CN111732760A - 一种纳米纤维素基光固化3d打印导电材料的制备 - Google Patents

一种纳米纤维素基光固化3d打印导电材料的制备 Download PDF

Info

Publication number
CN111732760A
CN111732760A CN202010040253.7A CN202010040253A CN111732760A CN 111732760 A CN111732760 A CN 111732760A CN 202010040253 A CN202010040253 A CN 202010040253A CN 111732760 A CN111732760 A CN 111732760A
Authority
CN
China
Prior art keywords
solution
cellulose
nanocellulose
nano
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010040253.7A
Other languages
English (en)
Other versions
CN111732760B (zh
Inventor
安兴业
杜宏
唐世钰
刘洪斌
刘利琴
张伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202010040253.7A priority Critical patent/CN111732760B/zh
Publication of CN111732760A publication Critical patent/CN111732760A/zh
Application granted granted Critical
Publication of CN111732760B publication Critical patent/CN111732760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明属于功能材料领域,具体涉及发明公开一种纳米纤维素基光固化3D打印导电材料及其制备方法与应用。该方法包括以下步骤:(1)取纳米纤维素溶解;(2)加入苯胺,搅拌,制得纳米纤维素/聚苯胺复合材料;(3)通过溶剂置换将步骤(2)中溶质溶解到有机溶剂中;(4)向其中依次加入石墨和树脂,充分混合后,得到纳米纤维素基光固化3D打印导电材料。利用本发明的方法制得的复合材料具有高柔韧性,导电性,快速成型等特征,可应用于搞性能电子器件、传感器等领域。

Description

一种纳米纤维素基光固化3D打印导电材料的制备
技术领域
本发明属于功能材料领域,特别涉及一种纳米纤维素基光固化3D打印导电材料的制备方法与应用。
背景技术
随着电子产品已经在人们的生活中占据了重要的地位,工业生产对导电材料的需求猛增。造成了许多隐形问题,如制造了大量的难以降解的导电制品,给环境带来了沉重的负担。而3D打印技术的发展盛行让我们看到了使用别的材料对传统有污染材料进行替换的可行性。
纤维素纳米纤丝(cellulose nanofibril,CNF)主要借助高速剪切力和摩擦力将纤维素分子胀化、分离成直径为纳米级(通常为100nm以下)、长度为数百纳米甚至微米级的微纤丝束(团),形态和尺寸基本与纤丝一致,因此被广泛称为纳米纤丝,具有优良的尺寸效应。常温下,由于其分子之间存在氢键,所以它是比较稳定的,具有较为良好的机械性能。与此同时纤维素作为自然界中分布最广、含量最多的一种多糖,又具有来源广、成本低、可再生、可降解的优点,有潜力满足日益增长的对环保产品的需求。因此,我们利用了纤维素纳米纤丝为载体制造3D打印材料。
在3D打印技术中,光固化快速成型技术是3D打印领域中最早被技研究发展,技术较为成熟的快速制造技术之一。光固化树脂是指经紫外光激发,由液态转变成固态,能表现出特殊功能的树脂。固化过程即光引发剂由基态转变到激发态,发生化学重排,分解成自由基或其他活性基团中间体。该基团与树脂中的不饱和基团反应,发生连续聚合从而发生交联接枝等化学反应。是现代3D打印中常用的一种材料。
石墨是一种价格较为低廉且具有较为优异导电性质的物质,而聚苯胺、聚吡咯、聚噻吩、聚乙炔、聚对苯撑乙烯等常见导电高分子化合物可均匀附着在纤维素纳米纤丝上,我们将这三种物质进行结合在加之光固化树脂形成一个导电体系,再对这个体系进行处理使之成为一种稳定的、有优良导电性的纤维素基3D打印导电材料,这在国内尚未见报道。
发明内容
本发明的目的在于提供一种纳米纤维素基光固化3D打印导电材料的制备方法。
下述结构式分别为常见的几种导电高分子化合物的化学结构式图和纤维素纳米纤丝的化学结构式图。
Figure RE-GSB0000189217190000021
本发明的目的通过以下技术方案实现:一种纳米纤维素基光固化3D打印导电材料的制备,具体包括以下步骤:
(1)取一定量的纤维素纳米纤丝,使用分散器处理使得纤维素纳米纤丝充分分散于水中。
(2)使导电高分子化合物均匀附着于纤维素纳米纤丝上。以使聚苯胺均匀附着于纤维素纳米纤丝为例来进行步骤描述,向步骤(1)得到的溶液中加入盐酸标准溶液,调节溶液的pH 至1~4。
(3)向步骤(2)得到的溶液中加入质量为纤维素纳米纤丝实际质量1~6倍的苯胺,将溶液置于零度环境中,向溶液中加入一定浓度的FeCl3溶液催化反应进行,搅拌,反应1~5h。
(4)将步骤(3)中得到的溶液通过溶剂置换,将纳米纤维素/聚苯胺复合物溶解到有机溶液中,以将其溶解到乙醇中为例进行步骤描述。将上述溶液经离心机分离后,再溶解到无水乙醇中,充分搅拌后,再进行分离,反复1-7次。
(5)向步骤(4)得到的溶液中加入光固化树脂,搅拌使其混合均匀。
(6)步骤(5)中得到的溶液经过抽滤后得到纳米纤维素基光固化3D打印导电材料。
具体实施方式
实例一
取一定量的纤维素纳米纤丝,使用分散器使得纤维素纳米纤丝充分分散于水中。称取 51.41g六水合三氯化铁固体溶解到100ml水中,制得三氯化铁溶液。
调节纤维素溶液pH到2.04,将溶液置于零度环境中,搅拌,向其中加入4.83g苯胺后,逐滴加入三氯化铁溶液。待三氯化铁加入完毕后反应2h。
将3.82g石墨加入溶液中,搅拌10分钟。
将溶液分装到离心管中,放入离心机中分离。(分离机参数:10000r,10min。)
将所得固体物质溶解到200ml无水乙醇中,搅拌,混合均匀后,再次进行分离操作。
重复操作两次后,将固体物质溶解到100ml无水乙醇中,加入50ml光固化树脂,混合均匀后,抽滤得到光固化3D打印导电材料。
实例二
取一定量的纤维素纳米纤丝,使用分散器使得纤维素纳米纤丝充分分散于水中。称取53.06g六水合三氯化铁固体溶解到100ml水中,制得三氯化铁溶液。
调节纤维素溶液pH到2.30,将溶液置于零度环境中,搅拌,向其中加入4.56g苯胺后,逐滴加入三氯化铁溶液。待三氯化铁加入完毕后反应3h。
将3.04g石墨加入溶液中,搅拌10分钟。
将溶液分装到离心管中,放入离心机中分离。(分离机参数:10000r,10min。)
将所得固体物质溶解到200ml无水乙醇中,搅拌,混合均匀后,再次进行分离操作。
重复操作两次后,将固体物质溶解到100ml无水乙醇中,加入100ml光固化树脂,混合均匀后,抽滤得到光固化3D打印导电材料。

Claims (5)

1.一种纳米纤维素基光固化3D打印导电材料的制备方法,其特征是包括下列步骤:
步骤1:取一定量的纤维素纳米纤丝原料,经分散器处理使得纤维素纳米纤丝充分分散于水中。
步骤2:使导电高分子化合物均匀附着于纤维素纳米纤丝上,生成纳米纤维素聚苯胺复合物,具体步骤如下:向上述溶液中加入盐酸标准溶液,调节溶液的pH至1~4。加入质量为纤维素纳米纤丝质量1~6倍的苯胺,将溶液置于零度环境中,向溶液中加入一定浓度的FeCl3溶液催化反应进行,在磁力搅拌条件下反应1~5h。
步骤3:向上述溶液加入相当于纤维素纳米纤丝质量1~5倍的石墨粉末,进行搅拌操作。
步骤4:通过溶剂置换法将溶质溶解到有机溶液中,以使上述溶质溶解到乙醇中为例进行步骤描述。将上述溶液分离后,再溶解到无水乙醇中,再进行分离,反复1-7次。
步骤5:向上述溶液中加入光固化树脂,混合均匀后,经分离得到纳米纤维素基光固化3D打印导电材料。
2.根据权利要求1所述的方法,其特征在于所述纳米纤维素原料为纤维素纳米纤丝。
3.根据权利要求1所述的方法,其特征在于所述附着于纤维素纳米纤丝上的导电高分子化合物包括但不限于聚苯胺、聚吡咯、聚噻吩等导电高分子化合物。
4.根据权利要求1所述的方法,其特征在于所述步骤2中苯胺的加入量按纤维素纳米纤丝质量与苯胺质量比为1∶1~1∶6配比计算。
5.根据权利要求1所述的方法,其特征在于:步骤5中光固化树脂的加入量按纤维素纳米纤丝质量与树脂质量比为1∶5~1∶20配比计算。
CN202010040253.7A 2020-01-05 2020-01-05 一种纳米纤维素基光固化3d打印导电材料的制备 Active CN111732760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010040253.7A CN111732760B (zh) 2020-01-05 2020-01-05 一种纳米纤维素基光固化3d打印导电材料的制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010040253.7A CN111732760B (zh) 2020-01-05 2020-01-05 一种纳米纤维素基光固化3d打印导电材料的制备

Publications (2)

Publication Number Publication Date
CN111732760A true CN111732760A (zh) 2020-10-02
CN111732760B CN111732760B (zh) 2023-11-21

Family

ID=72645974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010040253.7A Active CN111732760B (zh) 2020-01-05 2020-01-05 一种纳米纤维素基光固化3d打印导电材料的制备

Country Status (1)

Country Link
CN (1) CN111732760B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350117A (zh) * 2021-12-06 2022-04-15 江苏大学 一种纳米纤丝纤维素增强光固化3d打印复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106366615A (zh) * 2016-09-21 2017-02-01 华南理工大学 一种用于三维打印的纳米纤维素/光固化树脂材料及其制备方法与应用
US20170140848A1 (en) * 2015-11-18 2017-05-18 Texas Tech University System Cotton fiber dissolution and regeneration and 3d printing of cellulose based conductive composites
CN107501612A (zh) * 2017-08-07 2017-12-22 华南理工大学 3d打印氧化石墨烯/纤维素复合材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170140848A1 (en) * 2015-11-18 2017-05-18 Texas Tech University System Cotton fiber dissolution and regeneration and 3d printing of cellulose based conductive composites
CN106366615A (zh) * 2016-09-21 2017-02-01 华南理工大学 一种用于三维打印的纳米纤维素/光固化树脂材料及其制备方法与应用
CN107501612A (zh) * 2017-08-07 2017-12-22 华南理工大学 3d打印氧化石墨烯/纤维素复合材料及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘红霞等: ""聚苯胺包覆纤维素纳米晶石墨烯复合电极材料的制备与性能"", 《高分子材料科学与工程》 *
吕少一等: ""纳米纤维素基导电复合材料研究进展"", 《林业科学》 *
王永信等: "《光固化3D打印技术》", 30 November 2018, 华中科技大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350117A (zh) * 2021-12-06 2022-04-15 江苏大学 一种纳米纤丝纤维素增强光固化3d打印复合材料及其制备方法

Also Published As

Publication number Publication date
CN111732760B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
Cui et al. Lignin nanofiller-reinforced composites hydrogels with long-lasting adhesiveness, toughness, excellent self-healing, conducting, ultraviolet-blocking and antibacterial properties
Guo et al. Fabrication and highly efficient dye removal characterization of beta-cyclodextrin-based composite polymer fibers by electrospinning
Mo et al. Heterogeneous preparation of cellulose–polyaniline conductive composites with cellulose activated by acids and its electrical properties
Zhang et al. Water-soluble multiwalled carbon nanotubes functionalized with sulfonated polyaniline
CN1263596C (zh) 形成导电聚合物纳米复合材料的方法和由其生产的材料
CN101381511A (zh) 单层石墨与聚合物复合材料及其制备方法
CN1908033A (zh) 一种交联聚膦腈微球及其制备方法
Gu et al. Preparation and characterization of DOPO-functionalized MWCNT and its high flame-retardant performance in epoxy nanocomposites
KR101436016B1 (ko) 개질화된 탄소나노튜브를 포함하는 기계적 물성과 전기 전도성이 우수한 고분자 나노복합재 및 이의 제조방법
JP6843413B1 (ja) 澱粉系可撓性導電材料の調製方法
CN111732760A (zh) 一种纳米纤维素基光固化3d打印导电材料的制备
CN108250603B (zh) 一种碳纳米管导电改性的聚苯乙烯载带材料及其制备方法
CN101407945A (zh) 一种含碳纳米管的聚对亚苯基苯并二噁唑复合纤维的制备方法
Ahn et al. Properties of conductive polyacrylonitrile fibers prepared by using benzoxazine modified carbon black
CN113788900B (zh) 具有高热稳定性的改性纤维素纳米晶及其制备方法
KR101073639B1 (ko) 폴리우레탄 코팅 수지의 제조 방법
Zhou et al. Lignin fractionation-inspired carbon dots to enable trimodule fluorescent sensing of pH, silver ion and cysteine
CN106752384A (zh) 一种弹性纳米纤维导电墨水及其制备方法和应用
CN110862650A (zh) 一种纤维素基3d打印导电材料的制备
Yamasaki et al. Preparation of new photo-crosslinked β-cyclodextrin polymer beads
KR100789103B1 (ko) 탄소나노튜브가 첨가된 전도성 및 전자파 차폐 특성을가지는 폴리락타이드 복합체 및 그 제조방법
Wang et al. A facile route to synthesize nanographene reinforced PBO composites fiber via in situ polymerization
CN1966586A (zh) 一种可反应、单分散表面修饰银纳米颗粒及其制备方法
CN116478065A (zh) 一种具有可降解、阻燃特性的生物质类环氧树脂的制备
KR101740887B1 (ko) 신규 파이렌 화합물, 이 화합물에 의해 개질된 탄소나노소재 및 탄소나노소재/폴리아미드 복합재

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant