/石墨烯三维复合吸波材料具有吸收频带宽,吸波效率优良的特点。
在上述实施例中,仅对本发明进行了示范性描述,但是本领域技术人员在阅读本专利申请后可以在不脱离本发明的精神和范围的情况下对本发明进行各种修改。

Claims (5)

1.一种MoSi2-三维石墨烯复合材料的制备方法,其特征在于,所述制备方法包括以下步骤:
S1制备氧化石墨烯水溶液;
S2制备三维石墨烯水凝胶;
S3干燥三维石墨烯水凝胶得到三维石墨烯泡沫;
S4将微米MoSi2、微米SiO2和微米H3BO3的混合物填充在三维石墨烯孔道内;
S5将步骤S4中得到的复合物在惰性气氛中烧结得到MoSi2-三维石墨烯复合材料;
其中,按质量分数计,所述MoSi2:SiO2:H3BO3为(20~70):(10~30):(3~5);按质量分数计,所述三维石墨烯泡沫:MoSi2为1:(1~10);所述微米MoSi2的平均粒径为0.1~10um,微米SiO2的平均粒径为0.1~10um,微米H3BO3的平均粒径为0.1~10um;
其中,所述步骤S4包括(1)去除三维石墨烯泡沫表面的致密层,从而得到底部致密中间孔道疏松的三维石墨烯泡沫;(2)将微米MoSi2、微米SiO2和微米H3BO3的混合物直接填充至三维石墨烯孔道内或将混合物通过溶剂分散后填充至三维石墨烯孔道内;所述步骤S5中的烧结温度为600℃~1500℃。
2.如权利要求1所述的制备方法,其特征在于,所述氧化石墨烯水溶液的浓度为1mg/ml~10mg/ml。
3.如权利要求1所述的制备方法,其特征在于,所述步骤S2为水热法制备三维石墨烯水凝胶。
4.如权利要求1所述的制备方法,其特征在于,所述步骤S3为冷冻干燥工艺得到三维石墨烯泡沫,其中,冷冻温度为-40℃~-10℃,冷冻时间为10h~24h;冷冻结束后采用3~6℃/min的升温速度,升温至40℃~60℃,干燥时间24h~72h。
5.一种由权利要求1-4任一项所述的制备方法得到的MoSi2-三维石墨烯复合材料在吸波材料上的应用。
CN201910319908.1A 2019-04-19 2019-04-19 MoSi2—三维石墨烯复合材料的制备方法及应用 Active CN111825077B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910319908.1A CN111825077B (zh) 2019-04-19 2019-04-19 MoSi2—三维石墨烯复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910319908.1A CN111825077B (zh) 2019-04-19 2019-04-19 MoSi2—三维石墨烯复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN111825077A CN111825077A (zh) 2020-10-27
CN111825077B true CN111825077B (zh) 2023-03-07

Family

ID=73629563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910319908.1A Active CN111825077B (zh) 2019-04-19 2019-04-19 MoSi2—三维石墨烯复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN111825077B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773067B (zh) * 2021-11-11 2022-01-18 长沙中瓷新材料科技有限公司 一种基于堇青石的匣钵及其生产工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459032A (zh) * 2016-06-02 2017-12-12 中国科学院上海硅酸盐研究所 一种多孔三维石墨烯材料的制备方法
CN108439371A (zh) * 2016-12-13 2018-08-24 无锡格致新材料研发科技有限公司 一种三维(3d)石墨烯的制备方法
CN110041885A (zh) * 2019-05-10 2019-07-23 安徽理工大学 一种还原氧化石墨烯/二氧化锡纳米复合吸波材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101774645B1 (ko) * 2015-09-03 2017-09-19 한국과학기술원 그래핀-나노 물질 복합체, 이를 포함하는 유연 및 신축성 복합체 및 이들의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459032A (zh) * 2016-06-02 2017-12-12 中国科学院上海硅酸盐研究所 一种多孔三维石墨烯材料的制备方法
CN108439371A (zh) * 2016-12-13 2018-08-24 无锡格致新材料研发科技有限公司 一种三维(3d)石墨烯的制备方法
CN110041885A (zh) * 2019-05-10 2019-07-23 安徽理工大学 一种还原氧化石墨烯/二氧化锡纳米复合吸波材料的制备方法

Also Published As

Publication number Publication date
CN111825077A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
Bian et al. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance
US20040076806A1 (en) Porous ceramics and method for preparation thereof, and microstrip substrate
Hu et al. Step-freeze-drying method for carbon aerogels: a study of the effects on microstructure and mechanical property
CN114262230B (zh) 一种氮化硅-碳化硅多孔陶瓷吸波材料及其制备方法
CN1994974A (zh) 多孔陶瓷的孔壁碳化硅涂层及其制备方法
CN111825077B (zh) MoSi2—三维石墨烯复合材料的制备方法及应用
Lin et al. Constrained densification kinetics of alumina/borosilicate glass+ alumina/alumina sandwich structure
CN115925426B (zh) 一种气凝胶复合材料及其制备方法
CN114890770B (zh) 一种多孔碳化硅/碳复合气凝胶的制备方法
WO2019061484A1 (zh) 一种浸渍法制备SiCN/Si3N4复合陶瓷的方法
CN114956828B (zh) 碳化硅陶瓷及其制备方法和应用
CN111943721B (zh) 一种耐高温吸波复合材料的制备方法及应用
WO2006059809A1 (ja) 細孔測定用試料処理システム
CN109320257B (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
US5108958A (en) Ceramic composite for electronic applications
Yu et al. Preparation and electromagnetic wave absorption properties of PDC–SiC/Si3N4 composites using selective laser sintering and infiltration technology
CN111847429A (zh) 三维石墨烯吸波材料的制备方法及应用
CN112079631B (zh) 一种近零温度系数低介ltcc材料及其制备方法
US5213878A (en) Ceramic composite for electronic applications
Yamamoto et al. Fabrication of controlled porosity in a tape cast glass ceramic substrate material
CN109650889A (zh) 一种低烧结温度介电陶瓷的制备方法
CN114621011B (zh) 一种片状非晶Si-C-O气凝胶及制备方法
CN117886624A (zh) 一种用于25℃~1300℃的宽频吸波材料及其制备方法
NL2033277B1 (en) Method for preparing porous ceramic
CN116726816A (zh) 一种复合气凝胶材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant