CN111803783B - 一种仿伞骨结构的磁热共驱给药机器人及其磁控方法 - Google Patents

一种仿伞骨结构的磁热共驱给药机器人及其磁控方法 Download PDF

Info

Publication number
CN111803783B
CN111803783B CN202010559240.0A CN202010559240A CN111803783B CN 111803783 B CN111803783 B CN 111803783B CN 202010559240 A CN202010559240 A CN 202010559240A CN 111803783 B CN111803783 B CN 111803783B
Authority
CN
China
Prior art keywords
petal
shell
pill
gas storage
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010559240.0A
Other languages
English (en)
Other versions
CN111803783A (zh
Inventor
倪敬
童康成
李子聪
郑军强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202010559240.0A priority Critical patent/CN111803783B/zh
Publication of CN111803783A publication Critical patent/CN111803783A/zh
Application granted granted Critical
Publication of CN111803783B publication Critical patent/CN111803783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring

Abstract

本发明公开了一种仿伞骨结构的磁热共驱给药机器人及其磁控方法。传统给药机械人无法精准靶向给药,且无法携带多种药物。本发明包括体外LC谐振电路、体外能量供给装置、类花瓣外壳、药丸盖帽、工作滑块、储药容腔、支撑杆、气体储存基体和能量收集与气体加热装置;药丸盖帽内磁性材料受体外能量供给装置的磁力作用达到指定位置并驻留;体外LC谐振电路产生振荡磁场,能量收集与气体加热装置的电热丝产生电热能,气体储存基体中的气体受热膨胀,类花瓣外壳展开,储药容腔的出药孔被打开;收拢时,体外LC谐振电路停止供电,扭簧将类花瓣外壳收拢。本发明实现人体内精准定向给药,且给药速度可控,能实现多种药物同时给药。

Description

一种仿伞骨结构的磁热共驱给药机器人及其磁控方法
技术领域
本发明属于机器人技术领域,具体涉及一种仿伞骨结构的磁热共驱给药机械人及其磁控方法。
背景技术
伞骨结构作为一种在生活中普遍运用的结构,也同样蕴含着复杂的几何原理。刨床的急回机构、汽车的刹车装置等机械产品都存在类伞骨结构的运用。
随着机械人的快速发展,机械人被广泛运用到各个领域,并且发挥着不可忽视的作用。在医疗领域中,以微型机械人为主的医疗设备在不断的运用到那些精度要求高,操作难度大的治疗工作中。以体内给药机械人为例,传统的给药机械人无法做到精准的靶向给药和在给药处的驻留,并且无法携带多种类型药物和回收二次使用,这就导致了现有的给药机械人,性价比不高,无法在医疗领域进行大规模的投入使用。
发明内容
本发明的目的是针对现有靶向给药技术的不足,提出一种仿伞骨结构的磁热共驱给药机器人及其磁控方法。本发明受伞骨模型(从收缩到展开的过程)的启发而提出,是一种仿伞骨结构的可展开到预设构型,并可以收折至初始药丸状态的椭球型机械人;是一种受梯度磁场和旋转磁场牵引以实现在人体内精准定位并实现可控给药的机器人;是一种受振荡磁场激励,获取电热能以膨胀气体,从而促使伞骨撑开的机器人;是一种以隔热、绝缘材料为主体、两端带有磁性材料、并由生物相容性材料包覆的机器人;是一种展开似花瓣的可实现驻停的机器人;是一种多药物容腔,可同时携带多种药物的可二次利用的机器人。
本发明一种仿伞骨结构的磁热共驱给药机器人,包括体外LC谐振电路、体外能量供给装置、类花瓣外壳、药丸盖帽、工作滑块、储药容腔、支撑杆、气体储存基体和能量收集与气体加热装置;沿周向均布的n个类花瓣外壳组成第一类花瓣外壳组,沿周向均布的另外n个类花瓣外壳组成第二类花瓣外壳组,且第一类花瓣外壳组和第二类花瓣外壳组的类花瓣外壳在周向上交替布置,2≤n≤5;两个药丸盖帽固定在气体储存基体两端;药丸盖帽内侧壁固定有磁性材料;第一类花瓣外壳组和第二类花瓣外壳组均设置在两个药丸盖帽之间,其中一个药丸盖帽与第一类花瓣外壳组的n个类花瓣外壳一端均铰接,第一类花瓣外壳组的n个类花瓣外壳另一端均自由设置;另一个药丸盖帽与第二类花瓣外壳组的n个类花瓣外壳一端均铰接,第二类花瓣外壳组的n个类花瓣外壳另一端均自由设置;药丸盖帽与类花瓣外壳的各铰接轴上均设有扭簧;扭簧一端与药丸盖帽固定,另一端与类花瓣外壳固定;两个工作滑块与气体储存基体两端分别构成滑动副,且两个工作滑块的内腔与气体储存基体两端的两个通气口分别连通;n根支撑杆的一端与其中一个工作滑块均铰接,另一端与第一类花瓣外壳组的n个类花瓣外壳中部分别铰接;另外n根支撑杆的一端与另一个工作滑块均铰接,另一端与第二类花瓣外壳组的n个类花瓣外壳中部分别铰接;气体储存基体两端外壁位于周向相邻的每两根支撑杆之间均固定有储药容腔,所述的储药容腔开设有出药孔;各类花瓣外壳收拢状态下,每个类花瓣外壳的内壁覆盖周向位置对应且位于气体储存基体两端的两个储药容腔的出药孔;所述气体储存基体的内腔固定设有能量收集与气体加热装置。
进一步,所述的能量收集与气体加热装置包括正交设置的三个接收线圈,三个接收线圈的内部空间嵌有磁芯;三个接收线圈均绕置在线圈支架上;线圈支架固定于气体储存基体内腔;每一维接收线圈先串联谐振电容后再连接一个全桥整流电路整流,三个全桥整流电路与稳压管和滤波电容并联后经DC-DC电压转换模块连接电热丝。
进一步,所述的体外能量供给装置包括三对正交的赫姆霍兹线圈和三对正交的麦克思维线圈。
进一步,所述的类花瓣外壳相对支撑杆的最大偏转角为100°。
进一步,所述的药丸盖帽和类花瓣外壳均采用具有隔热、绝缘性能的材料。
进一步,所述的工作滑块和气体储存基体均采用纳米孔硅质绝热材料(适用温度-190℃~1050℃),以便于气体温度的变化不会影响到人体内部的环境。
进一步,所述的类花瓣外壳、工作滑块、气体储存基体、储药容腔和药丸盖帽外表面以及支撑杆均涂覆派瑞林(Parylene),派瑞林是具有生物相容性的医用涂层,提供了惰性隔离层,可有效隔离外界的化学品、水分和体液的侵蚀,同时可以增加机械表面的干润滑性。
该仿伞骨结构的磁热共驱给药机器人的磁控方法,具体如下:
移动定位过程如下:体外能量供给装置在工作空间内产生三维可控磁场,药丸盖帽内磁性材料在工作空间内受到磁场力和磁力矩的作用达到指定位置;然后调节体外能量供给装置产生的磁场,使药丸盖帽在指定位置驻留。
出药孔打开过程如下:体外LC谐振电路产生振荡磁场,能量收集与气体加热装置受振荡磁场激励,使电热丝产生电热能,从而使气体储存基体中的气体受热膨胀,对工作滑块产生推力,推动支撑杆使得类花瓣外壳展开;类花瓣外壳展开后,储药容腔的出药孔被打开;通过调节体外LC谐振电路产生的振荡磁场频率,使能量收集与气体加热装置的电流大小改变,来改变电热丝产生热的速度,控制活塞运动速度,从而控制储药容腔的出药孔打开速度。
收拢过程如下:体外LC谐振电路停止供电,电热丝不再产生电热能,气体储存基体中的气体逐渐收缩,类花瓣外壳与药丸盖帽铰接轴上的扭簧将类花瓣外壳收拢,从而推动支撑杆带动工作滑块复位。
进一步,所述的三维可控磁场模型包括均匀梯度磁场、旋转磁场或均匀梯度磁场与旋转磁场的组合。
本发明具有的有益效果:
1、本发明有效利用了伞骨结构延展和收缩过程中体积的变换,提出了一种既节省空间,又可以延展扩大以实现在人体内部短暂驻留的给药机械人。在外界震荡磁场的激励下,在不改变自身连接方式的情况下可以由初始药丸状态转变为具有框架结构的预设状态,同时在撤除外界震荡磁场后,又可以回复到初始状态,利于机器人的运输和存储。
2、本发明设置的各个储药容腔,可以实现多种类、多类型药物的储存和运输,有效避免传统给药机械人需重复给药的问题。
附图说明
图1为本发明的整体结构立体图;
图2为本发明的结构剖视图;
图3为本发明中三个接收线圈的装配立体图;
图4为本发明中能量收集与气体加热装置的电路图;
图5为本发明中工作滑块与气体储存基体的装配剖视图。
具体实施方式
下面结合附图对本发明作进一步描述。
如图1、2和5所示,一种仿伞骨结构的磁热共驱给药机器人,包括体外LC谐振电路(可以采用现有成熟技术中的LC电路)、体外能量供给装置、类花瓣外壳6、药丸盖帽5、工作滑块3、储药容腔7、支撑杆4、气体储存基体2和能量收集与气体加热装置1;沿周向均布的n个类花瓣外壳6组成第一类花瓣外壳组,沿周向均布的另外n个类花瓣外壳6组成第二类花瓣外壳组,且第一类花瓣外壳组和第二类花瓣外壳组的类花瓣外壳6在周向上交替布置,2≤n≤5;两个药丸盖帽5固定在气体储存基体2两端;药丸盖帽5和类花瓣外壳6均采用具有隔热、绝缘性能的材料,且药丸盖帽5内侧壁固定有磁性材料;第一类花瓣外壳组和第二类花瓣外壳组均设置在两个药丸盖帽5之间,其中一个药丸盖帽5与第一类花瓣外壳组的n个类花瓣外壳6一端均铰接,第一类花瓣外壳组的n个类花瓣外壳6另一端均自由设置;另一个药丸盖帽5与第二类花瓣外壳组的n个类花瓣外壳6一端均铰接,第二类花瓣外壳组的n个类花瓣外壳6另一端均自由设置;药丸盖帽5与类花瓣外壳6的各铰接轴上均设有扭簧;扭簧一端与药丸盖帽5固定,另一端与类花瓣外壳6固定;两个工作滑块3与气体储存基体2两端分别构成滑动副,且两个工作滑块3的内腔与气体储存基体2两端的两个通气口分别连通;n根支撑杆4的一端与其中一个工作滑块3均铰接,另一端与第一类花瓣外壳组的n个类花瓣外壳6中部分别铰接;另外n根支撑杆4的一端与另一个工作滑块3均铰接,另一端与第二类花瓣外壳组的n个类花瓣外壳6中部分别铰接;气体储存基体2两端外壁位于周向相邻的每两根支撑杆4之间均固定有储药容腔7,储药容腔7开设有出药孔;储药容腔7设置在相邻两根支撑杆之间,避免与支撑杆干涉。各类花瓣外壳6收拢状态下,每个类花瓣外壳6的内壁覆盖周向位置对应且位于气体储存基体2两端的两个储药容腔7的出药孔,保证药物无法从储药容腔内泄露出来。气体储存基体2内腔固定设有能量收集与气体加热装置1。
如图3所示,能量收集与气体加热装置1包括正交设置的三个接收线圈,保证在任意姿态下总有感应电动势产生;三个接收线圈的内部空间嵌有磁芯8;三个接收线圈均绕置在线圈支架上;线圈支架固定于气体储存基体2内腔;每一维接收线圈先串联谐振电容后再连接一个全桥整流电路整流,三个全桥整流电路与稳压管和滤波电容并联后经DC-DC电压转换模块连接电热丝(负载)。由于磁热共驱给药机器人在消化道内运动,其姿态不断变化,本发明采用3个正交布置的接收线圈,当能量收集与气体加热装置1置于交变磁场中时,必定有其中的某一维接收线圈的耦合最大,产生的感应电动势也最大,感应电动势通过全桥整流电路,形成直流回路,为电热丝供能。另外,为了提高传输效率,本发明将初级线圈和次级线圈均与电容组成LC谐振电路,以相同的频率形成共振耦合来传输能量。再者,因为3路各自整流再并联以后输出,所以电压仍有较大的波动,需要更进一步地滤波和DC-DC电压转换,将输出电压调整到微型胶囊注射式磁控机器人工作所需要的电压值。
如图4所示,能量收集与气体加热装置1具体包括接收线圈一L1、接收线圈二L2、接收线圈三L3、谐振电容一C1、谐振电容二C2、谐振电容三C3、全桥整流电路、稳压管D5、滤波电容C4和DC-DC电压转换模块;全桥整流电路由二极管D1、D2、D3、D4组成;接收线圈一L1与谐振电容一C1串联后、接收线圈二L2与谐振电容二C2串联后、接收线圈三L3与谐振电容三C3串联后分别与一个全桥整流电路并联;三个全桥整流电路再均与稳压管D5和滤波电容C4并联后经DC-DC电压转换模块连接电热丝。
体外能量供给装置包括三对正交的赫姆霍兹线圈和三对正交的麦克思维线圈。
该仿伞骨结构的磁热共驱给药机器人的磁控方法,具体如下:
移动定位过程如下:体外能量供给装置在工作空间中产生三维可控磁场,三维可控磁场模型包括均匀梯度磁场、旋转磁场或均匀梯度磁场与旋转磁场的组合,药丸盖帽5内磁性材料在工作空间受到磁场力和磁力矩的作用达到指定位置;然后调节体外能量供给装置产生的磁场,使药丸盖帽5在体外能量供给装置的磁场力、胃肠道蠕动作用力以及各类花瓣外壳6与胃壁或肠道褶皱之间的摩擦力作用下达到平衡,从而在体内指定位置驻留,实现对需给药处的精准定位。
出药孔打开给药过程如下:体外LC谐振电路产生振荡磁场,能量收集与气体加热装置1受振荡磁场激励,使电热丝产生电热能,从而使气体储存基体中的气体受热膨胀,对工作滑块3产生推力,推动支撑杆4使得类花瓣外壳6展开,整个给药机器人呈现伞柄相对的两把伞状;类花瓣外壳6展开后,储药容腔7的出药孔被打开,储药容腔7内储存的药物(不同储药容腔7内可以储存不同药物)向外扩散;通过调节体外LC谐振电路产生的振荡磁场频率,使能量收集与气体加热装置的电流大小改变,来改变电热丝产生热的速度,控制活塞运动速度,从而控制储药容腔7的出药孔打开速度,实现给药速度可控。
收拢过程如下:储药容腔7内的药物扩散殆尽后,体外LC谐振电路停止供电,电热丝不再产生电热能,气体储存基体中的气体逐渐收缩,类花瓣外壳6与药丸盖帽5铰接轴上的扭簧将类花瓣外壳6慢慢收拢,从而推动支撑杆4带动工作滑块3复位,整个给药机器人呈现椭球状。
该仿伞骨结构的磁热共驱给药机器人回收利用,只需重新调节体外能量供给装置产生的磁场,将给药机器人引导出人体。

Claims (5)

1.一种仿伞骨结构的磁热共驱给药机器人,包括药丸盖帽和储药容腔,其特征在于:还包括体外LC谐振电路、体外能量供给装置、类花瓣外壳、工作滑块、支撑杆、气体储存基体和能量收集与气体加热装置;沿周向均布的n个类花瓣外壳组成第一类花瓣外壳组,沿周向均布的另外n个类花瓣外壳组成第二类花瓣外壳组,且第一类花瓣外壳组和第二类花瓣外壳组的类花瓣外壳在周向上交替布置,2≤n≤5;两个药丸盖帽固定在气体储存基体两端;药丸盖帽内侧壁固定有磁性材料;第一类花瓣外壳组和第二类花瓣外壳组均设置在两个药丸盖帽之间,其中一个药丸盖帽与第一类花瓣外壳组的n个类花瓣外壳一端均铰接,第一类花瓣外壳组的n个类花瓣外壳另一端均自由设置;另一个药丸盖帽与第二类花瓣外壳组的n个类花瓣外壳一端均铰接,第二类花瓣外壳组的n个类花瓣外壳另一端均自由设置;药丸盖帽与类花瓣外壳的各铰接轴上均设有扭簧;扭簧一端与药丸盖帽固定,另一端与类花瓣外壳固定;两个工作滑块与气体储存基体两端分别构成滑动副,且两个工作滑块的内腔与气体储存基体两端的两个通气口分别连通;n根支撑杆的一端与其中一个工作滑块均铰接,另一端与第一类花瓣外壳组的n个类花瓣外壳中部分别铰接;另外n根支撑杆的一端与另一个工作滑块均铰接,另一端与第二类花瓣外壳组的n个类花瓣外壳中部分别铰接;气体储存基体两端外壁位于周向相邻的每两根支撑杆之间均固定有储药容腔,所述的储药容腔开设有出药孔;各类花瓣外壳收拢状态下,每个类花瓣外壳的内壁覆盖周向位置对应且位于气体储存基体两端的两个储药容腔的出药孔;所述气体储存基体的内腔固定设有能量收集与气体加热装置;
所述的能量收集与气体加热装置包括正交设置的三个接收线圈,三个接收线圈的内部空间嵌有磁芯;三个接收线圈由内至外依次套置在同一个磁芯的外侧;三个接收线圈均绕置在线圈支架上;线圈支架固定于气体储存基体内腔;每一维接收线圈先串联谐振电容后再连接一个全桥整流电路整流,三个全桥整流电路与稳压管和滤波电容并联后经DC-DC电压转换模块连接电热丝;
所述的体外能量供给装置包括三对正交的赫姆霍兹线圈和三对正交的麦克思维线圈;通过调节体外LC谐振电路产生的振荡磁场频率,使能量收集与气体加热装置的电流大小改变,来改变电热丝产生热的速度,控制活塞运动速度,从而控制储药容腔的出药孔打开速度。
2.根据权利要求1所述一种仿伞骨结构的磁热共驱给药机器人,其特征在于:所述的类花瓣外壳相对支撑杆的最大偏转角为100°。
3.根据权利要求1所述一种仿伞骨结构的磁热共驱给药机器人,其特征在于:所述的药丸盖帽和类花瓣外壳均采用具有隔热、绝缘性能的材料。
4.根据权利要求1所述一种仿伞骨结构的磁热共驱给药机器人,其特征在于:所述的工作滑块和气体储存基体均采用纳米孔硅质绝热材料。
5.根据权利要求1所述一种仿伞骨结构的磁热共驱给药机器人,其特征在于:所述的类花瓣外壳、工作滑块、气体储存基体、储药容腔和药丸盖帽外表面以及支撑杆均涂覆派瑞林。
CN202010559240.0A 2020-06-18 2020-06-18 一种仿伞骨结构的磁热共驱给药机器人及其磁控方法 Active CN111803783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010559240.0A CN111803783B (zh) 2020-06-18 2020-06-18 一种仿伞骨结构的磁热共驱给药机器人及其磁控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010559240.0A CN111803783B (zh) 2020-06-18 2020-06-18 一种仿伞骨结构的磁热共驱给药机器人及其磁控方法

Publications (2)

Publication Number Publication Date
CN111803783A CN111803783A (zh) 2020-10-23
CN111803783B true CN111803783B (zh) 2022-06-10

Family

ID=72845225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010559240.0A Active CN111803783B (zh) 2020-06-18 2020-06-18 一种仿伞骨结构的磁热共驱给药机器人及其磁控方法

Country Status (1)

Country Link
CN (1) CN111803783B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104688210A (zh) * 2015-02-28 2015-06-10 崔建忠 血压自动监测分析和自动调节机器人给药系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019419B4 (de) * 2006-04-26 2008-02-14 Siemens Ag Aktuator insbesondere eines Endoroboters
US10722250B2 (en) * 2007-09-04 2020-07-28 Colorado School Of Mines Magnetic-field driven colloidal microbots, methods for forming and using the same
CN100590963C (zh) * 2008-04-14 2010-02-17 大连理工大学 体内医疗微型机器人万向旋转磁场驱动控制方法
CN201323473Y (zh) * 2008-11-14 2009-10-07 华南理工大学 一种体内微机电系统无线能量传输装置
CN101513340B (zh) * 2009-03-19 2011-04-06 上海交通大学 体外供能的胶囊内窥镜系统
IT1396422B1 (it) * 2009-11-16 2012-11-23 Scuola Superiore Di Studi Universitari E Di Perfez Dispositivo microrobotico miniaturizzato per la locomozione in ambiente fluido.
KR101450091B1 (ko) * 2013-05-08 2014-10-14 한국과학기술연구원 마이크로 로봇의 구동 제어를 위한 전자기 코일 시스템
CN106725256A (zh) * 2015-11-20 2017-05-31 哈尔滨工大天才智能科技有限公司 一种基于多楔形效应胶囊机器人花瓣廓形优化设计方法
CN107049216B (zh) * 2017-06-07 2019-05-14 常州信息职业技术学院 一种伞式胶囊机器人
CN107179780A (zh) * 2017-07-06 2017-09-19 哈尔滨工业大学深圳研究生院 一种视觉反馈三维电磁微机器人无缆驱动控制系统
CN108619611B (zh) * 2018-05-04 2020-11-06 哈尔滨工业大学深圳研究生院 一种具有多方向施药功能的肠道微型胶囊机器人

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104688210A (zh) * 2015-02-28 2015-06-10 崔建忠 血压自动监测分析和自动调节机器人给药系统

Also Published As

Publication number Publication date
CN111803783A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
Wehner et al. Pneumatic energy sources for autonomous and wearable soft robotics
Bruce et al. Design and evolution of a modular tensegrity robot platform
US6178872B1 (en) Operating mechanism
Usevitch et al. APAM: Antagonistic pneumatic artificial muscle
CN100450729C (zh) 外磁场控制微机器人运动及位姿系统及其控制方法与应用
US10357327B2 (en) Tissue-stabilization method for medical procedures
CN100584298C (zh) 外部对抗搏动法心脏辅助装置
CN111803783B (zh) 一种仿伞骨结构的磁热共驱给药机器人及其磁控方法
CN106955420B (zh) 基于形状记忆材料的微创植入端部自展开结构
CN107718040A (zh) 机器人刚度可控关节及其刚度控制方法
CN108891496A (zh) 一种气动仿蚯蚓软体机器人
CN106388937B (zh) 一种多自由度刚度可调气动柔性手术操作臂
Liang et al. Design and characterization of a novel fabric-based robotic arm for future wearable robot application
Sîrbu et al. Electrostatic bellow muscle actuators and energy harvesters that stack up
CN111760177B (zh) 用于靶向给药的微型胶囊注射式磁控机器人
CN109591003A (zh) 碳纳米管纤维纱线热驱动人工肌肉型机器人灵巧手
Zhuang et al. Efficient power receiving coil with novel ferrite core structure for capsule robot
WO2021233304A1 (zh) 一种可穿戴设备及可穿戴设备的系统
Liu et al. S 2 worm: A fast-moving untethered insect-scale robot with 2-DoF transmission mechanism
Ye et al. Magnetically driven wireless capsule robot with targeting biopsy function
Li et al. Nonlinear modeling on a SMA actuated circular soft robot with closed-loop control system
Hu et al. Soft scalable crawling robots enabled by programmable origami and electrostatic adhesion
Zhang et al. Bioinspired rigid-soft hybrid origami actuator with controllable versatile motion and variable stiffness
CN111921071B (zh) 一种含折纸艺术的靶向分级给药机器人及其控制方法
Meng et al. A novel soft manipulator based on beehive structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant