CN111686587A - 一种双层中空纤维上制备金属有机骨架材料膜的方法 - Google Patents

一种双层中空纤维上制备金属有机骨架材料膜的方法 Download PDF

Info

Publication number
CN111686587A
CN111686587A CN202010600826.7A CN202010600826A CN111686587A CN 111686587 A CN111686587 A CN 111686587A CN 202010600826 A CN202010600826 A CN 202010600826A CN 111686587 A CN111686587 A CN 111686587A
Authority
CN
China
Prior art keywords
layer
hollow fiber
double
carrier
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010600826.7A
Other languages
English (en)
Other versions
CN111686587B (zh
Inventor
王晓斌
陈韩韩
王洋
介志远
孟波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN202010600826.7A priority Critical patent/CN111686587B/zh
Publication of CN111686587A publication Critical patent/CN111686587A/zh
Application granted granted Critical
Publication of CN111686587B publication Critical patent/CN111686587B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种新型支撑体以及制备高稳定性金属有机骨架材料膜的方法。以氧化锌为内层,氧化铝为外层,采用相转化烧结技术制备ZnO‑Al2O3双层中空纤维膜,利用2‑甲基咪唑溶液活化提高氧化锌层的诱导效果,以原位合成法一步制备高质量的ZIF‑8膜。ZnO‑Al2O3双层中空纤维膜作为载体,提高了载体的比表面积,孔径较大的内层氧化铝作为支撑体,可提高载体的强度,功能性的外层氧化锌起到诱导连续的ZIF‑8膜生长的作用,载体与膜之间形成交联结构,提高了膜的稳定性。ZIF‑8膜对气体分子具有优异的分子筛分性能。该方法工艺简单、反应条件温和、容易放大集成,制备的ZIF‑8膜稳定性高。

Description

一种双层中空纤维上制备金属有机骨架材料膜的方法
技术领域
本发明属于多孔无机膜技术领域,具体涉及一种新型双层中空纤维和金属有机膜的制备方法。
背景技术
金属有机骨架(MOFs)材料是继沸石分子筛后新兴的一种多孔材料,其多孔性质和规则孔道结构继承并发展了无机分子筛的传统优势。该材料由金属离子或金属离子簇与有机配体结合而成,种类繁多,可选择空间大,受到国内外研究者的广泛关注。其中,类沸石咪唑骨架(ZIFs)材料因具有较高的孔隙率、可调节的孔径以及相对较高的热稳定性和化学稳定性,在气体分离、催化、传感器等方面备受瞩目。ZIF-8作为ZIFs系列中最具代表性的材料,有着良好的热稳定性和规则的孔道结构,在H2的分离提纯、烯烃/烷烃分离等方面具有巨大潜力。研究者已采用多种策略来制备MOF膜,包括原位生长法,二次晶种法,偶联剂法,反应晶种法,金属氧化物诱导法等。原位法是将载体直接放入合成体系中进行反应,在载体表面形成膜层,此方法制备过程简单,但缺少成核中心,难以形成连续的MOF膜层。二次晶种法需要先向载体表面引入晶种层,再通过溶剂热合成制备MOF膜,制备过程复杂,膜的稳定性取决于晶种与载体之间的结合力。而偶联剂等其它方法需要多步合成,而且需要添加剂,步骤繁琐,成本高。
目前,MOF膜的制备大多以片式载体和大管径管式载体为支撑,中空纤维膜因自身比表面积大、管壁薄、通量高、占地面积小等优点成为MOF膜的优良载体。而Al2O3中空纤维表面孔径大,通常需要对其表面进行修饰,也不能直接诱导制备MOFs膜。ZnO强度较小,易碎,不易制备中空纤维。如何提高膜的制备重复性、进一步降低成本、提高膜的稳定性能等仍是MOFs膜亟待解决的问题。
本发明主要提供了一种在新型ZnO-Al2O3双层中空纤维上制备ZIF-8金属有机骨架膜的方法,能够充分的发挥内层氧化铝与外层氧化锌各自的作用,所制备的ZIF-8膜连续且致密,对气体分子具有优异的分子筛分性能,这为其它MOFs膜的制备提供了新途径。
发明内容
为了解决上述问题,本发明提出一种以ZnO-Al2O3双层中空纤维膜为载体,一步原位合成ZIF-8膜的方法。
本发明的基本思想是:以ZnO作为内层,Al2O3作为外层,利用相转化烧结法制备ZnO-Al2O3双层中空纤维膜。该结构中氧化铝成本低、强度高、孔径大,作为内层可以提高载体的强度;氧化锌为功能性外层,一方面能够修饰载体表面,有利于膜的生长,另一方面能够诱导合成连续的ZIF-8膜。该方法制备的双层中空纤维解决了传统中空纤维刚性与功能性不可同时兼备的问题,并且经过活化的载体采用原位法一步合成了高质量的ZIF-8膜,制备过程简单,成本低。
具体的工艺路径为:
(1)分别制备具有一定黏度的氧化铝和氧化锌铸膜液;
(2)将上述铸膜液通过相转化烧结法制备多孔ZnO-Al2O3双层中空纤维管;
(3)以2-甲基咪唑、甲醇为原料配制不同浓度的活化液,将载体在60-100℃下活化4-8h,提高氧化锌的诱导活性;
(4)以2-甲基咪唑、六水合硝酸锌、二水合甲酸钠、甲醇为原料配制合成液,活化后的载体在60-100℃下反应4-8h;
(5)在100℃真空干燥箱中干燥6h。
该工艺在制备载体过程中,内层和外层黏度分别达到15000和3500,通过相转化法制备双层中空纤维前驱体,经过1450℃下烧结制备高强度的中空纤维膜,内外层相互嵌入紧密连接。
应用上述工艺,载体中的内层氧化铝做支撑体可提高载体的强度,外层氧化锌均匀分布,修饰载体表面,在经过不同温度活化后增强氧化锌的诱导活性,进一步活化后的载体经过溶剂热合成法一步合成连续、高稳定性的ZIF-8膜,通过控制反应时间与温度调节ZIF-8膜的形貌与性能。
本发明的主要特征是:以氧化锌作为内层,氧化铝作为外层制备的ZnO-Al2O3双层中空纤维作为载体。内层氧化铝孔径较大,强度较高起到支撑作用;均匀分布的氧化锌作为外层能够较好的起到修饰载体表面的作用,诱导合成连续的ZIF-8膜,并使ZIF-8膜层嵌入载体之中,增强了膜与载体之间的结合力,提高了ZIF-8膜的稳定性和制备重复性,内外层中空纤维相互嵌入与膜形成三层稳定结构。
该工艺过程简单、成本低、容易放大集成、占地面积小,易于工业化应用。制备的ZnO-Al2O3双层中空纤维稳定性较高,可以充分发挥ZnO外层和Al2O3内层中空纤维的作用,诱导形成的ZIF-8膜与载体连接紧密,稳定性好。
附图说明
图1是本发明在1450℃下焙烧所制备的ZnO-Al2O3双层中空纤维截面的SEM图。
图中可以看出内层为指状孔结构,降低分子传输阻力;外层均匀起到修饰载体的作用。
图2是本发明ZnO-Al2O3双层中空纤维表面的SEM图。
图中可以看出载体表面有大小分布均匀的孔径,有利于ZIF-8膜层的嵌入。
图3是本发明在ZnO-Al2O3双层中空纤维膜载体上负载ZIF-8膜截面的SEM图。
图中可以看出ZIF-8膜的厚度约为6.5μm,膜与载体之间形成交联结构,ZIF-8膜层嵌入载体之中,可以极大地提高膜的稳定性。
图4是本发明在ZnO-Al2O3双层中空纤维膜载体上负载ZIF-8膜表面的SEM图。
图中可以看出以ZnO-Al2O3双层中空纤维膜为载体一步原位法制备了连续、互生性较好的ZIF-8膜。
具体实施事例
实施例1
首先,分别制备了具有一定黏度的氧化铝和氧化锌铸膜液,将上述铸膜液通过相转化烧结法制备多孔ZnO-Al2O3双层中空纤维作为载体;然后,以2-甲基咪唑、甲醇为原料配制0.5mol/L的活化液,在80℃下活化6h,再以2-甲基咪唑、甲醇、六水合硝酸锌、二水合甲酸钠为原料,配制2-甲基咪唑:Zn2+摩尔比为2:1的溶液,在80℃下反应6h;最后,在100℃下真空干燥6h得到ZIF-8膜,并对其进行表征与气体渗透测试。
实施例2-3
实施例2-3与实施例1基本相同,唯一不同的是将活化温度改为60℃、100℃,继续探究该条件下载体和ZIF-8膜的制备及气体渗透情况。
实施例4-5
实施例5-6与实施例1基本相同,唯一不同的是将活化时间改为4h、8h,继续探究该条件下载体和ZIF-8膜的制备及气体渗透情况。
实施例6-7
实施例6-7与实施例1基本相同,唯一不同的是将晶化温度改为60℃、100℃,继续探究该条件下载体和ZIF-8膜的制备及气体渗透情况。
实施例8-9
实施例8-9与实施例1基本相同,唯一不同的是将晶化时间改为4h、8h,继续探究该条件下载体和ZIF-8膜的制备及气体渗透情况。

Claims (5)

1.一种双层中空纤维上制备金属有机骨架材料膜的方法,制备过程包括如下工艺步骤:
(1)分别制备具有一定黏度的氧化铝和氧化锌铸膜液;
(2)将上述铸膜液通过相转化烧结法制备具有机械强度的多孔ZnO-Al2O3双层中空纤维管;
(3)以2-甲基咪唑、甲醇为原料配制不同浓度的活化液,将双层中空纤维在60-100°C下活化4-8h;
(4)以2-甲基咪唑、六水合硝酸锌、二水合甲酸钠、甲醇为原料配制混合液,将活化后的载体在60-100°C下晶化4-8h;
(5)在100℃真空干燥箱中干燥6h。
2.根据权利要求1所述,氧化铝铸膜液黏度达到3000-5000,氧化锌铸膜液黏度达到10000-20000,有利于形成高强度、大比表面积的双层中空纤维膜。
3.根据权利要求2所述,配制的内层铸膜液为PESf: NMP: 乙醇=10: 28: 7,氧化铝粉体为50g左右;配制的外层铸膜液为PESf: NMP=6: 27,氧化锌粉体为15g左右。
4.根据权利要求1所述,ZnO-Al2O3双层中空纤维膜的烧结温度为1450℃。
5.根据权利要求1所述,配制的活化液浓度范围为0.5-1.5mol/L。
CN202010600826.7A 2020-06-29 2020-06-29 一种双层中空纤维上制备金属有机骨架材料膜的方法 Active CN111686587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010600826.7A CN111686587B (zh) 2020-06-29 2020-06-29 一种双层中空纤维上制备金属有机骨架材料膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010600826.7A CN111686587B (zh) 2020-06-29 2020-06-29 一种双层中空纤维上制备金属有机骨架材料膜的方法

Publications (2)

Publication Number Publication Date
CN111686587A true CN111686587A (zh) 2020-09-22
CN111686587B CN111686587B (zh) 2022-04-15

Family

ID=72484238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010600826.7A Active CN111686587B (zh) 2020-06-29 2020-06-29 一种双层中空纤维上制备金属有机骨架材料膜的方法

Country Status (1)

Country Link
CN (1) CN111686587B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112808029A (zh) * 2020-12-23 2021-05-18 华南理工大学 一种在陶瓷基底上快速生长zif-8膜的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632192A (zh) * 2004-12-23 2005-06-29 天津工业大学 一种复合纺丝所用的喷头及其用途
CN103446893A (zh) * 2013-09-06 2013-12-18 南京工业大学 一种在管式陶瓷支撑体内壁制备金属有机骨架膜的方法
US20140166571A1 (en) * 2012-12-19 2014-06-19 Industrial Technology Research Institute (Itri) Hollow Fibers Having A Winding Channel
CN104437116A (zh) * 2014-12-08 2015-03-25 大连理工大学 一种大孔载体表面擦涂法植入同源金属氧化物粒子诱导合成MOFs膜的方法
CN106237862A (zh) * 2016-08-31 2016-12-21 武汉三江航天远方科技有限公司 中空纤维气体分离膜及其制备方法
CN106999861A (zh) * 2014-09-22 2017-08-01 佐治亚理工学院 具有提高的渗透率的复合纳米颗粒稳定化的芯碳分子筛中空纤维膜
CN108465385A (zh) * 2018-03-13 2018-08-31 中山大学 一种maf-4金属有机框架膜及其应用
US20180326398A1 (en) * 2017-05-10 2018-11-15 Georgia Tech Research Corporation Apparatus, Methods and Systems For Fabricating Thin Nanoporous Membranes
CN111004405A (zh) * 2019-12-16 2020-04-14 山东理工大学 一种在不同配比的载体上一步制备金属有机骨架材料膜的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632192A (zh) * 2004-12-23 2005-06-29 天津工业大学 一种复合纺丝所用的喷头及其用途
US20140166571A1 (en) * 2012-12-19 2014-06-19 Industrial Technology Research Institute (Itri) Hollow Fibers Having A Winding Channel
CN103446893A (zh) * 2013-09-06 2013-12-18 南京工业大学 一种在管式陶瓷支撑体内壁制备金属有机骨架膜的方法
CN106999861A (zh) * 2014-09-22 2017-08-01 佐治亚理工学院 具有提高的渗透率的复合纳米颗粒稳定化的芯碳分子筛中空纤维膜
CN104437116A (zh) * 2014-12-08 2015-03-25 大连理工大学 一种大孔载体表面擦涂法植入同源金属氧化物粒子诱导合成MOFs膜的方法
CN106237862A (zh) * 2016-08-31 2016-12-21 武汉三江航天远方科技有限公司 中空纤维气体分离膜及其制备方法
US20180326398A1 (en) * 2017-05-10 2018-11-15 Georgia Tech Research Corporation Apparatus, Methods and Systems For Fabricating Thin Nanoporous Membranes
CN108465385A (zh) * 2018-03-13 2018-08-31 中山大学 一种maf-4金属有机框架膜及其应用
CN111004405A (zh) * 2019-12-16 2020-04-14 山东理工大学 一种在不同配比的载体上一步制备金属有机骨架材料膜的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAOBIN WANG等人: ""Formation of continuous and highly permeable ZIF-8 membranes on porous alumina and zinc oxide hollow fibers"", 《CHEMICAL COMMUNICATIONS》 *
XIONGFU ZHANG 等人: ""A simple and scalable method for preparing low-defect ZIF-8 tubular membranes"", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
姬春梅: ""氧化铝多孔中空纤维陶瓷膜表面修饰研究"", 《陶瓷》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112808029A (zh) * 2020-12-23 2021-05-18 华南理工大学 一种在陶瓷基底上快速生长zif-8膜的方法

Also Published As

Publication number Publication date
CN111686587B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
Xie et al. Deposition of chemically modified α-Al 2 O 3 particles for high performance ZIF-8 membrane on a macroporous tube
Wu et al. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth
Kwon et al. Improving propylene/propane separation performance of Zeolitic-Imidazolate framework ZIF-8 Membranes
Jiang et al. Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation
Lin Metal organic framework membranes for separation applications
US10639593B2 (en) Methods to enhance separation performance of metal-organic framework membranes
Ramu et al. Effects of zinc salts on the microstructure and performance of zeolitic-imidazolate framework ZIF-8 membranes for propylene/propane separation
CN102794115B (zh) 一种金属有机骨架zif-8膜的制备方法
Li et al. Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation
Tao et al. A hollow ceramic fiber supported ZIF-8 membrane with enhanced gas separation performance prepared by hot dip-coating seeding
Miyamoto et al. In situ solvothermal growth of highly oriented Zr-based metal organic framework UiO-66 film with monocrystalline layer
CN108465385B (zh) 一种maf-4金属有机框架膜及其应用
Lee et al. Zeolitic imidazolate framework ZIF-8 films by ZnO to ZIF-8 conversion and their usage as seed layers for propylene-selective ZIF-8 membranes
Xu et al. Encapsulation of metal layers within metal–organic frameworks as hybrid thin films for selective catalysis
Zhu et al. Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis
Kong et al. In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system
Nian et al. Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H 2 separation
CN105879708B (zh) 一种利用不同源氧化锌层诱导制备Co‑ZIF‑67金属有机骨架膜的方法
Wu et al. Seeded growth of high-performance ZIF-8 membranes in thick wall autoclaves assisted by modulator
US10882870B2 (en) Crystalline metal organic framework
CN111004405B (zh) 一种在不同配比的载体上一步制备金属有机骨架材料膜的方法
Chen et al. ZIF-67 membranes supported on porous ZnO hollow fibers for hydrogen separation from gas mixtures
WO2014066415A2 (en) Methods to rapidly deposit thin films (or coatings) of microporous materials on supports using thermally induced self-assembly
Wu et al. Facile synthesis of molecular sieve membranes following “like grows like” principle
Tanaka et al. Seeding-free aqueous synthesis of zeolitic imidazolate framework-8 membranes: How to trigger preferential heterogeneous nucleation and membrane growth in aqueous rapid reaction solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant