CN111668450A - 一种具有液态合金改性阳极的纸基铝空气电池及制备方法 - Google Patents

一种具有液态合金改性阳极的纸基铝空气电池及制备方法 Download PDF

Info

Publication number
CN111668450A
CN111668450A CN202010571700.1A CN202010571700A CN111668450A CN 111668450 A CN111668450 A CN 111668450A CN 202010571700 A CN202010571700 A CN 202010571700A CN 111668450 A CN111668450 A CN 111668450A
Authority
CN
China
Prior art keywords
liquid alloy
paper
aluminum
anode
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010571700.1A
Other languages
English (en)
Other versions
CN111668450B (zh
Inventor
高钱
王宏超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202010571700.1A priority Critical patent/CN111668450B/zh
Publication of CN111668450A publication Critical patent/CN111668450A/zh
Application granted granted Critical
Publication of CN111668450B publication Critical patent/CN111668450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种具有液态合金改性阳极的纸基铝空气电池,由三层结构组成,具体为依次叠加的铝阳极、纸基、空气电极;其中,铝阳极表面负载有液态合金微粒。液态合金微粒由Ga、In、Sn、Bi、Zn中的两种或多种组成,并且在铝空气电池工作温度下为液态。铝阳极表面负载的液态合金微粒可以很好地活化铝阳极,在中性电解液中放电性能良好,放电时间长,可满足小功率市场应用。本发明公开了一种具有液态合金改性阳极的纸基铝空气电池的制备方法。

Description

一种具有液态合金改性阳极的纸基铝空气电池及制备方法
技术领域
本发明属于金属空气电池领域,涉及一种廉价绿色新型纸基铝空气电池,具体涉及一种具有液态合金改性阳极的纸基铝空气电池及其制备方法。
背景技术
一次电池作为一次性电源,通常在不能充电或不必要的充电情况下使用。目前市场上涌现出多种多样的小型功率设备(如医疗保健生物传感器,医学诊断分析,可穿戴电子设备,智能包装等),并占据相当大的市场份额。这些设备大多价格低廉且仅消耗mW甚至uW功率,在使用后即被丢弃,因此需要一种价格低廉、轻巧便携并且绿色环保的电源与之匹配。
金属空气电池采用不同金属材料作阳极,空气阴极直接利用空气中的氧气,使得其具有更高的能量密度。在金属空气电池常用阳极材料有Zn、Mg、Al、Li、Fe等。其中,铝元素由于储量丰富,价格低廉并且能量密度大而受到人们关注。传统铝空气电池由于涉及复杂的流体和气体管理系统而不适合应用于低功率市场。近年来,纤维素纸被越来越多的应用于锂离子电池,燃料电池,超级电容器,纳米发电机等各领域中。在铝空气电池中,纤维素纸可以自动输送电解质,从而大大简化了水管理系统;其轻巧柔软,可以提高设备的能量密度和柔韧性。此外,纤维素成本低廉,是一种可再生绿色环保的材料。
由于纸基铝空气电池能量密度大、成本低廉、绿色环保而受到人们的关注,目前对纸基铝空气电池的研究主要集中在对纸张厚度、电解质种类及浓度、阴极侧活性等的参数优化研究,尚未有人直接对铝空气电池铝阳极进行表面改性研究。同时目前制得的纸基铝空气电池普遍存在放电时间短,铝阳极利用率不足,中性电解液放电功率不足等问题。
近年来,液态合金由于它的低熔点(室温下即为液态)、导电性优良、延展性极强而受到人们的关注,研究表明液态合金同时可以活化铝合金。我们这里报道一种中性电解液中可长时间放电的液态合金表面活化的新型纸基铝空气电池。
发明内容
本发明针对目前一次纸空电池存在的缺陷,提出了一种具有液态合金改性阳极的纸基铝空气电池及其制备方法,成本低廉、绿色环保。
作为本发明的一方面,提供一种具有液态合金改性阳极的纸基铝空气电池,由三层结构组成,具体为依次叠加的铝阳极、纸基、空气电极;其中,铝阳极表面负载有液态合金微粒。铝阳极表面负载的液态合金微粒可以很好地活化铝阳极,在中性电解液中放电性能良好,放电时间长,可满足小功率市场应用。
优选的,所述液态合金微粒由Ga、In、Sn、Bi、Zn中的两种或多种组成,并且在铝空气电池工作温度下为液态。
优选的,所述铝阳极表面的液态合金微粒负载量不小于1ug/cm2
更为优选的,所述铝阳极表面的液态合金微粒负载量不小于10ug/cm2
更为优选的,所述液态合金微粒尺寸不大于5um。
进一步地,所述铝阳极为铝箔。
进一步地,所述铝阳极厚度不大于2mm。
优选的,所述铝阳极厚度小于0.5mm。
更为优选的,所述铝阳极3厚度为0.2mm。
进一步地,所述纸基上滴加电解液,即可实现小功率放电。
优选的,所述纸基为纤维素纸。
更为优选的,所述纤维素纸,可选的有商用滤纸、餐巾纸、瓦楞纸等吸水性良好廉价纸或纸制品中的一种或多种组成。
更为优选的,所述纤维素纸厚度不小于0.1mm。
更为优选的,所述纤维素纸厚度为0.5mm-5mm。
更为优选的,所述纤维素纸厚度为1mm。
作为本发明的另一方面,提供一种具有液态合金改性阳极的纸基铝空气电池的制备方法,包括以下步骤:
S1.选择Ga、In、Sn、Zn、Bi中两种或多种按配比配好后,在高于所选元素熔点100℃温度下,惰性气体氛围中加热并保温1-2h,值得液态合金;
S2.将步骤S1制得的液态合金室温合金化10-24h;
S3.将液态合金、表面活性剂、溶剂按照0.01-10g:0.01-20g:10-100ml的比例混合,超声搅拌20-40min,制得液态合金微粒;
S4.将液态合金微粒负载在铝阳极表面;
S5.将负载有液态合金微粒铝阳极、纸基、空气电极依次叠加,得到纸基铝空气电池,向纸基层滴加电解液即可实现小功率放电。
与现有技术相比本发明有以下优点:
1.与传统铝空气电池相比避免了复杂的流体与气体管理系统,通过纤维素纸自身的毛细作用实现电解质的自动运输,实现了铝空气电池小型化轻量化。
2.与现有纸基铝空气电池相比,铝阳极表面负载的液态合金可破坏铝表面氧化膜活化铝阳极,在中性电解液中放电性能良好,放电时间长,可满足小功率市场应用。
附图说明
图1为本发明所述一种具有液态合金改性阳极的纸基铝空气电池的结构示意图;
图中:
1-空气电极;2-纸基;3-铝阳极;4-电解液。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,但本发明并不仅限于此。
参见图1所示,一种具有液态合金改性阳极的纸基铝空气电池,由三层结构组成,具体为依次叠加的铝阳极3、纸基2、空气电极1;其中,铝阳极3表面负载有液态合金微粒。铝阳极表面负载的液态合金微粒可以很好地活化铝阳极,在中性电解液中放电性能良好,放电时间长,可满足小功率市场应用。
优选的,所述液态合金微粒由Ga、In、Sn、Bi、Zn中的两种或多种组成,并且在铝空气电池工作温度下为液态。
优选的,所述铝阳极3表面的液态合金微粒负载量不小于1ug/cm2
更为优选的,所述铝阳极3表面的液态合金微粒负载量不小于10ug/cm2
更为优选的,所述液态合金微粒尺寸不大于5um。
进一步地,所述铝阳极为铝箔。
进一步地,所述铝阳极3厚度不大于2mm。
优选的,所述铝阳极3厚度小于0.5mm。
更为优选的,所述铝阳极3厚度为0.2mm。
进一步地,所述纸基2上滴加电解液4,即可实现小功率放电。
优选的,所述纸基2为纤维素纸。
更为优选的,所述纤维素纸,可选的有商用滤纸、餐巾纸、瓦楞纸等吸水性良好廉价纸或纸制品中的一种或多种组成。
更为优选的,所述纤维素纸厚度不小于0.1mm。
更为优选的,所述纤维素纸厚度为0.5mm-5mm。
更为优选的,所述纤维素纸厚度为1mm。
一种具有液态合金改性阳极的纸基铝空气电池的制备方法,包括以下步骤:
S1.选择Ga、In、Sn、Zn、Bi中两种或多种按配比配好后,在高于所选元素熔点100℃温度下,惰性气体氛围中加热并保温1-2h,值得液态合金;
S2.将步骤S1制得的液态合金室温合金化10-24h;
S3.将液态合金、表面活性剂、溶剂按照0.01-10g:0.01-20g:10-100ml的比例混合,超声搅拌20-40min,制得液态合金微粒;
S4.将液态合金微粒负载在铝阳极表面;
S5.将负载有液态合金微粒铝阳极、纸基、空气电极依次叠加,得到纸基铝空气电池,向纸基层滴加电解液即可实现小功率放电。
实施例1
空气电极采用市售商业化空气电极;纸基采用滤纸,将滤纸折叠厚度为1mm;铝阳极采用纯度为99%厚度0.2mm面积1cm2的铝箔;液态合金为74.5%Ga25.5%In二元合金,负载量50ug/cm2;电解液选用2M NaCl溶液。
1.液态合金的制备:根据质量分数74.5%Ga、25.5%In分别称量Ga和In,将称量好的金属放在氮气保护下的高温炉中,在250℃进行烧结,并在250℃下加热并保温1.5小时。保温后冷却至室温,将所得液态合金在室温下合金化20h。
2.液态合金微粒制备:将完成合金化后的液态合金与十二烷基硫酸钠(SDS)、N-甲基吡咯烷酮(NMP)以2g:1g:20ml比例混合后,超声搅拌30min,即得到液态合金微粒。
3.液态合金活化的铝阳极制备:将得到液态合金微粒悬浊液自然沉降2h,取上层悬浊液旋涂于铝箔表面,干燥后得到液态合金活化的铝阳极,在铝阳极上引出铜箔以备下一步组装。
4.铝空气电池组装:将厚度为1mm滤纸放置在液态合金活化的铝阳极与商用空气电极之间,将三层结构夹紧即得到纸基铝空气电池。
5.向滤纸滴加电解液就可实现对小功率电器供电。
当滴加2ml的2M NaCl电解液时可实现0.5mA-0.9V稳定放电20h。
实施例2
空气电极采用市售商业化空气电极;纸基采用滤纸,将滤纸折叠厚度为0.5mm;铝阳极采用纯度为99%厚度0.5mm面积1cm2的铝箔;液态合金为66%Ga13.5%In20.5%Sn三元合金,负载量10ug/cm2;电解液选用2M NaCl溶液。
1.液态合金的制备:根据质量分数66%Ga、13.5%In、20.5%Sn分别称量Ga、In和Sn,将称量好的金属放在氮气保护下的高温炉中,在250℃进行烧结,并在250℃下加热并保温1.5小时。保温后冷却至室温,将所得液态合金在室温下合金化24h。
2.液态合金微粒制备:将完成合金化后的液态合金与十二烷基硫酸钠(SDS)、N-甲基吡咯烷酮(NMP)以2g:1g:20ml比例混合后,超声搅拌30min,即得到液态合金微粒。
3.液态合金活化的铝阳极制备:将得到液态合金微粒悬浊液自然沉降2h,取上层悬浊液旋涂于铝箔表面,干燥后得到液态合金活化的铝阳极,在铝阳极上引出铜箔以备下一步组装。
4.铝空气电池组装:将厚度为0.5mm滤纸放置在液态合金活化的铝阳极与商用空气电极之间,将三层结构夹紧即得到纸基铝空气电池。
5.向滤纸滴加电解液就可实现对小功率电器供电。
当滴加2ml的2M NaCl电解液时可实现0.5mA-0.78V稳定放电15h。
实施例3
空气电极采用市售商业化空气电极;纸基采用滤纸,将滤纸折叠厚度为0.1mm;铝阳极采用纯度为99%厚度2mm面积1cm2的铝箔;液态合金为74.5%Ga25.5%In二元合金,负载量1ug/cm2;电解液选用2M NaCl溶液。
1.液态合金的制备:根据质量分数74.5%Ga、25.5%In分别称量Ga和In,将称量好的金属放在氮气保护下的高温炉中,在250℃进行烧结,并在250℃下加热并保温1.5小时。保温后冷却至室温,将所得液态合金在室温下合金化20h。
2.液态合金微粒制备:将完成合金化后的液态合金与十二烷基硫酸钠(SDS)、N-甲基吡咯烷酮(NMP)以2g:1g:20ml比例混合后,超声搅拌30min,即得到液态合金微粒。
3.液态合金活化的铝阳极制备:将得到液态合金微粒悬浊液自然沉降2h,取上层悬浊液旋涂于铝箔表面,干燥后得到液态合金活化的铝阳极,在铝阳极上引出铜箔以备下一步组装。
4.铝空气电池组装:将厚度为0.1mm滤纸放置在液态合金活化的铝阳极与商用空气电极之间,将三层结构夹紧即得到纸基铝空气电池。
5.向滤纸滴加电解液就可实现对小功率电器供电。
当滴加2ml的2M NaCl电解液时可实现0.5mA-0.7V稳定放电10.5h。

Claims (9)

1.一种具有液态合金改性阳极的纸基铝空气电池,由三层结构组成,具体为依次叠加的铝阳极、纸基、空气电极;其特征在于,铝阳极表面负载有液态合金微粒。
2.如权利要求1所述的一种具有液态合金改性阳极的纸基铝空气电池,所述液态合金微粒由Ga、In、Sn、Bi、Zn中的两种或多种组成,并且在铝空气电池工作温度下为液态。
3.如权利要求1所述的一种具有液态合金改性阳极的纸基铝空气电池,所述铝阳极表面的液态合金微粒负载量不小于1ug/cm2
4.如权利要求1所述的一种具有液态合金改性阳极的纸基铝空气电池,所述液态合金微粒尺寸不大于5um。
5.如权利要求1所述的一种具有液态合金改性阳极的纸基铝空气电池,所述铝阳极厚度不大于2mm。
6.如权利要求1所述的一种具有液态合金改性阳极的纸基铝空气电池,所述纸基上滴加电解液。
7.如权利要求1所述的一种具有液态合金改性阳极的纸基铝空气电池,所述纸基为纤维素纸。
8.如权利要求7所述的一种具有液态合金改性阳极的纸基铝空气电池,所述纤维素纸厚度不小于0.1mm。
9.一种具有液态合金改性阳极的纸基铝空气电池的制备方法,包括以下步骤:
S1.选择Ga、In、Sn、Zn、Bi中两种或多种按配比配好后,在高于所选元素熔点100℃温度下,惰性气体氛围中加热并保温1-2h,制得液态合金;
S2.将步骤S1制得的液态合金室温合金化10-24h;
S3.将液态合金、表面活性剂、溶剂按照0.01-10g:0.01-20g:10-100ml的比例混合,超声搅拌20-40min,制得液态合金微粒;
S4.将液态合金微粒负载在铝阳极表面;
S5.将负载有液态合金微粒铝阳极、纸基、空气电极依次叠加,得到纸基铝空气电池,向纸基层滴加电解液即可实现小功率放电。
CN202010571700.1A 2020-06-22 2020-06-22 一种具有液态合金改性阳极的纸基铝空气电池及制备方法 Active CN111668450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010571700.1A CN111668450B (zh) 2020-06-22 2020-06-22 一种具有液态合金改性阳极的纸基铝空气电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010571700.1A CN111668450B (zh) 2020-06-22 2020-06-22 一种具有液态合金改性阳极的纸基铝空气电池及制备方法

Publications (2)

Publication Number Publication Date
CN111668450A true CN111668450A (zh) 2020-09-15
CN111668450B CN111668450B (zh) 2022-11-11

Family

ID=72389231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010571700.1A Active CN111668450B (zh) 2020-06-22 2020-06-22 一种具有液态合金改性阳极的纸基铝空气电池及制备方法

Country Status (1)

Country Link
CN (1) CN111668450B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017450A (zh) * 2017-03-10 2017-08-04 云南靖创液态金属热控技术研发有限公司 铝空气电池
CN110061190A (zh) * 2018-05-31 2019-07-26 南方科技大学 液态金属基自愈合锂电负极及制备方法和锂离子电池
CN110240830A (zh) * 2018-03-09 2019-09-17 国家纳米科学中心 基于液态金属颗粒的自烧结导电墨水、其制备方法及应用
CN110534847A (zh) * 2019-09-26 2019-12-03 清华大学 可充电铝-空气电池及其制备方法
CN110600677A (zh) * 2019-08-19 2019-12-20 南方科技大学 锂金属负极及其制备方法和锂金属、锂硫、锂空气电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017450A (zh) * 2017-03-10 2017-08-04 云南靖创液态金属热控技术研发有限公司 铝空气电池
CN110240830A (zh) * 2018-03-09 2019-09-17 国家纳米科学中心 基于液态金属颗粒的自烧结导电墨水、其制备方法及应用
CN110061190A (zh) * 2018-05-31 2019-07-26 南方科技大学 液态金属基自愈合锂电负极及制备方法和锂离子电池
CN110600677A (zh) * 2019-08-19 2019-12-20 南方科技大学 锂金属负极及其制备方法和锂金属、锂硫、锂空气电池
CN110534847A (zh) * 2019-09-26 2019-12-03 清华大学 可充电铝-空气电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YIFEI WANG, ET AL.: "Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability", 《APPLIED ENERGY》 *
YINGPENG WU, ET AL.: "A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life", 《ENERGY & ENVIRONMENTAL SCIENCE》 *

Also Published As

Publication number Publication date
CN111668450B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
Wang et al. Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability
Rahman et al. High energy density metal-air batteries: a review
CN101764253B (zh) 二次铝电池及其制备方法
Wang et al. Liquid-free Al-air batteries with paper-based gel electrolyte: A green energy technology for portable electronics
CN109860628B (zh) 一种平面型柔性全固态锌空气电池的制备方法及应用
JP2014510361A (ja) アルカリ金属−空気フロー電池
CN109950455A (zh) 一种锂硫电池改性隔膜的制备方法
CN101026255A (zh) 改性铝、镁合金燃料电池
CN114005995B (zh) 一种柔性金属电极的制备方法
CN102569702B (zh) 非固态电极使用的离子选择性膜及其制备方法
CN110729528B (zh) 一种太阳能辅助的具有低充电电位的可充电锌空电池
Feng et al. Self-discharge characteristics of a metal hydride electrode for Ni-MH rechargeable batteries
WO2023072045A1 (zh) 一种固态电芯及其制备方法和储能装置
CN108461712A (zh) 一种钾/铁酸钾/普鲁士蓝固态电池及其制备方法
CN108711663A (zh) 一种基于沸石咪唑酯骨架-67衍生物的柔性锌-空气电池的制备方法
CN111682182B (zh) 一种可打印的新型柔性纸基铝空气电池
CN111668450B (zh) 一种具有液态合金改性阳极的纸基铝空气电池及制备方法
CN104176785A (zh) 一种Cu2+,Co2+,Ce4+,Ag+掺杂氟化铁复合正极材料及制备方法
EP2472652A1 (en) Additive for nickel-zinc battery
CN104157836B (zh) 一种Cu2+,Co2+,Zr4+,Ag+掺杂氟化铁复合正极材料及制备方法
CN112952216B (zh) 一种氧离子传导型金属-金属氧化物熔盐二次电池及其制备方法
Mondal et al. Emerging nanomaterials in energy storage
JP4409825B2 (ja) 燃料電池
KR101551700B1 (ko) 아연 공기 전지, 아연 공기 전지용 음극 및 그 제조 방법
Wang et al. Alkaline fuel cell with intrinsic energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant