CN111817636A - 一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法 - Google Patents

一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法 Download PDF

Info

Publication number
CN111817636A
CN111817636A CN202010492234.8A CN202010492234A CN111817636A CN 111817636 A CN111817636 A CN 111817636A CN 202010492234 A CN202010492234 A CN 202010492234A CN 111817636 A CN111817636 A CN 111817636A
Authority
CN
China
Prior art keywords
frequency
sinusoidal voltage
continuously
signal
angular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010492234.8A
Other languages
English (en)
Other versions
CN111817636B (zh
Inventor
吴春
王世军
陈强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202010492234.8A priority Critical patent/CN111817636B/zh
Publication of CN111817636A publication Critical patent/CN111817636A/zh
Application granted granted Critical
Publication of CN111817636B publication Critical patent/CN111817636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法,包括以下步骤:步骤1,设计幅值/频率为常数且频率连续变化的高频正弦电压信号发生器;步骤2,推导估计dq坐标系高频电流响应通用表达形式并在估计d轴注入频率连续变化的高频正弦电压;步骤3,在估计q轴中解调高频电流响应,提取位置信息;步骤4,位置估计。本发明估计d轴注入在一定频率范围内频率连续变化的高频正弦信号,并在估计q轴上提取高频电流信号,将高频电流信号通过低通滤波器、归一化处理得到与电机参数无关的位置估计误差信息,再利用位置跟踪器估计位置。本发明在保留估计d轴高频信号注入无位置传感器控制基本动、静态性能的前提下,有效降低了噪声幅值。

Description

一种频率连续变化的高频正弦电压注入的永磁同步电机位置 估计方法
技术领域
本发明涉及永磁同步电机控制技术领域,特别涉及一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法。
背景技术
永磁同步电动机(PMSM)具有高效率、高功率密度、高控制精度等优点,而被广泛用于高性能驱动系统,例如家用电器、工业自动化装备、电动汽车等。永磁同步电机矢量控制需要实时获得转子永磁体磁极位置进行坐标变换,实现转矩、磁链解耦控制。但是,常用位置传感器,例如光电编码器、旋转变压器等,会增加电机系统的成本,降低系统可靠性。
近三十年,多种无位置传感器控制策略相继被提出。其中,低速范围和静止工况下,使用的高频注入法通过向电机定子绕组注入高频激励电压信号,并从高频电流响应中解调出转子位置。然而,注入高频信号的频率受制于逆变器开关频率限制,通常在0.5kHz~2kHz范围内,在注入频率处会产生尖锐的噪音,属于人耳可听范围。另一方面,注入高频信号会引起电磁兼容问题,会对周围电子设备产生影响。上述缺点限制了该方法在实际工业、家用等场合的应用。针对高频注入带来的问题,文献《Sensorless Control Strategy forIPMSM to Reduce Audible Noise by Variable Frequency Current Injection》(Du B,Zhao T,Han S,Song L,Cui S.IEEE Transactions on Industrial Electronics,2020,67(2):1149-59.)采用一种变频电流注入方法,在一定程度上可以降低噪声,然而该方法的实现需要额外两个谐振控制器会增加系统计算量。文献《Pseudo-Random-FrequencySinusoidal Injection for Position Sensorless IPMSM Drives Considering Sampleand Hold Effect》(Zhang G,Wang G,Zhang H,Wang H,Bi G,Zhang X,et al.IEEETransactions on Power Electronics,2019,34(10):9929-41.)注入两个不成倍数关系的高频激励信号,以衰减特定频率的噪声,但是该方法噪声频谱依然不连续,仍然会有较明显的噪声。
发明内容
鉴于上述问题,本发明的目的在于提供一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法,在估计d轴注入在一定频率范围内频率连续变化的高频正弦信号,并在估计q轴上提取高频电流信号,然后将高频电流信号通过低通滤波器、归一化处理得到与电机参数无关的位置估计误差信息;再利用位置跟踪器估计位置。所提方法在保留无位置传感器控制高动、静态性能的前提下,有效降低电磁噪声。
本发明为了实现上述发明目的,采用如下技术方案:
一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法,包括以下步骤:
步骤1,设计频率连续变化且幅值/频率为常数的高频正弦电压信号发生器,过程如下:
1.1设计频率连续变化的高频正弦电压信号发生器,分为二个阶段进行:
第一阶段为角频率增长阶段:
当第一个注入周期开始时,生成一个角频率为ωh1的正弦波,然后让角频率线性增加,即ωhk=ωh1+(k-1)Δω,直到角频率增加至ωhm,则注入频率连续变化的高频正弦电压信号:
uinj=uh(t)sin(ωhkt);
其中,uh(t)为频率连续变化的高频正弦电压信号随时间变化的幅值,ωh1为注入信号的第1个周期的角频率,ωhk为注入信号的第k个周期的角频率,ωhm为注入信号的第m个周期的角频率,t为时间,其中1≤k≤m,k、m为正整数,Δω=(2π)/Ts,Ts为控制周期;
第二阶段为角频率减小阶段:
当角频率增加至ωhm,然后让角频率线性减小,即ωhz=ωhm-(z-m)Δω,直到角频率减小至ωhy,则注入频率连续变化的高频正弦电压信号:
uinj=uh(t)sin(ωhzt);
其中,ωhz为注入信号的第z个周期的角频率,ωhy为注入信号的第y个周期的角频率,其中m≤z≤y,z、y为正整数,ωh1=ωhy
同理,当角频率达到ωhy后,则继续使角频率线性增加,重复上述步骤,以这种方式作为一个循环,以此往下进行,将会产生频率连续变化的高频正弦电压信号;
1.2设置幅值/频率为常数的高频正弦电压信号发生器;
频率连续变化的高频正弦电压信号的幅值需要随其频率变化而变化,为了保证信噪比,需要满足产生频率连续变化的高频正弦电压信号的幅值与角频率成正比;
在这里定义幅值角频率比为kv,即:
kv=uh(t)/ωh(t);
其中,ωh(t)为频率连续变化的高频正弦电压信号随时间变化的角频率;
步骤2,计算估计dq坐标系计算高频电流响应,过程如下:
2.1推导估计dq坐标系高频电流响应通用表达形式;
根据坐标关系图得出:
Figure BDA0002521505500000031
式中,
Figure BDA0002521505500000032
为估计dq坐标系下定子电流高频分量,
Figure BDA0002521505500000033
为估计d轴和实际q轴之间的夹角,θe为实际转子磁极d轴所在位置,
Figure BDA0002521505500000034
为估计转子磁极d轴所在位置,ΣL=(Ld+Lq)/2为均值电感,ΔL=(Ld-Lq)/2为差值电感;
2.2在估计d轴注入频率连续变化的高频正弦电压;
在永磁同步电机矢量控制估计d轴注入频率连续变化的高频正弦电压:
Figure BDA0002521505500000035
式中,
Figure BDA0002521505500000036
分别为估计dq轴的高频电压,uh为注入频率连续变化的高频正弦电压的幅值,ωh为注入频率连续变化的高频正弦电压的角频率;
根据上述公式得:
Figure BDA0002521505500000037
步骤3,在估计q轴中解调高频电流响应,提取位置信息,过程如下:
3.1选取解调信号kd=cos(ωht),与高频响应电流
Figure BDA0002521505500000038
相乘,将该高频响应电流通过低通滤波器,得经解调过后的高频电流响应信号为:
Figure BDA0002521505500000039
式中,iΔ为解调后的高频响应电流,LPF为低通滤波器;
3.2选取km=(LdLqωh)/(uhΔL),与解调后的高频响应电流iΔ相乘,进行归一化处理,得到与电机参数无关的位置估计误差:
Figure BDA00025215055000000310
步骤4,位置估计;
在获取转子位置误差信号后,利用位置跟踪器估计永磁同步电机转子位置信息。
优选地,所述1.1中,逆变器的PWM频率优选20kHz,高频注入信号的频率设置为0.5kHz~2kHz,远高于电机基波频率。
优选ωhm=2kHz,ωh1=ωhy=1kHz;
优选地,所述1.2中,取kv=0.03/π(V/Hz),则60V≤uh(t)≤120V,1kHz≤ωh(t)≤2kHz;
即产生一个频率与幅值分别在1kHz~2kHz与60V~120V范围内连续变化的高频正弦电压信号。
优选地,所述步骤4中,选用锁相环估计转子位置和转速。
本发明提供一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法,可以将注入信号所激励的电流的频谱峰值部分降低,且向两边拓宽,即可达到显著降低尖锐噪声的目的。
本发明的技术构思为:针对已有永磁同步电机传统高频注入方法存在声学噪声问题,基于dq两相同步旋转坐标系下永磁同步电机数学模型,设计频率连续变化的高频正弦电压入模式,通过沿着估计d轴注入频率连续变化的高频正弦电压,计算估计q轴高频电流响应,将高频电流响应进行解调处理,通过低通滤波器,而后进行归一化处理去掉与转子位置无关的一项,将得到的位置误差信号,通过位置跟踪器估计永磁同步电机转子位置。
本发明采用上述技术方案,具有以下有益效果:
(1)通过估计d轴注入连续高频正弦电压信号,可以将电磁噪声分散在一个频带内,削弱电磁噪声,同时保留了估计d轴高频注入产生转矩脉动小的优点;
(2)注入电压幅值与注入频率成正比,保证转子位置估计的信噪比,提高了位置的精度。
附图说明
图1为本发明的整个控制系统结构框图;
图2两相静止坐标系、实际两相同步旋转坐标系、估计两相同步旋转坐标系之间的位置关系示意图;
图3频率连续变化的高频正弦电压信号发生器原理框图;
图4为位置跟踪器;
图5为当永磁同步电机转速给定值为
Figure BDA0002521505500000041
为150r/min,电机相电流FFT分析仿真波形。
具体实施方式
下面结合附图对本发明做进一步说明。
参照图1~图5,一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法,首先建立如图2所示的坐标系关系图,d-q为实际同步旋转坐标系,
Figure BDA0002521505500000051
为估计转子同步旋转坐标系,α-β为实际两相静止坐标系,并且定义
Figure BDA0002521505500000052
为估计d轴和实际q轴之间的夹角,θe为实际转子磁极d轴所在位置,
Figure BDA0002521505500000053
为估计转子磁极d轴所在位置,所述方法包括以下步骤:
步骤1,设计频率连续变化且幅值/频率为常数的高频正弦电压信号发生器,过程如下:
1.1设计频率连续变化的高频正弦电压信号发生器,分为二个阶段进行:
第一阶段为角频率增长阶段:
当第一个注入周期开始时,生成一个角频率为ωh1的正弦波,然后让角频率线性增加,即ωhk=ωh1+(k-1)Δω,直到角频率增加至ωhm,则注入频率连续变化的高频正弦电压信号:
uinj=uh(t)sin(ωhkt);
其中,uh(t)为频率连续变化的高频正弦电压信号随时间变化的幅值,ωh1为注入信号的第1个周期的角频率,ωhk为注入信号的第k个周期的角频率,ωhm为注入信号的第m个周期的角频率,t为时间,其中1≤k≤m,k、m为正整数,Δω=(2π)/Ts,Ts为控制周期;
第二阶段为角频率减小阶段:
当角频率增加至ωhm,然后让角频率线性减小,即ωhz=ωhm-(z-m)Δω,直到角频率减小至ωhy,则注入频率连续变化的高频正弦电压信号:
uinj=uh(t)sin(ωhzt);
其中,ωhz为注入信号的第z个周期的角频率,ωhy为注入信号的第y个周期的角频率,其中m≤z≤y,z、y为正整数,ωh1=ωhy
同理,当角频率达到ωhy后,则继续使角频率线性增加,重复上述步骤,以这种方式作为一个循环,以此往下进行,将会产生频率连续变化的高频正弦电压信号;
1.2设置幅值/频率为常数的高频正弦电压信号发生器;
频率连续变化的高频正弦电压信号的幅值需要随其频率变化而变化,为了保证信噪比,需要满足产生频率连续变化的高频正弦电压信号的幅值与角频率成正比;
在这里定义幅值频率比为kv,即:
kv=uh(t)/ωh(t);
其中,ωh(t)为频率连续变化的高频正弦电压信号随时间变化的角频率;
步骤2,建立高频电压信号下永磁同步电机数学模型,过程如下:
2.1,在dq两相同步旋转坐标系上,永磁同步电机状态方程表示如下:
Figure BDA0002521505500000061
式中,ud、uq、id、iq分别为dq坐标系上定子电压、电流,Rs为定子电阻,Ld、Lq为d、q轴电感,ωe为电气角速度,Ψf为永磁体磁链幅值;
2.2,由于高频注入信号的频率远高于电机的基波频率,因此把三相永磁同步电机看作一个电阻和电感电路,又因为高频时电阻相对电抗非常小,所以忽略电阻;此时,三相永磁同步电机的高频电压方程简化为:
Figure BDA0002521505500000062
式中,udh、uqh、idh、iqh为d、q轴上的高频电压、电流分量,下标h表示高频分量;
步骤3,计算估计dq坐标系计算高频电流响应,过程如下:
3.1推导估计dq坐标系高频电流响应通用表达形式;
根据坐标关系图得出:
Figure BDA0002521505500000063
式中,
Figure BDA0002521505500000064
为估计dq坐标系下定子电流高频分量,
Figure BDA0002521505500000065
为估计d轴和实际q轴之间的夹角,实际转子磁极d轴所在位置,
Figure BDA0002521505500000066
为估计转子磁极d轴所在位置,ΣL=(Ld+Lq)/2为均值电感,ΔL=(Ld-Lq)/2为差值电感;
从公式(3)中得出:
Figure BDA0002521505500000071
3.2在估计
Figure BDA0002521505500000072
轴注入频率连续变化的高频正弦电压;
在永磁同步电机矢量控制估计
Figure BDA0002521505500000073
轴注入频率连续变化的高频正弦电压:
Figure BDA0002521505500000074
式中,
Figure BDA0002521505500000075
分别为估计dq轴的高频电压,uh为注入频率连续变化的高频正弦电压的幅值,ωh为注入频率连续变化的高频正弦电压的角频率;将公式(5)代入公式(4)得:
Figure BDA0002521505500000076
步骤4,在估计q轴中解调高频电流响应,提取位置信息,过程如下:
4.1选取解调信号kd=cos(ωht),与高频响应电流
Figure BDA0002521505500000077
相乘,将该高频响应电流通过低通滤波器,得经解调过后的高频电流响应信号为:
Figure BDA0002521505500000078
式中,iΔ为解调后的高频响应电流,LPF为低通滤波器;
4.2选取km=(LdLqωh)/(uhΔL),与解调后的高频响应电流iΔ相乘,进行归一化处理,得到与电机参数无关的位置估计误差:
Figure BDA0002521505500000079
步骤5,位置估计;
在获取转子位置误差信号后,利用位置观测器估计永磁同步电机转子位置信息。
优选地,所述1.1中,逆变器的PWM频率优选20kHz,高频注入信号的频率设置为0.5kHz~2kHz,远高于电机基波频率。
优选ωhm=2kHz,ωh1=ωhy=1kHz;
优选地,所述1.2中,取kv=0.03/π(V/Hz),则60V≤uh(t)≤120V,1kHz≤ωh(t)≤2kHz;
即产生一个频率与幅值分别在1kHz~2kHz与60V~120V范围内连续变化的高频正弦电压信号。
优选地,所述步骤5中,选用锁相环估计转子位置和转速。
图5为仿真获得的波形图,该仿真在MATLAB的Simulink中搭建,可见采用了本发明的一种频率连续变化的高频正弦电压注入永磁同步电机的方法之后,相电流FFT分析中发现与注入固定频率正弦电压信号的相电流频谱峰值相比,注入频率连续变化的高频正弦电压信号的相电流频谱峰值得到降低,且将相电流频谱峰值分散在一个频带内,削弱了电磁噪声,本仿真结果证明了本发明方法的有效性。

Claims (5)

1.一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法,其特征在于,所述方法包括以下步骤:
步骤1,设计频率连续变化且幅值/频率为常数的高频正弦电压信号发生器,过程如下:
1.1设计频率连续变化的高频正弦电压信号发生器,分为二个阶段进行:
第一阶段为角频率增长阶段:
当第一个注入周期开始时,生成一个角频率为ωh1的正弦波,然后让角频率线性增加,即ωhk=ωh1+(k-1)Δω,直到角频率增加至ωhm,则注入频率连续变化的高频正弦电压信号:
uinj=uh(t)sin(ωhkt);
其中,uh(t)为频率连续变化的高频正弦电压信号随时间变化的幅值,ωh1为注入信号的第1个周期的角频率,ωhk为注入信号的第k个周期的角频率,ωhm为注入信号的第m个周期的角频率,t为时间,其中1≤k≤m,k、m为正整数,Δω=(2π)/Ts,Ts为控制周期;
第二阶段为角频率减小阶段:
当角频率增加至ωhm,然后让角频率线性减小,即ωhz=ωhm-(z-m)Δω,直到角频率减小至ωhy,则注入频率连续变化的高频正弦电压信号:
uinj=uh(t)sin(ωhzt);
其中,ωhz为注入信号的第z个周期的角频率,ωhy为注入信号的第y个周期的角频率,其中m≤z≤y,z、y为正整数,ωh1=ωhy
同理,当角频率达到ωhy后,则继续使角频率线性增加,重复上述步骤,以这种方式作为一个循环,以此往下进行,将会产生频率连续变化的高频正弦电压信号;
1.2设置幅值/频率为常数的高频正弦电压信号发生器;
频率连续变化的高频正弦电压信号的幅值需要随其频率变化而变化,为了保证信噪比,需要满足产生频率连续变化的高频正弦电压信号的幅值与角频率成正比;
在这里定义幅值频率比为kv,即:
kv=uh(t)/ωh(t);
其中,ωh(t)为频率连续变化的高频正弦电压信号随时间变化的角频率;
步骤2,建立高频电压信号下永磁同步电机数学模型,过程如下:
2.1,在dq两相同步旋转坐标系上,永磁同步电机状态方程表示如下:
Figure FDA0002521505490000021
式中,ud、uq、id、iq分别为dq坐标系上定子电压、电流,Rs为定子电阻,Ld、Lq为d、q轴电感,ωe为电气角速度,Ψf为永磁体磁链幅值;
2.2,由于高频注入信号的频率远高于电机的基波频率,因此把三相永磁同步电机看作一个电阻和电感电路,又因为高频时电阻相对电抗非常小,所以忽略电阻;此时,三相永磁同步电机的高频电压方程简化为:
Figure FDA0002521505490000022
式中,udh、uqh、idh、iqh为d、q轴上的高频电压、电流分量,下标h表示高频分量;
步骤3,计算估计dq坐标系计算高频电流响应,过程如下:
3.1推导估计dq坐标系高频电流响应通用表达形式;
根据坐标关系图得出:
Figure FDA0002521505490000023
式中,
Figure FDA0002521505490000024
为估计dq坐标系下定子电流高频分量,
Figure FDA0002521505490000025
为估计d轴和实际q轴之间的夹角,实际转子磁极d轴所在位置,
Figure FDA0002521505490000026
为估计转子磁极d轴所在位置,ΣL=(Ld+Lq)/2为均值电感,ΔL=(Ld-Lq)/2为差值电感;
从公式(3)中得出:
Figure FDA0002521505490000027
3.2在估计
Figure FDA0002521505490000028
轴注入频率连续变化的高频正弦电压;
在永磁同步电机矢量控制估计
Figure FDA0002521505490000029
轴注入频率连续变化的高频正弦电压:
Figure FDA0002521505490000031
式中,
Figure FDA0002521505490000032
分别为估计dq轴的高频电压,uh为注入频率连续变化的高频正弦电压的幅值,ωh为注入频率连续变化的高频正弦电压的角频率;将公式(5)代入公式(4)得:
Figure FDA0002521505490000033
步骤4,在估计q轴中解调高频电流响应,提取位置信息,过程如下:
4.1选取解调信号kd=cos(ωht),与高频响应电流
Figure FDA0002521505490000034
相乘,将该高频响应电流通过低通滤波器,得经解调过后的高频电流响应信号为:
Figure FDA0002521505490000035
式中,iΔ为解调后的高频响应电流,LPF为低通滤波器;
4.2选取km=(LdLqωh)/(uhΔL),与解调后的高频响应电流iΔ相乘,进行归一化处理,得到与电机参数无关的位置估计误差:
Figure FDA0002521505490000036
步骤5,位置估计;
在获取转子位置误差信号后,利用位置跟踪器估计永磁同步电机转子位置信息。
2.如权利要求1所述的一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法,其特征在于,所述1.1中,逆变器的PWM频率为20kHz,高频注入信号的频率设置为0.5kHz~2kHz,远高于电机基波频率。
3.如权利要求2所述的一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法,其特征在于,ωhm=2kHz,ωh1=ωhy=1kHz。
4.如权利要求1~3之一所述的一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法,其特征在于,所述1.2中,取kv=0.03/π(V/Hz),则60V≤uh(t)≤120V,1kHz≤ωh(t)≤2kHz;
即产生一个频率与幅值分别在1kHz~2kHz与60V~120V范围内连续变化的高频正弦电压信号。
5.如权利要求1~3之一所述的一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法,其特征在于,所述步骤5中,选用锁相环估计转子位置和转速。
CN202010492234.8A 2020-06-03 2020-06-03 一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法 Active CN111817636B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010492234.8A CN111817636B (zh) 2020-06-03 2020-06-03 一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010492234.8A CN111817636B (zh) 2020-06-03 2020-06-03 一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法

Publications (2)

Publication Number Publication Date
CN111817636A true CN111817636A (zh) 2020-10-23
CN111817636B CN111817636B (zh) 2022-04-08

Family

ID=72848460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010492234.8A Active CN111817636B (zh) 2020-06-03 2020-06-03 一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法

Country Status (1)

Country Link
CN (1) CN111817636B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865617A (zh) * 2021-03-22 2021-05-28 哈尔滨理工大学 一种基于伪随机技术的pmsm驱动器噪声抑制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163127A (en) * 1999-11-22 2000-12-19 General Motors Corporation System and method for controlling a position sensorless permanent magnet motor
CN103986395A (zh) * 2014-05-07 2014-08-13 南京航空航天大学 一种表贴式永磁同步电机转子初始位置检测方法
JP2016154429A (ja) * 2015-02-21 2016-08-25 有限会社シー・アンド・エス国際研究所 交流電動機のデジタル式回転子位相速度推定装置
CN106788071A (zh) * 2017-01-06 2017-05-31 南京航空航天大学 一种提高永磁同步电机转子位置估计精度的方法
CN106849804A (zh) * 2017-04-17 2017-06-13 哈尔滨工业大学 一种随机频率高频方波电压注入的永磁同步电机转子位置观测器
CN110034709A (zh) * 2019-05-17 2019-07-19 太原科技大学 一种适用于表贴式永磁同步电机的转子位置估计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163127A (en) * 1999-11-22 2000-12-19 General Motors Corporation System and method for controlling a position sensorless permanent magnet motor
CN103986395A (zh) * 2014-05-07 2014-08-13 南京航空航天大学 一种表贴式永磁同步电机转子初始位置检测方法
JP2016154429A (ja) * 2015-02-21 2016-08-25 有限会社シー・アンド・エス国際研究所 交流電動機のデジタル式回転子位相速度推定装置
CN106788071A (zh) * 2017-01-06 2017-05-31 南京航空航天大学 一种提高永磁同步电机转子位置估计精度的方法
CN106849804A (zh) * 2017-04-17 2017-06-13 哈尔滨工业大学 一种随机频率高频方波电压注入的永磁同步电机转子位置观测器
CN110034709A (zh) * 2019-05-17 2019-07-19 太原科技大学 一种适用于表贴式永磁同步电机的转子位置估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭磊等: "带误差补偿的高频信号注入永磁同步电机无传感器控制策略", 《电工技术学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865617A (zh) * 2021-03-22 2021-05-28 哈尔滨理工大学 一种基于伪随机技术的pmsm驱动器噪声抑制方法

Also Published As

Publication number Publication date
CN111817636B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN110429886B (zh) 一种永磁同步电机低速域转子位置辨识方法
CN110198150A (zh) 一种永磁同步电机多参数在线辨识方法
CN110311608B (zh) 一种最优注入角的高频方波电压注入永磁同步电机无位置传感器控制方法
CN106849804A (zh) 一种随机频率高频方波电压注入的永磁同步电机转子位置观测器
CN109889117B (zh) 基于旋转高频注入法的ipmsm位置观测方法、系统及驱动系统
CN107508521B (zh) 一种永磁同步电机的无速度传感器控制方法和系统
CN109951117B (zh) 一种无位置传感器永磁同步电机控制系统
CN110071674B (zh) 一种无位置传感器永磁同步电机最大转矩电流比控制方法
CN111786606B (zh) 同步磁阻电机自适应调节无传感器控制方法
CN106208872B (zh) 基于免疫算法的pmsm高频电压方波注入转速估计方法
CN103701395B (zh) 一种基于正反序列谐波注入的电机转子初位估计方法
CN108306569A (zh) 基于广义积分器的永磁同步电机无速度控制方法及系统
CN112671298B (zh) 改进的用于永磁同步电机控制的pll无感控制算法
CN105024615A (zh) 一种永磁同步电机低速无传感器控制方法及装置
CN110808703A (zh) 考虑铁损电阻的永磁同步电机转速及转子位置估计方法
CN112688614A (zh) 一种新型同步磁阻电机转速估计方法
CN111817636B (zh) 一种频率连续变化的高频正弦电压注入的永磁同步电机位置估计方法
Zhou et al. An improved high frequency square wave injection permanent magnet synchronous motor sensorless control
CN113364375B (zh) 变结构电流调节器的pmsm驱动系统无传感器控制方法
Basar et al. Comparison of sensorless FOC and SVM-DTFC of PMSM for low-speed applications
Yong et al. Sensorless control at low speed based on HF signal injection and a new signal processing method
US9634592B2 (en) Method of estimating rotational position of motor, and control apparatus of motor
Turl et al. A synchronised multi-motor control system using sensorless induction motor drives
CN115149866A (zh) 一种永磁同步电机全速域无位置传感器矢量控制方法
CN113783494B (zh) 无位置传感器内置式永磁同步电机的最大转矩电流比控制

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant