微能耗车
技术领域
本发明是一种全新的现代节能汽车。它的能耗仅为现在汽车的几分之一。
本发明属于陆上交通运输车辆。特别涉及一种前置风压减压装置和后置风压增压装置、内置多个能上下、前后做交替运动的车轮和下置弹性体轮胎的微能耗车辆。它的能耗极小。它能在普通道路,泥道和雪地上运行。也可在阶梯坡道上爬行。它适用于现今的各种轮式车辆。还可设计成残疾人的全能车。
背景技术
今轮式车辆如汽车,轮胎在地面上行运阻力很大,消耗的功率很大。现在轨道车的钢轮在钢轨上行运阻力很小,消耗的功率很小。两者能耗差数倍甚至十倍以上。但轨道车需轨道,投资大,且只能在固定轨道上运行。现代的轮式车虽运行路线自由,无轨道,投资小,但消耗的功率很大。优点两者不能兼得。在高速行使时,两者也都不能很好克服其风阻能耗。
发明内容
本发明所要解决的技术课题是:提供了一种内置上下前后能交替运行的多轮式的微能耗车。使整车的能耗降低到极值。
根据本发明的一个方面,提供一种微能耗车。其中,所述微能耗车为一种内置前后上下交替运动车轮的多轮式微能耗车;所述微能耗车在车辆底盘的中心线两侧各有成对的能在水平导轨上交替前进的小车或有成对的水平导轨本身能交替前进的运行系统;载重通过装在其上的垂直导轨中车轮的上下升降传至地面;载重车轮的升降所需势能相互传递;用转盘改变导轨方向实现车辆转向。
承上,本发明提出的微能耗车至少包含以下特征:
其特征之一在于其发动机仓前置部分和驾驶室头顶布置有喇叭装置(由前向后收缩)。形成一个外伸在车前方的迎风面,并通过气道输入车后的喇叭装置(由前向后扩张),使车前方高压气喷射到车后方的低压区。
其特征之二在于在车架底盘的中心线和左右两侧,沿道路平行方向提供了两种运行方式:其一为安装多对能在各自导轨中交替前进的小车运行系统;其二为能交替前进的水平滚动导轨运行系统。在小车上或在水平滚动导轨的其中一个轨道(以下称内轨道)装置上又装有能使车轮上下运动的垂直导轨运行系统。在一个车轮向上运动时,载重势能又能够直接传递给对应的向下运行的另一个车轮。另一轨道(以下称外轨道)固定在车架上。这两种传动方式可以是机械的、液动的或气动的。其动力可为电动机(包括化学能和太阳能电池)或内燃机。
在一对小车的水平运行系统传动方式中,两个小车分别由电动机两伸出轴上的两个飞轮-连杆或一动力轴上的两个曲轴-连杆带动它们。也可由内燃机活塞上的曲轴-连杆带动。使两个小车能在各自的水平导轨上交替前进。在每个小车上又装有能使载重车轮上下升降的垂直导轨系统。在这两个小车上的两个车轮上下分别升降所需载重势能又可通过杠杆或柔性连接等机构相互直接传递。因此在车轮上下过程中,在这些机构上只需消耗少量附加能量。
在水平滚动导轨行运系统传动中,在车架底盘上装有多对精密滚动导轨运行系统。每对中的一个导轨系统包括两条平行的水平轨导及其轨导间带有保持架的滚珠。这两条水平轨导中有一条外轨导安装在车架底盘上。在它们中的另一条内轨导上安装了能使车轮上下升降的垂直导轨。如上所述,每条内轨导的水平方向运动除可由上述的曲轴(或飞轮)-连杆机构等带动外,也可由与内轨导装在一起的齿条带动。其中每两个齿条组成一对。每对齿条可由装在车架底盘上的圆柱齿轮正反方向传动,使它们前后运动。车架底盘上的载重经其水平轨导和装在垂直导轨上的车轮传至地面。当一对中的两水平内轨导交替前进到端点时,与它们一起的两个垂直导轨上的载重车轮也需上下升降。它们可由装在车架上的圆柱齿轮(或伞齿轮)带动两个垂直导轨上的齿条直接传递。在传递过程中,上升车轮的位能经该齿轮(或伞齿轮)直接传递给下降的车轮。故该齿轮也只需消耗少量附加能量。
在气动、液动中,水平和垂直导轨系统的运动都由液动或气动传动。在两水平导轨交替运行到端点时,由于车轮着地一侧垂直缸筒内的高压,在它释放前,都能通过专用通道和阀门事先释放至车轮离地一侧的低压垂直缸筒内使它达到准高压。因此使载重车轮在反复升降过程中同样只需消耗小部分附加能量。
其特征之三在于:提供了一个弹性体车轮。它的轮胎是由一个环型薄壁管组成。在该环型管上可设有排气孔。用它代替现有的橡胶轮胎。这种弹性体,在运行过程中基本上不损耗内摩擦产生的热能。而且它又能弹性承载。但还需考虑整车有一个最佳的自振频率设计。
本发明微能耗车运行时所需的总能耗远小于现今的轮式微能耗车运行时消耗的能量。由于成对车轮的数量很多,根据概率论统计学理论,我们能期望微能耗车运行的平稳性高于现在的车辆。
本发明的技术方案是:
一种前置风压减压装置后置风压增压装置的风阻降低系统,以及内置前后上下都能交替运行的车轮和下置弹性体轮胎的降低车轮内阻的多轮式微能耗车。其特征之一在于该风阻降低系统的技术方案是在车前高压区由几组扁平型收缩喇叭在车前形成一个迎风面,使气流通过气道后向车后方的扩张型喇叭喷射到低压区。形成一个内循环风阻降阻系统。用以代替现今的高压气流,通过车外形的外循环降阻系统;其特征之二在于在车架底盘的中心线和左右两侧,沿道路平行方向装有多对在各自导轨中能交替前进的小车运行系统或能交替前进的水平滚动导轨运行系统。有关每对水平滚动导轨运行系统中的一个导轨系统,包括有沿运行方向安装的两条平行的水平轨导及其在两条轨导之间的滚珠和其保持架。在两条轨导中,可移动的一条轨导在以下简称内轨导。在小车或内轨导上又装有能使车轮上下运动的垂直导轨运行系统;由向上开始运动的一个车轮产生的载重势能能够直接传递给对应的向下运动的另一个车轮。传动上述的水平和垂直两种导轨可以用机械传动,也可以用液动或气动传动;其特征之三在于提供了一个弹性体车轮。
用机械传动这两种导轨:在小车的机械传动中,可由动力轴(例如电动机轴)两端的两个对称的飞轮-连杆机构带动,使两个小车上的车轮能在各自的导轨内交替前进。在每个小车上有能使载重车轮上下升降的垂直导轨运行系统。车轮升降所需能量又可通过杠杆或柔性连接等机构相互直接传递。也可由圆柱齿轮带动两个垂直导轨上的齿条直接传递。此处垂直导轨尽可能采用滚动导轨。
在水平滚动导轨传动中,内轨导除可由曲柄(轴)-连杆机构带动外,还需在这内轨导上装有一个齿条与其导轨方向平行。用装在车架上的圆柱齿轮正反转动带动其中成对的两个齿条使它们前后交替运行。
用小型电动机或内燃机的曲轴-连杆机构直接驱动小车或水平滚动导轨都可提高微能耗车的运行速度。减少机械传动中的损失。照例,在它们的传动中还需安置如飞轮、离合器等必要部件。以保证微能耗车平稳行运。
用液动或气动传动这两种导轨:气动传动与液动传动的原理是相似的。下面以液动传动为例。在车架底盘上直接加工或另行安装液压装置所需的液压缸筒和管道。缸筒内有活塞、活塞杆。这些缸筒一般都是双作用缸筒。它们沿车辆的运行方向平行、水平或略有前倾角且成对安置。活塞杆是空心的。一般是双出活塞杆。双出活塞杆两端,每端连通一个能垂直上下运动的液压装置。在此两个液压装置的缸筒内活塞杆的下端,各连接着一个车轮。水平的空心活塞杆内液体与垂直液压缸筒中的液体是连通的。每两个邻近的并列安置的水平液压装置及与它们一起的四个垂直液压装置以及车轮、阀门和管道等组成一个“模块”。在每个“模块”中一般连接着三个“三位四通换向阀门”。每个“模块”中的两个水平缸筒内的活塞必须相互反向运动。当一个活塞运动到达油缸的一顶端时,另一个油缸的活塞需运动到相反的另一顶端。为了达到此功能,可以在两水平缸筒的两侧端连接两交叉管道。将油泵、油缸的高低压输入输出管道经过其中一个常开的“三位四通换向阀门”后与两水平缸筒的同侧相连;与两水平空心活塞杆相通的两对垂直缸筒内的压强应当是相反的。当一对垂直缸筒内为高压强时另一对内为低压强。为此,另一路油泵、油缸的高低压输入输出管道经过另一个常开的“三位四通换向阀门”与两水平空心活塞杆相连;当两个水平缸筒和两对垂直缸筒内的高低压强互换之前,必须事先使一对垂直缸筒内的高压强瞬间水锤(液体)或喷射(气体)到另一对垂直缸筒内,将它达到准高压强。这样,再由油泵将它们提升到高压强时可节省大量能耗。为此,我们可用一个常闭的“三位四通换向阀门”与两个水平的空心活塞杆相连。在整个车架底盘上,这样的“模块”有很多个。例如在图8的本案例中共有5个。在车架后部底盘上有3个,前部转盘上有2个。
车辆的运行过程是这样的:假设某“模块”中的第一个水平缸筒内的活塞处于缸筒的左端和第二个水平缸筒的活塞处于缸筒的右端。此时,第一个水平缸筒的车轮靠近该缸筒的左端。第二个水平缸筒的车轮靠近该缸筒的右端。当油泵的高压液体经一个常开的“三位四通换向阀门”向第一个水平缸筒的左侧一端输入时,则高压液体再通过交叉管道进入第二个水平缸筒内的右侧。假如第二个水平缸筒的两个垂直缸筒内的液体处于高压强时,此时由于该缸筒内,与活塞和活塞杆连接的车轮接触地面,使整个车架和载重都支撑在这些车轮上。同时该水平缸筒带着车架底盘等载重在其活塞杆与缸筒之间的精密轴承上逐渐向右方(前进方向)运行。最终向前进方向运行了一个行程。同时,因第一水平缸筒与第二水平缸筒是连体的,所以第一水平缸筒和它一起的垂直缸筒与车轮等也随着向前运行了一个行程;此时因为第一个水平缸筒的两垂直缸筒内液体处于低压强,车轮离地,与地面无摩擦力,所以高压推动该缸筒内的活塞并带动两垂直缸筒和车轮也向前运行了一个行程。最后,相对它们的水平缸筒位置,第一水平缸筒的车轮在该缸筒的右端。第二个水平缸筒的车轮在该缸筒的左端。两对车轮前后交替了一个位置。
当两个水平缸筒内的活塞分别接近它们的水平缸筒顶端时,控制器使三个“三位四通换向阀门”换向并进入下半个行程。两个水平活塞杆及其垂直缸筒中的车轮等又开始运动。车架底盘带着载重又向前移动了一个行程。“三位四通换向阀门”不断换向,车辆不断向前运动。
传动装置的平面布置:电动传动、内燃机传动和液动(气动)传动的平面布置都是相同的。尽量利用车架底盘的面积,增加成对传动装置的数量,并应对称分布。各成对的车轮着地与离地的瞬间一般是随机的,但尽可能固定分布在不同瞬间以使车辆平稳运行。成对数量越多,运行越平稳。它是蛇行的仿生。成对数量越少,平稳性越差。它是步行的仿生。
一种直线滚动导轨装置:在各种动力传动中,水平或垂直滚动导轨都可用这种简单的导轨装置。这种装置的核心是提供了一种“滚珠保持架”。当导轨在运动过程中,它使导轨内所有受力的滚珠相互保持固定的直线距离。它的滚动摩擦力很小。用厚0.5-1.0mm和宽度比滚珠直径宽一倍左右的狭长钢片,在轴向中心线上,安放滚珠处开一个略比滚珠直径大的孔。在钢片轴的中心线上,在离孔中心长度为2倍左右孔径的位置,留1-2mm宽度,在宽度两侧处分别向孔径周边两侧处的切线方向切开,并将切开的钢片扭转90度,作为滚珠的保持架,将滚珠放在这孔中。这种装置既不增加滚动摩擦力,又可保持滚珠间直线距离,而且特别简单。根据导轨长度和受力大小决定滚珠的大小、数量和孔的间距。在本发明中,各种滚动导轨的断面都可由3条或4条这种“滚动保持架”组成。
一种弹性体车轮:它由轮轴、轮輻、胎圈座、轮胎和耐磨橡胶组成。前三者为一刚体。车轮与地面接触处为轮胎上的耐磨橡胶。本发明将轮胎设计成一个弹性环型薄壁管。在该薄壁管上可以开有排气孔。此处的弹性体是指弹性模量较高的材料。它们包括钢材以及其它有机和无机材料。由它们制成的薄壁管,在运行过程中基本上不损耗轮胎内摩擦产生的热能。
本发明的效果:
改变了现今各种轮式车辆的外形和运行机构。微能耗车在前端设置了气流减压装置,后端设置了气流增压装置。成对车轮在交叉前进运行过程中,车轮上下交替运动时的势能又可相互传递。弹性薄壁管组成的轮胎进一步减少了在车轮转动时因轮胎受压缩损耗的内能。这类车辆能使能耗成倍减少。可在使用化学能电池或太阳能电池供电情况下快速、长距离运行。车辆运行机构单一重复,成本低。车轮在地面上的压强很小,车轮又是交替滚动运行,故能在各种道路上快速平稳运行。
如果我们采用图5a中所示的平面布置则图中有6个模块。如要求在10秒钟内希望巡航速度每小时达到60公里时,建议在每个模块中水平运行的每个电机采用6马力。垂直运行每个电机采用300瓦和空气阻力两个排风扇各用3马力。
如果我们在每个车轮上还加装一个约1马力左右小功率启动用加速电动机,则本发明启动时加速更快。这样还可方便倒车。这种车辆车轮的结构犹如电动自行车,在车轴上带电动机的动力车轮。
附图说明
图1,2:运行机构原理图;
图3:图1,2原理图的试验结构之一;
图4:齿轮传动滚动导轨结构侧示图;
图5a:机械传动装置的平面布置示意图;
图5b:水平运行单向连续转动机构原理图;
图5c:垂直运行单向连续转动机构原理图;
图6,7:液动(或气动)传动两种导轨的运行原理图;
图8:液动(或气动)传动装置的平面布置图;
图9a,图9b:直线滚动导轨“滚珠保持架”结构图;
图10:弹性体车轮的结构简图。
具体实施方式
一种前置风压减压装置后置风压增压装置、内置能前后、上下做交替运动的车轮以及下置弹性体轮胎的多轮式微能耗车。
其特征之一在于;前置风压减压装置和后置风压增压装置,降低风阻的结构。车前减压装置结构为:在发动机仓前置部分和驾驶室头顶部分各置有一组扁平型喇叭,形成一个外伸在车前方的迎风面,使前方整个高压气流流入喇叭并通过各自的气道(或合并的气道)流入车后的喇叭,再喷射到车后的低压区。气道内置有风机。它的功率随车速而变化。由于气流的动力使它只对气流起加速作用,因此它的功率很小。喇叭口内可由多个导流片或拉瓦管组成。它们的结构与气道可按气动力原理设计。在它们内壁涂有纳米材料,并置有带喷嘴的自清洗装置。由于本发明既没有庞大的发动机,又没有太多的动力电池,因此有可能有足够的空间打通上述气道及其所需设备。如简图5a和8所示,图中W为风机,T为喇叭,D为导流片或拉瓦管,I为环形喷嘴和v为气道。其特征之二在于在车架底盘中心线及其左右两侧,沿道路平行的方向,有多对能交替前进的小车或水平滚动导轨运行系统。与它们连接在一起的垂直方向又有能使车轮上下移动的垂直导轨运行系统。一个向上运动的车轮产生的载重势能通过杠杆、软连接或齿轮等机构,能够直接传递给对应的向下运动的车轮。其水平和垂直的传动方式可有机械的、液动的或气动的。其动力可为化学能电池、太阳能电池或内燃机直接传动。其特征之三在于提供了一个弹性体车轮。
其中,所谓弹性体可以理解为在受力时主要发生弹性变形。当外力撤销后,可基本恢复原状的材质。由于本发明采用薄壁高弹性管材环绕制成,因此相比于现有车轮,它在运行过程中可极大地减少内摩擦热能的生成,从而很大地提升了行车效率。但由于这种轮胎的阻尼系数减少,可能会引起汽车的少许振动。但考虑到这种轮胎的振幅很小以及汽车的整体支撑由原有的四个增加到现有的十个以上,故当整车减振系统调整设计后,预期的汽车可比以往有更好的运行稳定性。
图1、2:本发明导轨运行机构原理图:图2中所有编号与图1相同,运行方向如箭头所示。图中101为车架底盘。电动机两端轴上的两飞轮带动两个连杆102、103分别传动两个小车104和105。它们在车架底盘的各自导轨中沿着前进方向运行。外套筒106和107垂直固定在小车上。立柱108和109能在外套筒内上下运动。立柱下端分别装有车轮110和111。立柱上端装有滚轮112和113。在立柱外装有压簧114和115。它们上端与滚轮支架的下端接触,下端与外套筒上端接触。安装在立柱的小轴上的套筒锁116和117能将外套筒和立柱相互连接或断开。另有小滑轮118和119安装在外套筒上端的小轴上。当套筒锁116的锁钩下降到小滑轮下边时,套筒锁可将立柱与外套筒连成一体。当套筒锁117的锁钩上升到小滑轮上边时,立柱可在外套筒内上下自由运动。
下面是小车和导轨机构的运行原理:我们首先假设车轮110和111都不着地。在车架101上,当电机带动两连杆102和103运动半周时,小车104和105在横杆123的中心O的左右作等距离2R往复对称运动。R接近于飞轮半径。如果我们假设车轮110下降着地,车轮111上升离地,则在运行时,由于车轮110着地受载,增加了安装着该车轮的小车104导轨中的摩擦力。此摩擦力远大于未受载的车轮的小车105导轨中的摩擦力。因两车轮在其导轨中的摩擦力相差很大,所以当飞轮带动连杆作半周期运动时,受连杆102的拉动,使装着电动机的车架底盘带着载重,克服小车105在导轨中的摩擦力向着地车轮方向移动。如图中所示,向前进方向移动了2R距离。由于导轨是高精度滚动导轨,所以它的实际摩擦力约有载重的千分之几。电动机所需的动力很小。在同一时间,当小车105带着车轮111随其装在车架底盘上的电动机一起向前移动2R距离的同时,由于飞轮旋转也带动连杆103,使小车105又向前移动2R距离。相对小车104,小车105一共向前移动了4R距离。原来小车104比小车105超前2R距离,现在相反,小车105比小车104超前了2R距离。两小车前后交叉了一个位置。所以在飞轮转动的上半周期结束时,两小车的车轮前后相互调换了一个位置。同时,车架底盘带着载重向前移动了2R距离。在下半周期开始前,只要改换两个车轮着地状态,则车架底盘带着载重又可向前移动2R距离。如上所述,只有当两个车轮着地与离地状态相互交换时,车架底盘才能带着载重不断向前运行。
下面我们将叙述车轮升降机构的原理:
在图1(同时可参考图3),我们现在假设小车105的车轮111着地,小车104的车轮110离地并两者逐渐分别向左边和右边两顶端靠近。此时车轮110上的滚轮112,开始接触安装在车架上的斜面122。斜面压缩此滚轮,滚轮逐渐压缩弹簧114并通过立柱108使车轮110渐渐往下移动。同时立柱109上的横杆124逐渐接近装在车架上的止铁120,使得套筒锁117,逐渐脱离之前与它相互勾住的小滑轮119。在脱离前的瞬间,车轮111受地面的反作用力,使它连同立柱109一起沿着外套筒107急速向上移动并放出大量载重势能(我们应注意到车轮111在往上移动前是着地状态。此时套筒锁117与小滑轮119是相互锁住的)。同时原先被压缩的弹簧115也释放出它的位能。这些能量通过安装在车架上的横杆123由车轮111传至车轮110。使车轮110接触地面并逐渐支承车架底盘上的载重。同时斜面122压缩立柱108使车轮110进一步受载,最后,导轨锁116,在拉簧121的作用下,将安装着车轮110的立柱108与安装在小车上的外套筒106上的滚轮118锁住。当这过程结束时飞轮带着连杆开始下半周期运动。图1正是表示在上半周结束下半周刚开始时车轮状态。实际上,车轮111并不离地,只是浮动在地面上滚动。
图3,图1、2原理图的试验装置:它是本发明试验车结构正式图的一部份。图中所有编号与图1、2中编号相同。图中322为固定在车架101上的立架126中的一个滚轮,“322”这个标号并不再与图1中“122”这个编号指引同一个结构,而是代替了图1中斜面122的作用。图中125为调整预压力的压簧。图中127为一个球面滚动轴承,以它提高横杆123的能量传递效率。
图中128为单向棘轮。
当车轮上下运动的交替频率与立柱、横杆等装置的固有频率一致时能量传递的效率最高,将这状态设计成车辆的巡航速度。
图4,本发明齿轮传动中车轮前后和上下运动的机构侧示图:它的主体为与车架底盘一体的外轨导401。辅助动力传动轴402直接与扇齿轮403连接。扇齿轮与上套筒404上的齿条405啮合。在上套筒404中固定着轴406。轴下装有车轮407。该车轮结构如电动自行车的车轮。它本身带有能正反转的小型电动机(在图中未画)。能在轴406外上下移动的下套筒408的上端装有一齿条409。该齿条与圆柱齿轮410啮合。下套筒408的下端装有一滚动内轨导411。内轨导可在外轨导401中前后移动。能使车向前运动的主动力412通过轴413与齿轮410相连。414为垂直和水平两滚动导轨中间的“滚珠保持架”。
它的运行过程是这样的:假设左侧车轮在车前进方向(纸内方向)的后端(纸外)右侧车轮在前端(纸内)。当扇齿403向顺时针方向旋转一角度时,则以车架底盘为准绳,左侧上套筒404带着它的车轮407向上移动了某一距离。同时右侧车轮向下移动了某一距离。假设左侧车轮上移时卸载离地,则这车轮离地时恢复的弹性变形的位能帮助扇齿轮转动,使右侧车轮下移压缩受载。在右侧车轮着地受载结束时,装在上下套筒404和408之间的“套筒锁”(图中未画出)将上下套筒锁住。使右侧上套筒404中的车轮相对下套筒408不能自由运动。此时,若动力412通过轴413传动圆柱齿轮410,向逆时针方向旋转一周,则相对右侧着地车轮的位置,该齿轮410带着车架底盘向前移动,移动的距离为该齿轮节圆周长。同时受齿轮410的传动,左侧齿条带着离地车轮,相对着地车轮,向前移动了前者的两倍距离,即两倍齿轮节圆周长。此时左右两车轮相对车架底盘,它们的前后位置发生交换。当它们到达终端时,止铁(图中未画)顶开右侧的套筒锁(图中未画),使它解锁。右侧车轮解锁后的车轮弹性反力和扇齿轮402反向转动的辅助力,同时使左侧车轮着地受载并由套筒锁将它与下套筒锁住。接着轴413反向转一周,车架底盘和右侧车轮又向前移动两倍齿轮节圆直径。两动力轴402和413不断轮流正反转动,在止铁行程开关控制下,套筒锁不断上锁和解锁,车辆就不断向前运行。图中扇齿轮403的作用相当于图1中的连杆123。在实际结构中,扇齿轮必须有辅助动力。在原理图1中的连杆123使车轮受载的辅助动力今由斜面122压缩滚轮112提供。
上述只有伞齿轮轴正反转动,才能使它带动的齿条和车轮能上下运动。但伞齿轮轴正反方向转动的速率不可能达到很高。同理,需正反转动的齿轮410也不能使水平运行速度很高。最终车速也就不能很快。
图5a,本发明提供了齿轮传动装置的一种平面示意图:图5a为以图4中齿轮-齿条机构布置的整车平面示意图。图中共有6对传动装置。它们分两部份,车的后部是动力传递的主要部分,前部是转向和动力补充部份,它们都对称安装在车架底盘中心线的两侧。
车的转向:在本图中,在车前部中的两对传动装置分别装在两个圆柱齿轮上,该圆柱齿轮再装在车架底盘上。这两个齿轮再与它们中间的一个转向齿轮啮合。转动转向齿轮可实现改变运动方向。平时,它们可提供辅助动力。倒车由车轮上自带的小型电机正反转实现。如本图中,507为自带电动机的车轮,508为下套筒,509为齿条和510为圆柱齿轮。
图5b,水平运行单向连续传动机构原理图,图5c,垂直运行单向连续传动机构原理图。
如图5b所示,电动机传动全齿圆柱齿轮C,C再啮合一个反向全齿圆柱齿轮E,C和E再分别传动两个间歇齿轮A和B。间歇齿轮A和B再分别啮合两个全齿圆柱齿轮F和G。F和G再分别传动全齿圆柱齿轮H和I。H和I是两个方向相反的间歇传动的一对全齿齿轮。它们再分别传动一对水平运行的齿条D。本图中H和I就是图5a中的一对齿轮510。
本图中只有A、B两个齿轮为间歇齿轮。它们的间歇次数是这样决定的。当A轮传动停止时,B轮还不立即传动。还需等待垂直运行的半周期完成后,B轮才能开始传动。C轮同时可以是一个惯性轮。
如图5c所示:将图4中伞齿轮403的结构改为由一对圆锥齿轮分别带动两个连杆和滑块C的机构代替。这两个圆锥齿轮为全齿圆锥齿轮。它们的轴上各装有单向棘轮B。这两个连杆轴的一端,都分别在该圆锥齿轮上的月牙型槽A中滑动。该对圆锥齿轮再由一个较大的分段间歇圆锥齿轮与它们啮合。该间歇圆锥齿轮同时是一个惯性飞轮。它的直径比两侧小的圆锥齿轮要大数倍。它的间歇齿数由水平运行半周期时间决定。在其左图中,当滑块(车重)下降时,它的1、2、3位置(此时连杆轴的位置分别为①②③)为车重落体运动。此时,如果小锥齿轮转速低于落体运动速度时,半月牙槽可使滑块发生落体运动而不受车轮速度变慢的影响。图中B为棘轮。当滑块C(车重)再从位置3上升到位置4、5时(相对应的连杆轴位置为④⑤),该棘轮能阻止这小锥齿轮反向转动。本图的左侧和右侧的两个全齿锥齿轮的实际位置是面面相对的。它们由中间的一个大的间歇锥齿轮传动。由于滑块(车重)和中间锥齿轮的附加动力的推动,当左侧的滑块C由位置1下降到3时,它们经中间锥齿轮带动右侧锥齿轮上的连杆,使它的滑块由位置1反向上升到2、3位置。其后,大锥齿轮处于无齿状态。一对小锥齿轮停止转动。此时水平运行机构处于工作状态。当水平运行结束时,大锥齿轮进入有齿工作状态。这样周而复始地使汽车连续工作。
由上可知,该机构可使垂直和水平运行电机只需单方向旋转。所以转速可以很快。车速也就很快。
图6、7,液动或气动传动两种导轨的运行原理图:在每对液动(或气动)运行系统中包括两套液动(或气动)装置。它们是:在底盘上整体加工或另行安装固定着的双作用水平缸筒601、602和也被固定着的管道603、604、605和606。两缸筒内分别有水平活塞608、609和水平活塞杆610、611。活塞固定在活塞杆中央。这些缸筒沿车辆的运行方向水平安置。活塞杆是空心的。活塞杆和管道互为轨道。它们间有密封装置。在图中双出活塞杆两端,每端分别连通一个能垂直上下运动的垂直缸筒612、613、614、和615。在这些缸筒内的垂直活塞杆616、617、618和619的下端,分别连接着一个小车轮620、621、622、和623。两水平空心活塞杆左侧内液体与垂直缸筒中的液体(或气体,以下相同)是连通的。两水平空心活塞杆的右侧分别与管道624、625相通。由于这管道的外径小于水平空心活塞杆的内径,所以它们间的液体也是相通的。管道624、625与空心活塞杆610、611分别同轴安装。它们间有密封圈。管道也可用可伸缩软管与空心活塞杆直接连接等其他方式代替。正视图7的状态对应图6中的缸筒602。
我们将上述的一对液动运行系统称谓一个“模块”。在每个“模块”中还包括三个“三位四通换向阀门”626、627和607。在图例中表示转阀式阀门。前两者为常开式阀门。它们的功能为输送由油泵输出的高压液体至两水平缸筒的一侧再由缸筒另一侧的低压液体输回油箱。两个阀门在同一方向可依次同时循环转动90度。在90度转换过程中大约在45度时先切断通路,接着在90度时高低压互换。第三个阀门为常闭式。它通过管道624、625与两水平空心活塞杆相连。它的功能是输送油泵、油箱内的高低压液体分别至两对垂直缸筒内。它同样90度循环工作。在90度转换过程中先在45度左右时瞬时通路,接着在90度时又切断。阀门607与阀门627并连。上述三个阀门可组合成一个整体。它们都可用滑阀式或其他形式阀门代替。
如图6、7所示,油泵正向该“模块”输送液体。由油泵、油箱输入输出的高压和低压液体经“三位四通换向阀门”626后分别输送至两水平缸筒的同一侧。高压液体的流入路径是:它经管道603流入缸筒601的左侧同时再经管道605流入缸筒602的右侧。低压液体的流出路径是:缸筒601内右侧的液体经管道606进入缸筒602内左侧,再经管道604由阀门626排出;在图6、7中油泵的另一路高压液体经“三位四通换向阀门”627和管道625流入水平空心活塞杆611及其垂直缸筒614和615。它们的液体处于高压状态。在图6中,水平空心活塞杆610及其垂直缸筒612和613内的液体经管道624再由阀门627排出。它们的液体处于低压强状态。
这两种导轨是这样运行的:在图6、7中当高压液体通过阀门627经管道625推动在缸筒602的两垂直缸筒614、615后,使该缸筒内的垂直活塞杆618、619分别带着它们的车轮622、623下降接触地面并承受车的载重。在该对车轮受载的同时,缸筒602内右侧的高压推动该缸筒602,并带着车架底盘上的载重(缸筒是安装在车架底盘上)逐渐向前进方向滑动了活塞的一个行程,如图6中缸筒602下方箭头表示。此时如图7中表示,其缸筒602已向前移动一个行程并靠近图6中的垂直缸筒615。图7中缸筒602中活塞609靠近缸筒右边是表示缸筒在启动状态。同时因水平活塞608上的垂直缸筒612和613处于低压强,车轮620和621被提升,使车轮浮动在地面上,车轮失去了与地面的摩擦力。水平缸筒601内左侧的高压推动活塞608,带着活塞杆610上的两个垂直缸筒612、613与两个车轮620、621一起也向前进方向(右方)移动一个行程。由于事前缸筒601随着同一车架上的缸筒602己经移动了活塞的一个行程。所以相对于车轮622,623,车轮620、621一共移动了活塞的两个行程。如图6中活塞杆610下方加长了一倍的箭头所示。这样两对垂直缸筒中的车轮前后交换了位置。当活塞608接近水平缸筒601的顶端时,控制器(图中未画)使三个“三位四通换向阀门”626、627和607同时同向转动90度。在“三位四通换向阀门”626、627互换高低压前,当它们旋转45度左右时,阀门607也己旋转45度,此时管道624、625突然被该阀门打通。在打通瞬间后又被该阀门断路。在打通的瞬间,两垂直缸筒614、615内高压强液体通过该阀门迅速水锤(液体)或喷射(气体)到处于低压强的两垂直缸筒612、613内。使它们处于准高压状态。这样可最大程度地减少了以后补充缸筒612、613至高压强时所需能耗。接着当上述三个阀门旋转至90度时,管道603、604内的高低压强和管道624、625内的高低压强都发生互换。且阀门607已被关闭。缸筒601中的垂直缸筒612和613内保持了足够的压强。使它们的车轮着地受载。同时缸筒602中的垂直缸筒614、615内只持有很低的压强,使车轮卸载浮动在地面上。着地受载的车轮增加了与地面的摩擦力。缸筒601带着车辆的车架底盘及其载重也向前进方向移动了一个活塞行程。对于另一个水平缸筒602,由于此缸筒内活塞两侧的高低压已与上一行程相反。所以如同上述,该缸筒602内的车轮同样向前移动了两个活塞行程。最后两对垂直缸筒中的车轮位置前后又发生了交换。在微能耗车运行过程中,水平活塞杆在其缸筒内的相对位置不断变动,受它控制的阀门不断关开,车辆不断向前运动。在实际结构中,垂直缸筒与它的活塞可以不垂直于地面而有一小的前倾角,这样可使车辆减少冲击力,也可起到一些加速作用。它们仿生“滑冰运动”。
如果将常开的“三位四通换向阀门”626、627的高低压互换和将阀门607旋转90度,则也可实现倒车运行。
在此着重提示:如上所述,当一对垂直缸筒内的高压强瞬间水锤到另一对低压强的垂直缸筒内时,流速越快,所获得的准高压强就越高。此压强越高,则以后补充该对车轮缸筒内所需的压强就越少。车辆所消耗的能量就越少。因此该管道内各元件必须按流体力学原理仔细设计。
图8,液动或气动传动两种导轨的平面布置图:在图中,整个底盘上安排了5个“模块”。其中两个在底盘前部,它们分别被安装在带圆柱齿轮的两个转盘上。再转动与它们啮合的中心的方向齿轮,即可使车辆改变方向。为使车辆更平稳运行,在调试过程中,本例5个“模块”中水平缸筒中的活塞位置应处于缸筒内的不同位置,使各“模块”中的车轮有不同的离地和着地时间。但在实际工作中,各车轮的离地和着地时间可以是随机的,也可设计为均匀固定的。适当的“模块”数量使运行很平稳。它们仿生“蛇的爬行”。本图中801、802为水平缸筒。它们相当于图7中的601、602。
图9a、9b,本发明的直线滚动导轨结构:本发明中受力的两种滚动导轨,如图4中的水平导轨和垂直导轨。这两种滚动导轨装置的核心是提供了一条“滚珠保持架”914。如图9a、9b所示,厚约1.0mm和宽度比滚珠直径宽一倍左右的狭长钢片,在钢片中线安放滚珠的位置上开一个略比滚珠直径大的孔。在钢片轴的中心线上,在离孔中心长度为2倍左右孔径的位置,留1-2mm宽度,在宽度两侧处,分别向孔径周边两侧处的切线方向切开,并将切开的钢片扭转90度,作为滚珠的保持架。将滚珠放在这孔中,当导轨在运动过程中,它使导轨内所有受力的滚珠相互保持固定的距离。这种装置既可减少滚动摩擦力,又可保持滚珠间距离。根据导轨的长度和受力大小决定滚珠的直径、数量和孔中心间距。
在图5中,两条水平导轨和两条垂直导轨各安放了3条“滚珠保持架”。这种滚动导轨结构既适用于机械传动,也适用于气动、液动或内燃机传动。
图10,本发明提供的车轮:它是一个弹性体:它由轮轴1001,轮辐1002,胎圈座1003,轮胎1004和耐磨橡胶1005组成。前三者为一刚体。车轮与地面接触处为轮胎外侧的耐磨橡胶1005。本发明将轮胎1004设计成一个环型薄壁管弹性体。在该环型体上可开有气孔1006。这种弹性体,在运行过程中基本上不损耗内摩擦产生的热能,它又能弹性承载。
虽然已根据不同的特定实施例对本发明提出的水平和垂直运行联动机构、气流内循环降阻系统及具有弹性薄壁管车轮的微能耗车进行了描述,但本领域技术人员将会认识到可在权利要求的精神和范围内对本发明的实施进行改动。