CN111670366B - 电压攻击检测电路和芯片 - Google Patents

电压攻击检测电路和芯片 Download PDF

Info

Publication number
CN111670366B
CN111670366B CN202080001165.4A CN202080001165A CN111670366B CN 111670366 B CN111670366 B CN 111670366B CN 202080001165 A CN202080001165 A CN 202080001165A CN 111670366 B CN111670366 B CN 111670366B
Authority
CN
China
Prior art keywords
voltage
signal
reference voltage
detection circuit
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080001165.4A
Other languages
English (en)
Other versions
CN111670366A (zh
Inventor
杨江
薛建锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Goodix Technology Co Ltd
Original Assignee
Shenzhen Goodix Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Goodix Technology Co Ltd filed Critical Shenzhen Goodix Technology Co Ltd
Publication of CN111670366A publication Critical patent/CN111670366A/zh
Application granted granted Critical
Publication of CN111670366B publication Critical patent/CN111670366B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/75Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information by inhibiting the analysis of circuitry or operation
    • G06F21/755Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information by inhibiting the analysis of circuitry or operation with measures against power attack
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/72Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information in cryptographic circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/76Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information in application-specific integrated circuits [ASIC] or field-programmable devices, e.g. field-programmable gate arrays [FPGA] or programmable logic devices [PLD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/77Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information in smart cards
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16552Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies in I.C. power supplies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Protection Of Static Devices (AREA)
  • Power Sources (AREA)

Abstract

提供一种电压攻击检测电路和芯片,所述电压攻击检测电路包括:第一可编程电阻和第二可编程电阻;所述第一可编程电阻的第一端连接至电源电压,所述第一可编程电阻的第二端通过所述第二可编程电阻连接至地电压,所述第一端用于输出第一电压,所述第二端用于输出第二电压;电压检测电路;用于接收所述第一电压和第一参考电压并输出第一信号,所述第一信号用于指示所述第一电压是否大于或等于所述第一参考电压;还用于接收所述第二电压和第二参考电压并输出第二信号,所述第二信号用于指示所述第二电压是否小于或等于所述第二参考电压。所述电压攻击检测电路不仅可以实现电压攻击的预警,还可以弥补由工艺造成的电压检测阈值偏差,以提升良率。

Description

电压攻击检测电路和芯片
技术领域
本申请实施例涉及电子领域,并且更具体地,涉及电压攻击检测电路和芯片。
背景技术
随着移动支付与交易得到广泛的普及,电子设备被越来越多的用于存储、处理、传输包含关键信息的数据。例如,安全芯片可以用于实现用户身份识别与关键数据存储等功能,其被广泛应用于金融领域。安全芯片作为安全硬件的基础,对信息安全起着至关重要的作用。近年来,越来越多的芯片级攻击方法与实例被公开,相应的,对芯片级的安全提出来越来越高的要求。
针对芯片级的攻击方式有多种,其中错误注入攻击最为有效。错误注入攻击的目的是迫使芯片执行一个非正常的操作,从而使得芯片中的安全信息暴露出来。此时,攻击者可以利用故障分析技术轻易获取安全芯片中的机密数据。错误注入攻击的方式有很多种,例如电压攻击、温度攻击、激光攻击、电磁攻击等。
针对电压攻击,通过改变芯片电源域的供电电压,使得芯片内部的电路工作发生异常,从而引起触发器进入错误状态,致使处理器跳过或执行错误的操作,以便芯片内的安全信息暴露出来。
因此,针对电压攻击,提供一套完整且可靠的防护方案十分迫切。
发明内容
提供一种电压攻击检测电路和芯片,能够检测到芯片是否受到电压攻击。
第一方面,提供了一种电压攻击检测电路,包括:
第一可编程电阻和第二可编程电阻;
所述第一可编程电阻的第一端连接至电源电压,所述第一可编程电阻的第二端通过所述第二可编程电阻连接至地电压,所述第一端用于输出第一电压,所述第二端用于输出第二电压;
电压检测电路;
其中,所述电压检测电路用于接收所述第一电压和第一参考电压并输出第一信号,所述第一信号用于指示所述第一电压是否大于或等于所述第一参考电压;所述电压检测电路还用于接收所述第二电压和第二参考电压并输出第二信号,所述第二信号用于指示所述第二电压是否小于或等于所述第二参考电压,所述第一参考电压大于所述第二参考电压。
通过所述第一可编程电阻和所述第二可编程电阻对所述电源电压进行分压,以形成所述第一电压和所述第二电压,将所述第一电压和所述第二电压分别与所述第一参考电压和所述第二参考电压进行比较,以生成所述第一信号和所述第二信号;相应的,所述第一信号可以用于指示出所述所述第一电压是否出现高电压异常,所述第二信号可以用于指示出所述第二电压是否出现低电压异常,相当于,通过所述第一信号和所述第二信号可以分别指示出所述电源电压是否出现高电压异常和低电压异常,即所述第一信号和所述第二信号可以用于指示所述电源电压是否受到攻击,以便在所述电源电压受到攻击时提醒用户注意安全防护或采取安全措施。
此外,通过所述第一可编程电阻和所述第二可编程电阻,可以实现配置所述第一电压和/或所述第二电压,从而可以弥补由工艺造成的电压检测阈值偏差,以提升良率。
在一些可能的实现方式中,所述第一参考电压小于或等于在所述电源电压为带隙基准的最大工作电压的情况下的所述第一电压的电压值,所述第二参考电压大于或等于在所述电源电压为所述带隙基准的最小工作电压的情况下的所述第二电压的电压值。
换言之,所述第一参考电压小于或等于在所述电源电压为带隙基准的最大工作电压的情况下经由所述第一可编程电阻和所述第二可编程电阻分压后的所述第一电压的电压值,所述第二参考电压大于或等于在所述电源电压为所述带隙基准的最小工作电压的情况下经由所述第一可编程电阻和所述第二可编程电阻分压后的所述第二电压的电压值。
将所述第一参考电压构造为小于或等于在所述电源电压为带隙基准的最大工作电压的情况下所述第一电压的电压值,并将所述第二参考电压构造为大于或等于所述在所述电源电压为所述带隙基准的最小工作电压的情况下的所述第二电压的电压值,在电路正常工作的情况下,能够尽可能的降低错误预警的概率,以提高用户体验。
在一些可能的实现方式中,所述电压检测电路包括:
第一迟滞比较器和第二迟滞比较器;
其中,所述第一迟滞比较器的正输入端连接至所述第一端以接收所述第一电压,所述第一迟滞比较器的负输入端连接至所述第一参考电压,所述第一迟滞比较器的输出端用于输出所述第一信号,所述第二迟滞比较器的正输入端连接至所述第二端以接收所述第二电压,所述第二迟滞比较器的负输入端连接至所述第二参考电压,所述第二迟滞比较器的输出端用于输出所述第二信号。
通过所述第一迟滞比较器和所述第二迟滞比较器,能够有效增加所述电压检测电路的抗干扰能力,相应的,提高了所述电压攻击检测电路的可靠性。
此外,在高速运行所述第一迟滞比较器和所述第二迟滞比较器时,可以提升所述电压攻击检测电路的灵敏度。
在一些可能的实现方式中,所述第一信号用于指示处于上升阶段中的所述第一电压是否大于或等于所述第一参考电压,所述第一信号还用于指示处于下降阶段中的所述第一电压是否小于或等于第一阈值,所述第一参考电压与所述第一阈值的差值为所述第一迟滞比较器的迟滞量。
在一些可能的实现方式中,所述第二信号用于指示处于下降阶段中的所述第二电压是否小于或等于所述第二参考电压,所述第二电压还用于指示处于上升阶段中的所述第二电压是否大于或等于第二阈值,所述第二阈值与所述第二参考电压的差值为所述第二迟滞比较器的迟滞量。
在一些可能的实现方式中,所述电压攻击检测电路还包括:
第一与门和第二与门;
其中,所述第一与门用于接收所述第一信号和第一指示信号并输出第三信号,所述第二与门用于接收所述第二信号和第二指示信号并输出第四信号,所述第一指示信号用于指示所述第一参考电压是否存在异常,所述第二指示信号用于指示所述第二参考电压是否存在异常。
通过所述第一与门和所述第二与门,可以避免由于所述第一参考电压或第二参考电压存在异常,导致的所述第一信号和所述第二信号的指示不准确的情况。换言之,通过所述第一与门和所述第二与门,可以避免由于所述参考电压存在异常导致的错误预警,以提升电压攻击预警的准确率。
在一些可能的实现方式中,所述电压攻击检测电路还包括:
参考电压生成电路和参考电压检测电路;
其中,所述参考电压生成电路用于生成所述第一参考电压和所述第二参考电压,所述参考电压检测电路连接至所参考电压生成电路,所述参考电压检测电路用于接收所述第一参考电压并输出所述第一指示信号,所述参考电压检测电路还用于接收所述第二参考电压并输出所述第二指示信号。
在一些可能的实现方式中,所述电压攻击检测电路还包括:
毛刺消除电路;
其中,所述参考电压生成电路通过所述毛刺消除电路分别连接至所述第一与门和所述第二与门,所述毛刺消除电路用于将时长小于或等于预设阈值的用于指示参考信号存在异常的指示信号重置为用于指示参考信号不存在异常的指示信号。
在所述参考电压出现毛刺的情况下,通过所述毛刺消除电路能够保证所述第一指示信号和所述第二指示信号的准确率,相应的,能够保证所述第三信号和所述第四信号的准确率。换言之,通过所述毛刺消除电路,能够在所述参考电压出现毛刺的情况下正确指示所述电源电压是否受到攻击,以便在所述电源电压受到攻击时提醒用户注意安全防护或采取安全措施。
所述电压攻击检测电路还包括:
第一或门和第二或门;
其中,所述第一或门用于接收所述第一信号和第一测试信号并输出第五信号,所述第二或门用于接收所述第二信号和所述第二测试信号并输出第六信号,所述第一测试信号用于指示所述第一电压大于或等于所述第一参考电压,所述第二测试信号用于指示所述第二电压小于或等于所述第二参考电压。
通过所述第一测试信号和所述第二测试信号,可以强制让第五信号指示所述第一电压大于或等于所述参考电压,或可以强制让所述第六信号指示所述第二电压小于或等于所述参考电压,以便于设计人员对所述电压攻击检测电路进行检测。换言之,通过所述第一或门和所述第二或门,可以分别强制让所述第五信号和所述第六信号进入报警状态。
在一些可能的实现方式中,所述电压攻击检测电路还包括:
第一电阻;
其中,所述第一可编程电路通过所述第一电阻连接至所述电源电压。
第二方面,提供了一种芯片,包括:
电源管理单元;以及
第一方面或第一方面任一可能实现的方式中所述的电压攻击检测电路;
其中,所述电源管理单元连接至所述电压攻击检测电路,所述电压攻击检测电路用于检测所述电源管理单元的电源电压是否受到电压攻击。
附图说明
图1是本申请实施例的电压攻击检测电路的示意性结构图。
图2是图1所示的电压攻击检测电路的工作时序图。
具体实施方式
图1是本申请实施例的电压攻击检测电路100的示意性结构图。图2是图1所示的电压攻击检测电路的工作时序图。下面将结合附图,对本申请实施例中的技术方案进行描述。
如图1所示,所述电压攻击检测电路100可以包括第一可编程电阻112、第二可编程电阻113以及电压检测电路120。所述第一可编程电阻112的第一端连接至电源电压(SupplyVoltage,VDD),所述第一可编程电阻112的第二端通过所述第二可编程电阻113连接至地电压,所述第一端用于输出第一电压,所述第二端用于输出第二电压。
其中,所述电压检测电路120用于接收所述第一电压和第一参考电压(VoltageReference,VREF)并输出第一信号,所述第一信号用于指示所述第一电压是否大于或等于所述第一参考电压;所述电压检测电路120还用于接收所述第二电压和第二参考电压并输出第二信号,所述第二信号用于指示所述第二电压是否小于或等于所述第二参考电压,所述第一参考电压大于所述第二参考电压。
换言之,所述第一可编程电阻112和所述第二可编程电阻113可用于形成检测阈值产生电路110,所述检测阈值产生电路110用于生成所述第一电压和所述第二电压。
如图1所示,所述第一电压也可称为高电压检测阈值(Voltage high thresholddetection,VHD),所述第二电压也可称为低电压检测阈值(Voltage low thresholddetection,VLD)。类似地,所述第一信号也可以称为高电压(Voltage high,VH)报警信号,所述第二信号也可称为低电压(Voltage low,VL)报警信号。
通过所述第一可编程电阻112和所述第二可编程电阻113对所述电源电压进行分压,以形成所述第一电压和所述第二电压,将所述第一电压和所述第二电压分别与所述第一参考电压和所述第二参考电压进行比较,以生成所述第一信号和所述第二信号;相应的,所述第一信号可以用于指示出所述第一电压是否出现高电压异常,所述第二信号可以用于指示出所述第二电压是否出现低电压异常。相当于,通过所述第一信号和所述第二信号可以分别指示出所述电源电压是否出现高电压异常和低电压异常。
例如,所述第一电压大于或等于所述第一参考电压时,说明所述电源电压出现高电压异常,所述第二电压小于所述第二参考电压时,说明所述电源电压出现低电压异常。相应的,所述电源电压出现高电压异常或低电压异常说明所述电源电压已经受到攻击。在所述电源电压受到攻击时通过所述第一信号和所述第二信号可以提醒用户注意安全防护或采取安全措施。
此外,通过所述第一可编程电阻112和所述第二可编程电阻113,可以实现动态配置所述第一电压和/或所述第二电压,从而可以弥补由工艺造成的电压检测阈值(即所述第一参考电压和所述第二参考电压)偏差,以提升良率。
在本申请的一些实施例中,所述第一参考电压小于或等于在所述电源电压为带隙基准的最大工作电压的情况下的所述第一电压的电压值,所述第一信号用于指示所述第一电压出现高电压异常。所述第二参考电压大于或等于在所述电源电压为所述带隙基准的最小工作电压的情况下的所述第二电压的电压值,所述第二信号用于指示所述第二电压出现低电压异常。
换言之,在所述电源电压等于带隙基准的最大工作电压的情况下,所述第一参考电压小于或等于所述第一电压,所述第一信号用于指示所述电源电压出现高电压异常。在所述电源电压等于所述带隙基准的最小工作电压的情况下,所述第二参考电压大于或等于所述第二电压,所述第二信号用于指示所述电源电压出现低电压异常。
其中,所述带隙基准也可以称为带隙基准电路,所述带隙基准可以用于将所述电源电压转换成所述电压攻击检测电路100中的部分或全部器件的工作电压。换言之,所述电源电压可以作为所述带隙基准的工作电压,以便所述带隙基准可以基于所述电源电压输出用于所述电压攻击检测电路100中的部分或全部器件的工作电压。所述带隙基准的工作电压可以是一个范围值。所述带隙基准的工作电压也可以是预设值。所述带隙基准的工作电压的大小取决于所述电源电压的大小。例如,所述电源电压可以直接作为所述带隙基准的工作电压。
当判断所述电源电压是否出现高电压异常时,如果所述带隙基准的工作电压处于最大工作电压,由于所述带隙基准的工作电压由所述电源电压提供,通过所述第一可编程电阻112和所述第二可编程电阻113对所述电源电压进行分压后,所述第一电压能够达到最大值,通过比较所述第一电压的最大值与所述第一参考电压形成的所述第一信号,以指示所述电源电压是否处于高电压异常状态,能够增加所述第一信号的准确率。
类似的,当判断所述电源电压是否出现低电压异常时,如果所述带隙基准处于最小工作电压,由于所述带隙基准的工作电压由所述电源电压提供,通过所述第一可编程电阻112和所述第二可编程电阻113对所述电源电压进行分压后,所述第二电压能够达到最小值,通过比较所述第二电压的最小值与所述第二参考电压形成的所述第二信号,以指示所述电源电压是否处于低电压异常状态,能够增加所述第二信号的准确率。
具体而言,在所述电源电压为带隙基准的最大工作电压的情况下,若所述第一参考电压小于或等于经由所述第一可编程电阻112和所述第二可编程电阻113分压后的所述第一电压的电压值,所述第一信号用于指示所述电源电压出现高电压异常。在所述电源电压为所述带隙基准的最小工作电压的情况下,若所述第二参考电压大于或等于经由所述第一可编程电阻112和所述第二可编程电阻113分压后的所述第二电压的电压值,所述第二信号用于指示所述电源电压出现低电压异常。
换言之,所述第一信号可以用于指示所述第一电压是否大于或等于预设电压范围的最大值,所述第二信号可以用于指示所述第二电压是否小于或等于所述预设电压范围的最小值。例如,所述预设电压范围为带隙基准的工作电压范围。例如,所述预设电压范围可以包括多个电压值,所述第一信号用于指示所述第一电压是否大于或等于所述多个电压值的最大值,所述第二信号用于指示所述第二电压是否小于或等于所述所述多个电压值的最小值。
综上所述,将所述第一参考电压构造为小于或等于在所述电源电压为带隙基准的最大工作电压的情况下的所述第一电压的电压值,并将所述第二参考电压构造为大于或等于在所述电源电压为所述带隙基准的最小工作电压的情况下的所述第二电压的电压值,在电路正常工作的情况下,能够提升所述第一信号和所述第二信号的准确率,并尽可能的降低错误预警的概率,以提高用户体验。
如图1所示,在本申请的一些实施例中,所述电压检测电路包括第一迟滞比较器121和第二迟滞比较器122。
其中,所述第一迟滞比较器121的正输入端连接至所述第一端以接收所述第一电压,所述第一迟滞比较器121的负输入端连接至所述第一参考电压,所述第一迟滞比较器121的输出端用于输出所述第一信号,所述第二迟滞比较器122的正输入端连接至所述第二端以接收所述第二电压,所述第二迟滞比较器122的负输入端连接至所述第二参考电压,所述第二迟滞比较器122的输出端用于输出所述第二信号。
换言之,在参考电压正常的情况下,当电源电压VDD上升使得所述第一电压大于或等于所述第一参考电压(即超过所述第一迟滞比较器121的检测阈值)时,所述第一迟滞比较器121将会输出电平为1的高压报警信号,以指示电源电压VDD出现高电压异常。若电源电压VDD下降使得所述第一电压下降至低于所述第一参考电压与所述第一迟滞比较器的迟滞量ΔVHD的差值,则可以解除高压报警信号。当电源电压VDD下降使得所述第二电压小于或等于所述第二参考电压时(即超过所述第二迟滞比较器122的检测阈值)时,所述第二迟滞比较器122将会输出电平为1的低压报警信号,以指示电源电压VDD出现低电压异常。若电源电压VDD上升使得所述第二电压上升至高于所述第二参考电压与所述第二迟滞比较器122的迟滞量为ΔVLD的和,则可以解除低压报警信号。
ΔVHD的设置是为了防止所述第一电压的波动导致电路频繁发出与解除报警信号,增强电路的可靠性与抗干扰能力;与此同时,再发生高压报警后,让所述第一电压降低到比设定的所述第一参考电压还要低一个ΔVHD的电压值时再解除高压报警,可以提升芯片的安全性。与ΔVHD类似,ΔVLD的设置是为了防止所述第二电压的波动导致电路频繁发出与解除报警信号,增强电路的可靠性与抗干扰能力;与此同时,让所述第二电压上升到比设定的所述第二参考电压还要高一个ΔVLD时再解除低压报警,可以提升芯片的安全性。
换言之,通过所述第一迟滞比较器121和所述第二迟滞比较器122,能够有效增加所述电压检测电路的抗干扰能力,相应的,提高了所述电压攻击检测电路120的可靠性。
此外,在高速运行所述第一迟滞比较器121和所述第二迟滞比较器122时,可以提升所述电压攻击检测电路120的灵敏度。
当然,在其他可替代实施例中,也可以采用单限比较器替代所述第一迟滞比较器121或所述第二迟滞比较器122。
需要说明的是,迟滞比较器相当于在电路中引入正反馈电路,可以避免输出电压(即所述第一信号或所述第二信号)发生抖动的情况。其中,迟滞比较器有两个门限电压,这两个门限电压之间的差值可以为迟滞比较器的迟滞量。
在本申请的一些实施例中,所述第一信号用于指示处于上升阶段中的所述第一电压是否大于或等于所述第一参考电压,所述第一信号还用于指示处于下降阶段中的所述第一电压是否小于或等于第一阈值,所述第一参考电压与所述第一阈值的差值为所述第一迟滞比较器121的迟滞量△VHD。
换言之,如图2所示,所述第一电压小变大时对应大门限电压(即所述参考电压的最大值VREF1),所述第一电压由大变小时对应小门限电压(即所述参考电压的最大值VREF1与所述迟滞量△VHD的差值,即所述第一阈值)。
在本申请的一些实施例中,所述第二信号用于指示处于下降阶段中的所述第二电压是否小于或等于所述参考电压,所述第二电压还用于指示处于上升阶段中的所述第二电压是否大于或等于第二阈值,所述第二阈值与所述参考电压的差值为所述第二迟滞比较器122的迟滞量。
换言之,如图2所示,所述第二电压小变大时对应大门限电压(即所述第二阈值,即所述参考电压的最小值VREF2与所述迟滞量△VLD,即所述第二阈值),所述第二电压由大变小时对应小门限电压(即所述参考电压的最小值VREF2)。
下面结合图2对图1所示的电压攻击检测电路的工作原理进行说明。
如图2所示,t1时刻之前,供电电压VDD由0开始上升,当供电电压VDD上升,且在t1时刻超过电路最低工作电压VMIN时,电路开始正常工作。但是,由于此时的第二电压仍然低于第二参考电压VREF2,低压报警信号(即第二信号)VL由0变为1,以指示供电电压VDD出现低电压异常。供电电压VDD继续上升,且在t2时刻所述第二电压超过VREF2+ΔVLD时,低压报警信号VL由1变为0,以指示供电电压VDD未出现低电压异常。供电电压VDD继续上升且在t3时刻所述第一电压超过所述VREF1时,高压报警信号VH由0变为1,以指示供电电压VDD出现高电压异常。供电电压VDD开始下降,且在t4时刻所述第一电压低于VREF1-ΔVHD时,高压报警信号(即所述第一信号)VH由1变为0,以指示供电电压VDD未出现高电压异常。供电电压VDD继续下降,且在t5时刻所述第二电压低于VREF2时,低压报警信号VL由0变为1,以指示供电电压VDD出现低电压异常。若所述第二电压并未低于VMIN后就开始上升,即供电电压VDD继续上,且在t6时刻所述第二电压超过VREF2+ΔVLD时,低压报警信号VL由1变为0,以指示供电电压VDD未出现低电压异常。供电电压VDD继续上升,且在t7时刻所述第一电压超过VREF1时,高压报警信号VH由0变为1,以指示供电电压VDD出现高电压异常。
如图1所示,在本申请的一些实施例中,所述电压攻击检测电路还包括第一与门140和第二与门150。
其中,所述第一与门140用于接收所述第一信号和第一指示信号并输出第三信号,所述第二与门150用于接收所述第二信号和第二指示信号并输出第四信号,所述第一指示信号用于指示所述第一参考电压是否存在异常,所述第二指示信号用于指示所述第二参考电压是否存在异常。
需要说明的是,与门(AND gate)又称“与电路”、逻辑“积”、逻辑“与”电路。是执行“与”运算的基本逻辑门电路。所述与门可以有多个输入端,一个输出端。当所有的输入端接收的信号均为高电平(逻辑“1”)时,输出信号才为高电平(逻辑“1”),否则输出信号为低电平(逻辑“0”)。换言之,所述第一信号和所述第一指示信号均为高电平(逻辑“1”)时,所述第三信号才为高电平(逻辑“1”),类似地,所述第二信号和所述第二指示信号均为高电平(逻辑“1”)时,所述第四信号才为高电平(逻辑“1”)。
通过所述第一与门140和所述第二与门150,可以避免由于所述第一参考电压或第二参考电压存在异常,导致的所述第一信号和所述第二信号的指示不准确的情况。换言之,通过所述第一与门140和所述第二与门150,可以避免由于所述参考电压存在异常导致的错误预警,以提升电压攻击预警的准确率。
如图1所示,在本申请的一些实施例中,所述电压攻击检测电路还包括参考电压生成电路160和参考电压检测电路170。
其中,所述参考电压生成电路160用于生成所述第一参考电压和所述第二参考电压,所述参考电压检测电路170连接至所参考电压生成电路160,所述参考电压检测电路170用于接收所述第一参考电压并输出所述第一指示信号。所述参考电压检测电路170还用于接收所述第二参考电压并输出所述第二指示信号。
例如,若所述第一信号用于指示所述第一电压大于或等于所述第一参考电压时,所述第一信号为高电平(逻辑“1”),若所述第一指示信号用于指示所述第一参考电压存在异常,所述第一指示信号为低电平(逻辑“0”)。与所述第一指示信号类似,若所述第二信号用于指示所述第二电压小于或等于所述第二参考电压时,所述第二信号为高电平(逻辑“1”),若所述第二指示信号用于指示所述第二参考电压存在异常,所述第二指示信号为低电平(逻辑“0”)。
换言之,在所述第一指示信号用于指示所述第一参考电压异常时,即使所述第一电压大于或等于所述第一参考电压,也将其复位为用于指示所述第一电压小于所述第一参考电压,此时,所述第一指示信息也可以称为复位信号(reset signal,RST)。换言之,所述参考电压检测电路170在所述第一参考电压不存在异常时不用于输出RST,在所述第一参考电压存在异常时用于输出RST。与所述第一指示信息类似,所述参考电压检测电路170在所述第二参考电压不存在异常时不用于输出RST,在所述第二参考电压存在异常时用于输出RST。
其中,所述参考电压生成电路160可以是带隙基准(Bandgap voltage reference,Bandgap)生成电路,即所述第一参考电压和所述第二参考电压可以是带隙基准。例如,带隙基准可以是一个与温度成正比的电压与一个与温度成反比的电压之和,二者温度系数相互抵消,实现与温度无关的电压基准。例如,所述带隙基准可以是一个与电源和工艺无关,具有确定温度特性的直流电压。例如,所述带隙基准可以约为1.25V。又例如,所述带隙基准的基准电压可以近似于硅的带隙电压。
在本申请的一些实施例中,所述参考电压生成电路160连接至外部电源(VDD),当所述参考电压生成电路160基于所述外部电源(VDD)能够向所述至少一个电压传感器提供准确的第一参考电压和第二参考电压时,所述第一指示信号和所述第二指示信息均为高电平(逻辑“1”)。
当所述参考电压生成电路160工作异常时,即外部电源VDD已经过高或过低时,导致所述参考电压生成电路160提供的所述第一参考电压或所述第二参考电压不再准确,此时,所述第一指示信号或所述第二指示信息为低电平(逻辑“0”),即让所述第一信号或所述第二信号输出为低电平(逻辑“0”),即均不发出报警信号。相当于,使得迟滞比较器输出的报警信号被失效,以避免产生错误报警。
通过所述参考电压检测电路170,可以避免由于所述参考电压存在异常导致的错误预警,以提升电压攻击预警的准确率。
当然,若所述第一指示信号用于指示所述第一参考电压存在异常,所述第一指示信号为高电平(逻辑“1”)。或者,若所述第二指示信号用于指示所述第二参考电压存在异常,所述第二指示信号为高电平(逻辑“1”)。相当于,所述第一指示信号可以用于对所述第一参考电压所在的电源域是否受到高电压攻击进行预警,所述第二指示信号可以用于对所述第二参考电压所在的电源域是否受到电压攻击进行预警。换言之,通过所述参考电压检测电路170,不仅能够指示至少一个内部电源是否受到攻击,而且能够指示第一参考电压或第二参考电压所在的电源域是否受到攻击,以便在所述至少一个内部电源受到攻击或所述其他电源域受到攻击时提醒用户注意安全防护或采取安全措施。
如图1所示,在本申请的一些实施例中,所述电压攻击检测电路还包括毛刺消除电路180。
其中,所述参考电压生成电路160通过所述毛刺消除电路180分别连接至所述第一与门140和所述第二与门150,所述毛刺消除电路180用于将时长小于或等于预设阈值的用于指示参考信号存在异常的指示信号重置为用于指示参考信号不存在异常的指示信号。
例如,所述毛刺消除电路180可以用于将时长小于或等于预设阈值的用于指示所述第一参考信号存在异常的第一指示信号重置为用于指示所述第一参考信号不存在异常的第一指示信号。又例如,所述毛刺消除电路180可以用于将时长小于或等于预设阈值的用于指示所述第二参考信号存在异常的第二指示信号重置为用于指示所述第二参考信号不存在异常的第二指示信号。
需要说明的是,毛刺可以是电路的输入波形中包括有规律或没有规律的脉冲信号或尖峰信号。例如,所述参考电压上出现正方向的毛刺时的电压值等于所述参考电压上未出现毛刺时的电压值加所述毛刺的电压值。又例如,参考电压上出现负正方向的毛刺时的电压值等于所述参考电压上未出现毛刺时的电压值减去所述毛刺的电压值。
换言之,针对不稳定的参考电压,其也可以认为是稳定的参考电压上叠加有一个毛刺后的电压。
通过所述毛刺消除电路180,在所述参考电压出现毛刺的情况下,能够保证所述第一指示信号和所述第二指示信号的准确率,相应的,能够保证所述第三信号和所述第四信号的准确率。换言之,通过所述毛刺消除电路180,能够在所述参考电压出现毛刺的情况下正确指示所述电源电压是否受到攻击,以便在所述电源电压受到攻击时提醒用户注意安全防护或采取安全措施。
如图1所示,在本申请的一些实施例中,所述电压攻击检测电路还包括第一或门131和第二或门132。
其中,所述第一或门131用于接收所述第一信号和第一测试信号并输出第五信号,所述第二或门132用于接收所述第二信号和所述第二测试信号并输出第六信号,所述第一测试信号用于指示所述第一电压大于或等于所述第一参考电压,所述第二测试信号用于指示所述第二电压小于或等于所述第二参考电压。如图1所示,所述第一测试信号也可称为高电压检测信号(TEST high voltage,TEST_HL),所述第二测试信号也可称为低电压检测信号(TEST low voltage,TEST_VL)。所述第一或门131和所述第二或门132可以用于形成置位自检测电路130,用于对所述电压检测电路120输出的第一信号和所述第二信号进行测试。
换言之,若将TEST_VH置1,则所述第五信号也被强制置为1;若将TEST_VL置1,则所述第六信号也被强制置为1,以便于系统的功能性以及完整性调试。
需要说明的是,或门(OR gate)又称或电路、逻辑或电路。具体地,如果几个条件中,只要有一个条件得到满足,某事件就会发生,这种关系叫做“或”逻辑关系,相应的,具有“或”逻辑关系的电路叫做或门。例如,或门可以有多个输入端,一个输出端,只要输入端中有一个输入端接收的信号为高电平(逻辑“1”)时,输出端输出的信号就为高电平(逻辑“1”);只有当所有的输入端接收的信号均为低电平(逻辑“0”)时,输出端输出的信号才为低电平(逻辑“0”)。本申请实施例中,所述第一信号和所述第一测试信号中有一个信号为高电平(逻辑“1”)时,所述第五信号为高电平(逻辑“1”),类似地,所述第二信号和所述第二测试信号中有一个信号为高电平(逻辑“1”)时,所述第六信号为高电平(逻辑“1”)。
通过所述第一测试信号和所述第二测试信号,可以强制让第五信号指示所述第一电压大于或等于所述参考电压,或可以强制让所述第六信号指示所述第二电压小于或等于所述参考电压,以便于设计人员对所述电压攻击检测电路进行检测。
换言之,通过所述第一或门131和所述第二或门132,可以分别强制让所述第五信号和所述第六信号进入报警状态。
如图1所示,在本申请的一些实施例中,所述电压攻击检测电路还包括第一电阻111。其中,所述第一可编程电路112通过所述第一电阻111连接至所述电源电压。
换言之,所述检测阈值产生电路110可以包括所述第一电阻111。
本申请还提供了一种芯片,所述包括电源管理单元以及上文所述的电压攻击检测电路;其中,所述电源管理单元连接至所述电压攻击检测电路,所述电压攻击检测电路用于检测所述电源管理单元的电源电压是否受到电压攻击。
换言之,所述电压攻击检测电路可以适用于任意一种具有电源管理单元的芯片。例如安全芯片。例如,所述安全芯片可以是指纹传感器芯片或者处理器芯片等等。所述安全芯片适用于任意一种电子设备。例如,智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (7)

1.一种电压攻击检测电路,其特征在于,包括:
第一可编程电阻和第二可编程电阻;
所述第一可编程电阻的第一端连接至电源电压,所述第一可编程电阻的第二端通过所述第二可编程电阻连接至地电压,所述第一端用于输出第一电压,所述第二端用于输出第二电压;
电压检测电路;
其中,所述电压检测电路用于接收所述第一电压和第一参考电压并输出第一信号,所述第一信号用于指示所述第一电压是否大于或等于所述第一参考电压;所述电压检测电路还用于接收所述第二电压和第二参考电压并输出第二信号,所述第二信号用于指示所述第二电压是否小于或等于所述第二参考电压,所述第一参考电压大于所述第二参考电压;
所述第一参考电压小于或等于在所述电源电压为带隙基准的最大工作电压的情况下的所述第一电压的电压值,所述第二参考电压大于或等于在所述电源电压为所述带隙基准的最小工作电压的情况下的所述第二电压的电压值;
所述电压检测电路包括:
第一迟滞比较器和第二迟滞比较器;
其中,所述第一迟滞比较器的正输入端连接至所述第一端以接收所述第一电压,所述第一迟滞比较器的负输入端连接至所述第一参考电压,所述第一迟滞比较器的输出端用于输出所述第一信号,所述第二迟滞比较器的正输入端连接至所述第二端以接收所述第二电压,所述第二迟滞比较器的负输入端连接至所述第二参考电压,所述第二迟滞比较器的输出端用于输出所述第二信号;
所述第一信号用于指示处于上升阶段中的所述第一电压是否大于或等于所述第一参考电压,所述第一信号还用于指示处于下降阶段中的所述第一电压是否小于或等于第一阈值,所述第一参考电压与所述第一阈值的差值为所述第一迟滞比较器的迟滞量;
所述第二信号用于指示处于下降阶段中的所述第二电压是否小于或等于所述第二参考电压,所述第二信号还用于指示处于上升阶段中的所述第二电压是否大于或等于第二阈值,所述第二阈值与所述第二参考电压的差值为所述第二迟滞比较器的迟滞量。
2.根据权利要求1中任一项所述的电压攻击检测电路,其特征在于,所述电压攻击检测电路还包括:
第一与门和第二与门;
其中,所述第一与门用于接收所述第一信号和第一指示信号并输出第三信号,所述第二与门用于接收所述第二信号和第二指示信号并输出第四信号,所述第一指示信号用于指示所述第一参考电压是否存在异常,所述第二指示信号用于指示所述第二参考电压是否存在异常。
3.根据权利要求2所述的电压攻击检测电路,其特征在于,所述电压攻击检测电路还包括:
参考电压生成电路和参考电压检测电路;
其中,所述参考电压生成电路用于生成所述第一参考电压和所述第二参考电压,所述参考电压检测电路连接至所参考电压生成电路,所述参考电压检测电路用于接收所述第一参考电压并输出所述第一指示信号,所述参考电压检测电路还用于接收所述第二参考电压并输出所述第二指示信号。
4.根据权利要求3所述的电压攻击检测电路,其特征在于,所述电压攻击检测电路还包括:
毛刺消除电路;
其中,所述参考电压生成电路通过所述毛刺消除电路分别连接至所述第一与门和所述第二与门,所述毛刺消除电路用于将时长小于或等于预设阈值的用于指示参考信号存在异常的指示信号重置为用于指示参考信号不存在异常的指示信号。
5.根据权利要求1至4中任一项所述的电压攻击检测电路,其特征在于,所述电压攻击检测电路还包括:
第一或门和第二或门;
其中,所述第一或门用于接收所述第一信号和第一测试信号并输出第五信号,所述第二或门用于接收所述第二信号和第二测试信号并输出第六信号,所述第一测试信号用于指示所述第一电压大于或等于所述第一参考电压,所述第二测试信号用于指示所述第二电压小于或等于所述第二参考电压。
6.根据权利要求1至4中任一项所述的电压攻击检测电路,其特征在于,所述电压攻击检测电路还包括:
第一电阻;
其中,所述第一可编程电路通过所述第一电阻连接至所述电源电压。
7.一种芯片,其特征在于,包括:
电源管理单元;以及
根据权利要求1至6中任一项所述的电压攻击检测电路;
其中,所述电源管理单元连接至所述电压攻击检测电路,所述电压攻击检测电路用于检测所述电源管理单元的电源电压是否受到电压攻击。
CN202080001165.4A 2020-03-09 2020-03-09 电压攻击检测电路和芯片 Active CN111670366B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078445 WO2021179128A1 (zh) 2020-03-09 2020-03-09 电压攻击检测电路和芯片

Publications (2)

Publication Number Publication Date
CN111670366A CN111670366A (zh) 2020-09-15
CN111670366B true CN111670366B (zh) 2022-11-18

Family

ID=72392568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080001165.4A Active CN111670366B (zh) 2020-03-09 2020-03-09 电压攻击检测电路和芯片

Country Status (4)

Country Link
US (1) US11934566B2 (zh)
EP (1) EP3926349B1 (zh)
CN (1) CN111670366B (zh)
WO (1) WO2021179128A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112115520B (zh) * 2020-09-18 2024-06-07 天津兆讯电子技术有限公司 内部电源供电结构及方法、安全芯片和电子卡
CN112098817A (zh) * 2020-09-18 2020-12-18 天津兆讯电子技术有限公司 温度自检结构与温度自检方法、安全芯片和电子卡
CN112052484B (zh) * 2020-09-18 2021-07-27 天津兆讯电子技术有限公司 自检电路及自检方法、安全芯片和电子卡
CN112069554B (zh) * 2020-09-18 2024-06-11 天津兆讯电子技术有限公司 外部供电电源上电结构及其方法、安全芯片和电子卡
US20210313989A1 (en) * 2021-06-21 2021-10-07 Intel Corporation Circuits And Methods For Detecting Decreases In A Supply Voltage In An Integrated Circuit
US20240160265A1 (en) * 2022-11-16 2024-05-16 Nxp Usa, Inc. Fault detection during entry to or exit from low power mode
CN117129746A (zh) * 2023-08-25 2023-11-28 广芯微电子(苏州)有限公司 一种电压检测方法及电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566645A (zh) * 2008-04-21 2009-10-28 北京同方微电子有限公司 一种用于电源电压脉冲干扰的检测电路
CN101943728A (zh) * 2009-07-06 2011-01-12 北京中电华大电子设计有限责任公司 一种防电源毛刺攻击的检测电路
CN103034804A (zh) * 2012-12-11 2013-04-10 深圳国微技术有限公司 安全芯片及其攻击检测电路
CN103675421A (zh) * 2013-05-31 2014-03-26 国家电网公司 一种电源毛刺信号检测电路及检测方法
CN105510688A (zh) * 2016-01-25 2016-04-20 大唐微电子技术有限公司 一种实现cp测试的电压检测器
CN105629028A (zh) * 2014-11-04 2016-06-01 华邦电子股份有限公司 检测电源电压突波方法以及单芯片集成电路装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055703A (en) * 1987-11-09 1991-10-08 Perma Power Electronics, Inc. Load protection circuit
US4956563A (en) * 1987-11-09 1990-09-11 Perma Power Electronics, Inc. Standby power supply
US5485140A (en) * 1994-06-24 1996-01-16 Bussin; George N. Vehicle obstacle detector and alarm system
JP3598976B2 (ja) * 2001-01-31 2004-12-08 日本電気株式会社 電源ノイズセンサ
DE10120147B4 (de) * 2001-04-25 2010-08-05 Nxp B.V. Schaltung zur Detektion von kurzen Spannungseinbrüchen in einer Versorgungsspannung
CN100474206C (zh) * 2003-12-26 2009-04-01 松下电器产业株式会社 半导体装置
US7747146B2 (en) * 2007-08-08 2010-06-29 Allegro Microsystems, Inc. Motor controller having a multifunction port
CN101561460A (zh) * 2008-12-30 2009-10-21 天津南大强芯半导体芯片设计有限公司 一种复合信号检测电路
CN103535116B (zh) * 2011-02-09 2016-11-09 欧司朗股份有限公司 占用传感器
JP6173008B2 (ja) * 2013-04-23 2017-08-02 ローム株式会社 電源回路
CN106292813B (zh) * 2015-05-14 2018-11-16 快捷半导体(苏州)有限公司 迟滞比较器、集成电路及电压比较方法
US10601217B2 (en) * 2017-04-27 2020-03-24 Qualcomm Incorporated Methods for detecting an imminent power failure in time to protect local design state
US10063159B1 (en) * 2017-06-30 2018-08-28 Dialog Semiconductor Inc. Adaptive synchronous rectifier sensing deglitch
KR102645784B1 (ko) * 2018-12-11 2024-03-07 삼성전자주식회사 반도체 장치 및 이를 포함하는 반도체 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566645A (zh) * 2008-04-21 2009-10-28 北京同方微电子有限公司 一种用于电源电压脉冲干扰的检测电路
CN101943728A (zh) * 2009-07-06 2011-01-12 北京中电华大电子设计有限责任公司 一种防电源毛刺攻击的检测电路
CN103034804A (zh) * 2012-12-11 2013-04-10 深圳国微技术有限公司 安全芯片及其攻击检测电路
CN103675421A (zh) * 2013-05-31 2014-03-26 国家电网公司 一种电源毛刺信号检测电路及检测方法
CN105629028A (zh) * 2014-11-04 2016-06-01 华邦电子股份有限公司 检测电源电压突波方法以及单芯片集成电路装置
CN105510688A (zh) * 2016-01-25 2016-04-20 大唐微电子技术有限公司 一种实现cp测试的电压检测器

Also Published As

Publication number Publication date
WO2021179128A1 (zh) 2021-09-16
US11934566B2 (en) 2024-03-19
EP3926349A1 (en) 2021-12-22
EP3926349A4 (en) 2022-04-27
CN111670366A (zh) 2020-09-15
US20220012370A1 (en) 2022-01-13
EP3926349B1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
CN111670366B (zh) 电压攻击检测电路和芯片
US9778988B2 (en) Power failure detection system and method
US11164648B2 (en) Glitch profiling in an integrated circuit
US6819539B1 (en) Method for circuit recovery from overstress conditions
CN110781059B (zh) 使用天线保护芯片免受电磁脉冲攻击
US9983245B2 (en) Method and apparatus for recognizing a manipulation on an electrical line
US6658597B1 (en) Method and apparatus for automatic recovery of microprocessors/microcontrollers during electromagnetic compatibility (EMC) testing
KR101009375B1 (ko) 반도체 집적 회로 및 그 제어 방법, 및 정보 처리 장치
CN110389846A (zh) 记录事件的电子装置及其方法
CN111095004B (zh) 电磁故障注入的检测电路、安全芯片和电子设备
US11914703B2 (en) Method and data processing system for detecting a malicious component on an integrated circuit
CN113253092B (zh) 使用软安全对策的安全集成电路
US20220019701A1 (en) Voltage attack detection circuit and chip
US20100127767A1 (en) Integrated Circuit Device Including Noise Filter
CN112861124A (zh) 一种终端的防入侵检测方法及装置
CN209514845U (zh) 一种简易信号报警电路
CN111566492B (zh) 电压攻击检测电路和芯片
EP3637571B1 (en) A circuit with critical operating condition warning, corresponding device and method
CN115080961A (zh) 故障注入攻击检测电路及方法、电子设备及介质
US11860207B2 (en) Determining electric field distributions
CN116126095A (zh) 时钟安全检测方法及装置、芯片
Rosinskiy et al. Agent-Oriented Approach to Detect Hardware Trojans
CN116341032A (zh) 拆卸响应电路、方法、防拆卸模组及电子设备
CN115979340A (zh) 一种SoC系统中安全运行环境监测实现方法
CN111736570A (zh) 控制器时钟频率检测方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant