CN111701592A - Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢 - Google Patents

Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢 Download PDF

Info

Publication number
CN111701592A
CN111701592A CN202010630987.0A CN202010630987A CN111701592A CN 111701592 A CN111701592 A CN 111701592A CN 202010630987 A CN202010630987 A CN 202010630987A CN 111701592 A CN111701592 A CN 111701592A
Authority
CN
China
Prior art keywords
ammonia borane
layered double
preparation
cofe
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010630987.0A
Other languages
English (en)
Other versions
CN111701592B (zh
Inventor
蒋和雁
臧翠翠
张思诗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Technology and Business University
Original Assignee
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Technology and Business University filed Critical Chongqing Technology and Business University
Priority to CN202010630987.0A priority Critical patent/CN111701592B/zh
Publication of CN111701592A publication Critical patent/CN111701592A/zh
Application granted granted Critical
Publication of CN111701592B publication Critical patent/CN111701592B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢催化体系,该催化剂制备方法为:采用稳定的半填充Fe3+来捕获光生电子,调整MII‑O‑Fe氧桥结构来优化短程定向电荷传输能力,并将金属氧酸盐插层到LDH中,进一步提高了LDH的光吸收和电子空穴分离性能;光催化氨硼烷水解制氢的方法为:将一定量的水滑石载体和CoCl2•6H2O水溶液置于双颈烧瓶中搅拌负载,当向上述混合物中添加一定量的纳米金属还原剂NaBH4和底物NH3BH3的水溶液,在298 K光照下立即开始催化反应。该催化剂制备方法简单易操作,可用于光催化氨硼烷高效水解产氢,反应条件温和,在优化条件下TOF可以达到113.2 min‑1,而且催化剂容易回收利用。

Description

Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢
技术领域
本发明涉及一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢。
背景技术
随着经济的不断发展和生活质量的提高,人们对能源的需求也在不断增加。然而,化石能源日益枯竭。氢能是全球公认的清洁能源,有助于解决能源危机,实现能源转型,遏制全球变暖和环境污染,因此氢能的开发利用已引起世界各国的关注。氢气难以压缩或液化的形式储存,已成为利用氢能源的主要困难。固态储氢是利用储氢材料与氢气之间的物理或化学变化来储存氢气的一种方法。其中,氨硼烷(NH3BH3, AB)因其含氢量高达19.6wt%而被认为是最有前途的储氢材料之一。在适当的催化作用下,氨硼烷的水解可以迅速进行,生成氢气。贵金属(如Rh、Pd、Ru和Pt)在氨硼烷催化水解制氢反应中有着广泛的研究。然而,贵金属催化剂是不经济的,开发物美价廉、地球资源丰富的廉价非贵金属催化制氢是迫切需要的。
层状双金属氢氧化物具有可调的电子结构、高度分散的金属离子、层间可交换的阴离子以及可控的拓扑变换等优点,可作为理想的光催化材料。
发明内容
本发明提供了一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢催化体系,本发明提供的制备方法简易、经济,可用于光催化氨硼烷水解产氢。Co/MIIFe层状双金属氢氧化物光催化剂在可见光下对催化氨硼烷高效水解产氢,不仅避免了贵金属的使用,反应条件温和,析氢活性较高,而且相较于暗反应其TOF值提高了很多。
所采用的技术方案是:采用稳定的半填充Fe3+来捕获光生电子,调整MII-O-Fe氧桥结构来优化短程定向电荷传输能力,并将金属氧酸盐插层到LDH中,进一步提高了LDH的光吸收和电子空穴分离性能,光催化氨硼烷水解制氢的方法包括:将一定量的载体水滑石和CoCl2•6H2O水溶液置于双颈烧瓶中搅拌负载,向上述混合物中添加一定量的纳米金属还原剂NaBH4和底物NH3BH3的水溶液,在298 K光照下立即开始催化反应,该催化剂制备方法简单易操作,可用于温和反应条件下光催化氨硼烷高效水解产氢,在优化条件下TOF可以达到113.2 min-1,而且催化剂容易回收利用。
上述的一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢,其特征在于采用共沉淀和水热法制备了不同的MIIFe-C层状双金属氢氧化物纳米片进而调整MII-O-Fe氧桥连结构来优化短程定向电荷传输能力,采用共沉淀法一步合成了钼酸盐插层CoFe-Mo层状双金属氢氧化物纳米片,进而提高了LDH的光吸收和电子空穴分离性能。
上述的一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢,其特征在于:非贵金属纳米粒子的负载使氨硼烷的光催化活性大幅度提高,非贵金属纳米粒子包含Co纳米粒子,Ni纳米粒子及其合金。
上述的一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢,其特征在于:在无光照时该催化体系催化活性较低,在光作用下催化活性大幅提高。
上述的一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢,其特征在于:催化剂的循环使用性能较好,经过20次循环使用,Co/CoFe-Mo光催化剂仍维持了很高的光催化活性。
上述的一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢,其特征在于:所用光源可以是氙灯、各种颜色的单色光、各种其他人造光源或太阳光。
为了实现上述目的,本发明采用以下技术方案:
一种Co/MIIFe层状双金属氢氧化物光催化剂的制备方法,所述制备方法包括以下步骤:
1、碳酸盐插层MIIFe-C层状双金属氢氧化物的制备
①Co/Fe摩尔比为3:1的Co(NO3)2•6H2O和Fe(NO3)3•9H2O溶解在去离子水中,形成0.6 M盐溶液(溶液A)。②将NaOH(0.4 g,10 mmol)和Na2CO3(2.1 g,20 mmol)在去离子水中搅拌溶解(溶液B)。③将溶液A和溶液B同时滴入含有去离子水的三颈瓶中,并在60℃水浴中剧烈搅拌。将pH值调整至9-9.5,然后连续搅拌0.5 h。④所得浆液放入水热反应釜,在80℃下加热48 h,然后用去离子水和乙醇离心彻底清洗,最后在60℃下干燥过夜,得到CoFe-C层状双金属氢氧化物样品。⑤用相同方法制备的NiFe-C层状双金属氢氧化物和ZnFe-C层状双金属氢氧化物。不同的是,NiFe-C层状双金属氢氧化物在120℃下,以pH=8.5结晶;ZnFe-C层状双金属氢氧化物在25℃下,以pH=10结晶。
2、钼酸盐插层CoFe-Mo层状双金属氢氧化物纳米片的合成
①用氮气对去离子水鼓泡30 min,去除CO2,整个实验在氮气保护下进行。②制备10 mL钼酸钠水溶液,n(MoO4 2-):n(Fe3+)=2:1。③用0.5 M NaOH调节pH至9-9.5(溶液C)。④将溶液A和溶液C同时滴入含有少量去离子水的三颈瓶中,并在60℃水浴中剧烈搅拌。⑤其余步骤与CoFe-C层状双金属氢氧化物相同,最后得到CoFe-Mo层状双金属氢氧化物样品。
3、 Co/CoFe-Mo的合成
①将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h。②将NaBH4(0.068 mmol)的水溶液(1.0 mL)注入上述混合物中,待反应完全后,用去离子水和乙醇分别洗涤几次,在60℃真空烘箱中干燥过夜。③采用与Co/CoFe-Mo相似的工艺合成了Co/CoFe-C、Co/NiFe-C和Co/ZnFe-C。
一种利用Co/CoFe-Mo层状双金属氢氧化物光催化剂光催化氨硼烷产氢的方法,包括如下步骤:
将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h。当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应。在催化反应过程中,利用排水法监测了气体的生成量。为了比较不同层状双金属氢氧化物种类对催化剂析氢性能的影响,用同样方法检测了Co/CoFe-C、Co/NiFe-C和Co/ZnFe-C三种催化剂的析氢性能。
说明书附图
图1是实施案例1制备的CoFe-Mo、Co/CoFe-Mo的SEM图。
图2是实施案例1制备的Co/CoFe-Mo、CoFe-Mo、Co/CoFe-C、CoFe-C、Co/NiFe-C、NiFe-C、Co/ZnFe-C、ZnFe-C的X射线衍射图谱(X-ray diffraction,XRD)。
图3是实施案例1制备的Co/CoFe-Mo透射电镜图(transmission electronmicroscope,TEM)。
图4是实施案例1制备的Co/CoFe-Mo的X射线光电子能谱(X-ray photoelectronspectroscopy,XPS)图。
具体实施方式
下面结合具体实施案例对本发明进行详细说明。
实施案例1:
一种Co/MIIFe层状双金属氢氧化物光催化剂的制备方法,所述制备方法包括以下步骤:
(1)碳酸盐插层MIIFe-C层状双金属氢氧化物的制备
①Co/Fe摩尔比为3:1的Co(NO3)2•6H2O和Fe(NO3)3•9H2O溶解在去离子水中,形成0.6 M盐溶液(溶液A)。②将NaOH(0.4 g,10 mmol)和Na2CO3(2.1 g,20 mmol)在去离子水中搅拌溶解(溶液B)。③将溶液A和溶液B同时滴入含有去离子水的三颈瓶中,并在60℃水浴中剧烈搅拌。将pH值调整至9-9.5,然后连续搅拌0.5 h。④所得浆液放入水热反应釜,在80℃下加热48 h,然后用去离子水和乙醇离心彻底清洗,最后在60℃下干燥过夜,得到CoFe-C层状双金属氢氧化物样品。⑤用相同方法制备的NiFe-C层状双金属氢氧化物和ZnFe-C层状双金属氢氧化物。不同的是,NiFe-C层状双金属氢氧化物在120℃下,以pH=8.5结晶;ZnFe-C层状双金属氢氧化物在25℃下,以pH=10结晶。
(2)钼酸盐插层CoFe-Mo层状双金属氢氧化物纳米片的合成
①用氮气对去离子水鼓泡30 min,去除CO2,整个实验在氮气保护下进行。②制备10 mL钼酸钠水溶液,n(MoO4 2-):n(Fe3+)=2:1。③用0.5 M NaOH调节pH至9-9.5(溶液C)。④将溶液A和溶液C同时滴入含有少量去离子水的三颈瓶中,并在60℃水浴中剧烈搅拌。⑤其余步骤与CoFe-C层状双金属氢氧化物相同,最后得到CoFe-Mo层状双金属氢氧化物样品。
(3)Co/CoFe-Mo的合成
①将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h。②将NaBH4(0.068 mmol)的水溶液(1.0 mL)注入上述混合物中,待反应完全后,用去离子水和乙醇分别洗涤几次,在60℃真空烘箱中干燥过夜。③采用与Co/CoFe-Mo相似的工艺合成了Co/CoFe-C、Co/NiFe-C和Co/ZnFe-C。
图1是上述步骤制备的CoFe-Mo、Co/CoFe-Mo的SEM图,从图中可以看出CoFe-Mo具有层状结构,Co NPs负载后Co/CoFe-Mo的形貌没有明显变化。
对本实施案例制备的催化剂材料分别进行XRD分析如图2所示,在所有样品中都能清晰地观察到具有典型层状双金属氢氧化物结构的特征峰。以Co/CoFe-C为例,分别在11.4°、23.2°、34.0°、38.5°、46.0°、58.9°、60.4°和64.4°附近观察到(003),(006),(012),(015),(018),(110),(113)和(1013)的反射晶面。CoFe-C的结晶度明显高于NiFe-C和ZnFe-C。CoFe-C和NiFe-C的基间距为0.78nm,ZnFe-C为0.68nm。与Co/CoFe-C相比,Co/CoFe-Mo在(003),(006),(012),(018)和(110)晶面上有对应的峰,但这些峰明显减弱,衍射峰随钼酸盐插层到层状双金属氢氧化物上而略有偏移。所有Co/MIIFe 层状双金属氢氧化物均未发现新的特征峰,表明Co NPs具有良好的分散性。
图3是上述步骤所制备的CoFe-Mo、Co/CoFe-Mo的TEM图,从图中可以看出表明CoNPs在二维层状CoFe-Mo层状双金属氢氧化物上分散良好。HRTEM图像中间距为0.26和0.20nm的晶格条纹分别对应于CoFe-Mo LDH的(012)晶面和Co NPs的(111)晶面。
图4是对上述步骤所制备的Co/CoFe-Mo进行了X射线光电子能谱(XPS)表征,Co/CoFe-Mo的XPS总谱表明,催化剂主要含有Co、Fe、Mo和O元素。在Co 2p的XPS图谱中,Co 2p轨道谱图的峰位于780.4 eV和795.8 eV,分别属于Co2+的Co 2p3/2和Co 2p1/2,而位于778.3eV和793.6 eV附近的峰则属于Co NPs的Co 2p3/2和Co 2p1/2。在Fe 2p的XPS图谱中,约711.3 eV的峰值对应Fe3+的Fe 2p3/2,而717.9 eV的峰值则是Fe 2p3/2的卫星峰。在Mo 3d的XPS图谱,显示233.2和236.3 eV处的中的两个强峰对应于Mo6+的Mo 3d5/2和Mo 3d3/2。
实施案例2:
将CoFe-Mo(18.0 mg)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加底物NH3BH3(1.0 mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,利用排水法监测了气体的生成量。在没有负载催化剂的情况下,氨硼烷在水中比较稳定,TOF值为0min-1,即使在可见光照射下,也没有观察到氢气产生。
实施案例3:
将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,利用排水法监测了气体的生成量。在无光照的条件下,TOF为35.1min-1,在光照下析氢活性提高了322.8%,TOF高达113.2min-1。在上一次析氢结束后,向反应中注入1.0 mmol NH3BH3的水溶液(1.0 mL),在可见光照射下,催化总循环次数为20次,在两个相邻的周期中,间隔为5分钟。在循环测试20次后光催化氨硼烷析氢活性仍然很高效,TOF值基本保持不变。
实施案例4:
将CoFe-C(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0 mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,利用排水法监测了气体的生成量。在无光照的条件下,TOF为28.9min-1,在光照下的析氢活性提高了268.5%,TOF达到77.6 min-1。在上一次析氢结束后,向反应中注入1.0 mmol NH3BH3的水溶液(1.0 mL),在可见光照射下,催化总循环次数为20次,在两个相邻的周期中,间隔为5分钟。在循环测试20次后光催化氨硼烷析氢活性仍然很高,TOF值基本保持不变。
实施案例5:
将NiFe-C(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0 mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,利用排水法监测了气体的生成量。在无光照的条件下,TOF为27.6min-1,在光照下的析氢活性提高了246.7%,TOF达到68.2 min-1
实施案例6:
将ZnFe-C(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0 mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,利用排水法监测了气体的生成量。在无光照的条件下,TOF为28.5min-1,在光照下的析氢活性提高了257.9%,TOF达到73.4 min-1
实施案例7:
将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,设定照射光的强度为200 mw/cm2,利用排水法监测了气体的生成量。氨硼烷的析氢速率相比无光照增大46%,TOF达到65min-1
实施案例8:
将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,设定照射光的强度为300 mw/cm2,利用排水法监测了气体的生成量。氨硼烷的析氢速率相比无光照增大56%,TOF达到79.8min-1
实施案例9:
将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,设定照射光的强度为400 mw/cm2,利用排水法监测了气体的生成量。氨硼烷的析氢速率相比无光照增大63%,TOF达到94.5min-1
实施案例10:
将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,设定照射光的强度为500 mw/cm2,利用排水法监测了气体的生成量。氨硼烷的析氢速率相比无光照增大69%,TOF达到113.2 min-1
实施案例11:
将CoFe-C(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0 mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,设定照射光的强度为200 mw/cm2,利用排水法监测了气体的生成量。氨硼烷的析氢速率相比无光照增大41%,TOF达到49 min-1
实施案例12:
将CoFe-C(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0 mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,设定照射光的强度为300 mw/cm2,利用排水法监测了气体的生成量。氨硼烷的析氢速率相比无光照增大50%,TOF达到57.8 min-1
实施案例13:
将CoFe-C(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0 mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,设定照射光的强度为400 mw/cm2,利用排水法监测了气体的生成量。氨硼烷的析氢速率相比无光照增大57%,TOF达到67.2 min-1
实施案例14:
将CoFe-C(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0 mmol)的水溶液(1.0 mL)时,在298 K下立即开始催化反应,设定照射光的强度为500 mw/cm2,利用排水法监测了气体的生成量。氨硼烷的析氢速率相比无光照增大61%,TOF达到74.1min-1
实施案例15:
将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)、底物NH3BH3(1.0 mmol)的水溶液(1.0 mL)及电子清除剂KBrO3(100μM)时,在298 K下立即开始催化反应,利用排水法监测了气体的生成量。相比没有加入电子清除剂,此时氨硼烷的析氢速率TOF大大降低到65.3 min-1,这表明光生电子在催化过程中的作用。
实施案例16:
将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)、底物NH3BH3(1.0 mmol)的水溶液(1.0 mL)及空穴清除剂KI(100μM)时,在298 K下立即开始催化反应,利用排水法监测了气体的生成量。相比没有加入空穴清除剂,此时氨硼烷的析氢速率TOF大大降低到85.0 min-1,这表明光生空穴在催化过程中的作用。
实施案例17:
将CoFe-Mo(18.0 mg)和CoCl2•6H2O(0.034 mmol)的水溶液(1.0 mL)在双颈烧瓶中搅拌5 h,当向上述混合物中添加纳米金属还原剂NaBH4(0.068 mmol)和底物NH3BH3(1.0mmol)的水溶液(1.0 mL)及•OH清除剂异丙醇(IPA,100μL)时,在298 K下立即开始催化反应,利用排水法监测了气体的生成量。相比没有加入•OH清除剂,此时氨硼烷的析氢速率TOF大大降低到78.4 min-1,这表明•OH在催化过程中的作用。

Claims (6)

1.一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢,该催化剂制备方法为:采用稳定的半填充Fe3+来捕获光生电子,调整MII-O-Fe氧桥结构来优化短程定向电荷传输能力,并将金属氧酸盐插层到LDH中,进一步提高了LDH的光吸收和电子空穴分离性能,光催化氨硼烷水解制氢的方法包括:将一定量的载体水滑石和CoCl2•6H2O水溶液置于双颈烧瓶中搅拌负载,向上述混合物中添加一定量的纳米金属还原剂NaBH4和底物NH3BH3的水溶液,在298 K光照下立即开始催化反应,该催化剂制备方法简单易操作,可用于温和反应条件下光催化氨硼烷高效水解产氢,在优化条件下TOF可以达到113.2 min-1,而且催化剂容易回收利用。
2.根据权利要求1所述的一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢,其特征在于采用共沉淀和水热法制备了不同的MIIFe-C层状双金属氢氧化物纳米片进而调整MII-O-Fe氧桥连结构来优化短程定向电荷传输能力,采用共沉淀法一步合成了钼酸盐插层CoFe-Mo层状双金属氢氧化物纳米片,进而提高了LDH的光吸收和电子空穴分离性能。
3.根据权利要求1所述的一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢,其特征在于:非贵金属纳米粒子的负载使氨硼烷的光催化活性大幅度提高,非贵金属纳米粒子包含Co纳米粒子,Ni纳米粒子及其合金。
4.根据权利要求1所述的一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢,其特征在于:在无光照时该催化体系催化活性较低,在光作用下催化活性大幅提高。
5.根据权利要求1所述的一种Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢,其特征在于:催化剂的循环使用性能较好,经过20次循环使用,Co/CoFe-Mo光催化剂仍维持了很高的光催化活性。
6.根据权利要求1所述的一种Co/MIIFe 层状双金属氢氧化物光催化剂的制备及氨硼烷高效水解产氢,其特征在于:所用光源可以是氙灯、各种颜色的单色光、各种其他人造光源或太阳光。
CN202010630987.0A 2020-07-03 2020-07-03 Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢 Expired - Fee Related CN111701592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010630987.0A CN111701592B (zh) 2020-07-03 2020-07-03 Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010630987.0A CN111701592B (zh) 2020-07-03 2020-07-03 Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢

Publications (2)

Publication Number Publication Date
CN111701592A true CN111701592A (zh) 2020-09-25
CN111701592B CN111701592B (zh) 2022-10-21

Family

ID=72546472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010630987.0A Expired - Fee Related CN111701592B (zh) 2020-07-03 2020-07-03 Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢

Country Status (1)

Country Link
CN (1) CN111701592B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870861A (zh) * 2022-05-05 2022-08-09 重庆工商大学 氨硼烷高效产氢与对硝基苯酚还原的多孔碳催化剂的制备
CN116764647A (zh) * 2023-04-28 2023-09-19 重庆工商大学 一种用于高效产氢和污染物降解的立方体CoCu尖晶石/碳催化剂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079203A (en) * 1990-05-25 1992-01-07 Board Of Trustees Operating Michigan State University Polyoxometalate intercalated layered double hydroxides
US20070151153A1 (en) * 2006-01-05 2007-07-05 NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, Tokyo-to, Japan Hydrogen generation method
CN103990465A (zh) * 2014-06-17 2014-08-20 江西师范大学 一种用于氨硼烷水解制氢的Ni-CeO2@graphene复合纳米催化剂及其制备方法
CN107597141A (zh) * 2017-08-22 2018-01-19 安徽师范大学 钯纳米粒子负载层状双氢氧化物的纳米复合材料及其制备方法以及氨硼烷催化分解方法
CN110102313A (zh) * 2019-05-20 2019-08-09 北京化工大学 一种限域结构钌镍核壳双金属纳米催化剂的制备及其催化对苯二甲酸二甲酯选择加氢的应用
CN111167495A (zh) * 2020-01-07 2020-05-19 郑州大学 一种氨硼烷制氢用催化剂Ni2-xFex@CN-G及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079203A (en) * 1990-05-25 1992-01-07 Board Of Trustees Operating Michigan State University Polyoxometalate intercalated layered double hydroxides
US20070151153A1 (en) * 2006-01-05 2007-07-05 NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, Tokyo-to, Japan Hydrogen generation method
CN103990465A (zh) * 2014-06-17 2014-08-20 江西师范大学 一种用于氨硼烷水解制氢的Ni-CeO2@graphene复合纳米催化剂及其制备方法
CN107597141A (zh) * 2017-08-22 2018-01-19 安徽师范大学 钯纳米粒子负载层状双氢氧化物的纳米复合材料及其制备方法以及氨硼烷催化分解方法
CN110102313A (zh) * 2019-05-20 2019-08-09 北京化工大学 一种限域结构钌镍核壳双金属纳米催化剂的制备及其催化对苯二甲酸二甲酯选择加氢的应用
CN111167495A (zh) * 2020-01-07 2020-05-19 郑州大学 一种氨硼烷制氢用催化剂Ni2-xFex@CN-G及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGTAO LU ET AL.: "Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals", 《CHEMICAL ENGINEERING JOURNAL》 *
XINWEI LI ET AL.: "Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
刘青云等: "Ni-Fe过渡金属合金层状双氢氧化物催化电水解效应研究", 《信息记录材料》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870861A (zh) * 2022-05-05 2022-08-09 重庆工商大学 氨硼烷高效产氢与对硝基苯酚还原的多孔碳催化剂的制备
CN116764647A (zh) * 2023-04-28 2023-09-19 重庆工商大学 一种用于高效产氢和污染物降解的立方体CoCu尖晶石/碳催化剂
CN116764647B (zh) * 2023-04-28 2024-05-14 重庆工商大学 一种用于高效产氢和污染物降解的立方体CoCu尖晶石/碳催化剂

Also Published As

Publication number Publication date
CN111701592B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
Ma et al. Single-atom catalysts for electrochemical energy storage and conversion
Chen et al. Boosted photoreduction of diluted CO 2 through oxygen vacancy engineering in NiO nanoplatelets
CN108499585B (zh) 含磷复合物及其制备与应用
Hung et al. An alternative cobalt oxide-supported platinum catalyst for efficient hydrolysis of sodium borohydride
Wei et al. Co− O− P composite nanocatalysts for hydrogen generation from the hydrolysis of alkaline sodium borohydride solution
CN114011434B (zh) 一种二维ZnIn2S4负载凸起状贵金属单原子的光催化剂及其应用
US20090214417A1 (en) Preparation of cobalt-boron alloy catalysts useful for generating hydrogen from borohydrides
CN111701592B (zh) Co/MIIFe层状双金属氢氧化物制备及氨硼烷产氢
Asim et al. Self-supporting NiCoP for hydrogen generation via hydrolysis of ammonia borane
Fangaj et al. The use of metallurgical waste sludge as a catalyst in hydrogen production from sodium borohydride
Gu et al. Maximizing hydrogen production by AB hydrolysis with Pt@ cobalt oxide/N, O-rich carbon and alkaline ultrasonic irradiation
He et al. In-situ nanoarchitectonics of noble-metal-free g-C3N4@ C-Ni/Ni2P cocatalyst with core-shell structure for efficient photocatalytic H2 evolution
CN110368999B (zh) 一种催化剂及其制备方法和用途
Qiu et al. Hydrolytic dehydrogenation of NH 3 BH 3 catalyzed by ruthenium nanoparticles supported on magnesium–aluminum layered double-hydroxides
Prabu et al. Synergistic effect of Pd-Co3O4 nanoparticles supported on coffee-derived sulfur, nitrogen-codoped hierarchical porous carbon for efficient methanolysis of NaBH4
CN114100643B (zh) 一种可用于光催化分解纯水的催化剂的制备方法
Bian et al. Bimetal Cu and Fe modified g-C3N4 sheets grown on carbon skeleton for efficient and selective photocatalytic reduction of CO2 to CO
CN108745403B (zh) 一种氮化硼负载Ni-MoOx纳米催化剂的制备方法及应用
CN110386626B (zh) 一种氧化亚钴薄片、其制备方法和其在可见光催化全分解水中的应用
CN112479158B (zh) 一种甲醇产氢气的方法
Zhang et al. Novel cobalt nanorods@ cobalt-platinum nanoparticles for electrocatalytic hydrogen evolution reactions and oxygen evolution reactions study
Saka Facile oxygen doped heterojunction structured hybrid particles with γ-aluminium oxide dispersed over graphitic carbon nitride for dehydrogenation of sodium borohydride in methanol: Catalytic properties and mechanism
Wei et al. Hydrogen generation from the hydrolysis of sodium borohydride using TiO2 supported Ru nanocatalysts prepared by photocatalytic reduction
He et al. Construction of anchoring traps-reinforced ultrafine ruthenium nanoparticles as efficient catalysts for boosting H2 production from ammonia-borane hydrolysis
Gao et al. Boronization of ZIF-67 on nickel foam to prepare self-supporting NiCo-bimetallic borides electrocatalyst for efficient oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221021