CN111662892A - β-酮己二酸代谢相关三个基因的结构优化与应用 - Google Patents

β-酮己二酸代谢相关三个基因的结构优化与应用 Download PDF

Info

Publication number
CN111662892A
CN111662892A CN202010742556.3A CN202010742556A CN111662892A CN 111662892 A CN111662892 A CN 111662892A CN 202010742556 A CN202010742556 A CN 202010742556A CN 111662892 A CN111662892 A CN 111662892A
Authority
CN
China
Prior art keywords
ala
gly
val
leu
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010742556.3A
Other languages
English (en)
Other versions
CN111662892B (zh
Inventor
王波
姚泉洪
彭日荷
田永生
高建杰
许晶
付晓燕
韩红娟
李振军
王丽娟
张福建
邓永东
张文慧
黄悠楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Academy of Agricultural Sciences
Original Assignee
Shanghai Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Academy of Agricultural Sciences filed Critical Shanghai Academy of Agricultural Sciences
Priority to CN202010742556.3A priority Critical patent/CN111662892B/zh
Publication of CN111662892A publication Critical patent/CN111662892A/zh
Application granted granted Critical
Publication of CN111662892B publication Critical patent/CN111662892B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/011743-Oxoadipyl-CoA thiolase (2.3.1.174)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/03CoA-transferases (2.8.3)
    • C12Y208/030063-Oxoadipate CoA-transferase (2.8.3.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种优化后适用于大肠杆菌表达的β‑酮己二酸代谢相关的三个基因及其应用。每个基因都由独立的T7启动子和终止子控制,其核苷酸序列分别如SEQ ID No 1、SEQ ID No 2和SEQ ID No 3所示,其编码的蛋白质的氨基酸序列分别如SEQ ID No 4、SEQ ID No 5和SEQ ID No 6所示。本发明优化合成的基因能够在大肠杆菌中成功表达,工程菌能够将β‑酮己二酸完全降解且以β‑酮己二酸为碳源生长,优化后基因可用于构建有机污染修复工程生物。

Description

β-酮己二酸代谢相关三个基因的结构优化与应用
技术领域
本发明属于基因工程领域,具体涉及结构优化的β-酮己二酸利用相关三个基因的序列。
背景技术
芳香族化合物是一类重要的有机污染物,它能通过各种工业、农业、制药和市政排放等人类活动进入环境造成污染。而传统的污染修复方式主要是物理和化学方法,存在成本高、设施复杂、修复效率低等问题。通过生物处理,修复环境中的芳香族污染物是一个可行的替代方案。对降解机理的深入研究,有助于我们充分利用丰富的自然资源。
目前已发现许多好氧细菌和真菌能够以某种芳香族化合物为唯一碳源和能源,这证明在这些微生物中存在这些芳香族化合物的代谢途径。目前,普遍认为微生物可以在有氧或者厌氧条件下对芳香族化合物降解先是通过外围代谢途径(Peripheral catabolicpathway)将不同的酚类化合物转化为少数几种核心代谢产物(Predominant products)包括:邻苯二酚、对苯二酚及它们的衍生物等,而这些核心代谢产物再通过一些相同或相似的核心代谢途径(Central catabolic pathway)转化为三羧酸循环的中间代谢物(Citratecycle itermediates),最终为微生物所利用。
β-酮己二酸途径就是一个广泛存在于土壤细菌和真菌中核心代谢途径。核心代谢产物原儿茶酸或邻苯二酚通过不同的分支形成beta-酮己二酸内酯,之后通过共同途径生成β-酮己二酸。而β-酮己二酸再通过β-酮己二酸琥珀酰辅酶A转移酶和β-酮己二酸单酰辅酶A硫解酶的催化生成琥珀酰辅酶A和乙酰辅酶A,从而进入三羧酸循环,为微生物所利用。这一代谢途径是许多芳香族化合物降解的最终通路,也是将降解产物与三羧酸循环链接的桥梁,主要包括苯、酚、甲苯、苯甲酸、烷基苯、硝基酚、氯酚、萘等都能通过β-酮己二酸途径降解。
虽然目前已知大量微生物具有有机污染物降解能力,但具体到能降解某一特定种类物质时,可供选择的微生物数量和种类比较有限,难以满足生物修复技术的需求。通过生物技术手段,选择合适的宿主,构建污染修复工程生物是一种可行的解决方案。而beta-酮己二酸到琥珀酰辅酶A和乙酰辅酶A转化,是β-酮己二酸途径是不同代谢分支汇合后的最终代谢过程,是将有机污染物中的碳原子引入微生物自身代谢网络并供其利用的桥梁,是构建多种不同有机污染修复工程生物的基础,因此成功实现这一代谢途径的异源表达具有重要的意义及应用潜力。
发明内容
本发明所要解决的技术问题在于提供能够在大肠杆菌中表达的β-酮己二酸代谢相关三个基因的优化重组与应用:
pcaI基因:编码β-酮己二酸琥珀酰辅酶A转移酶a亚基
pcaJ基因:编码β-酮己二酸琥珀酰辅酶A转移酶b亚基
pcaF基因:编码β-酮己二酸单酰辅酶A硫解酶
β-酮己二酸经过两步酶促反应生成珀酰辅酶A和乙酰辅酶A。
基于Rhodococcussp.DK17菌基因簇(DQ346669.1)中的pcaI基因和pcaJ基因与Rhodococcus sp. PBTS2菌基因组(CP015220.1)中的pcaF基因。本发明只保留每个基因的编码序列,并分别连接上独立的T7启动子和终止子调控其表达。同时优化编码区基因结构,遵循以下原则:(一)优化基因密码子,提高基因翻译效率。(二)消除基因内部的常用限制性内切酶的识别位点,便于表达盒构建。(三)消除逆向重复序列、茎环结构和转录终止信号,使基因内部的GC/AT均衡,提高RNA的稳定性。(四)使基因编码蛋白符合N端原则,以提高翻译蛋白的稳定性。(五)优化mRNA二级结构自由能,以提高基因表达效率。
所述经优化的β-酮己二酸代谢相关三个基因的核苷酸序列如SEQ ID No 1、SEQID No 2和SEQ ID No 3所示。每个基因两端分别边上T7启动子与终止子,完整序列两端分别连接EcoRⅠ和HindⅢ酶切位点,全长序列由生工生物工程(上海)股份公司(参见图1)。
将合成的基因片段经EcoRⅠ和Hind Ⅲ双酶切后,连入相同酶切的载体pET-28a,得到重组质粒pET-pca,并将其转化大肠杆菌BL21(DE3),得到阳性株系。
阳性菌株在100毫升M9(含1%甘油和50μg/ml卡那霉素)液体培养中37℃摇菌24小时,离心去上清,菌体用10毫升M9(含1%甘油、0.2%阿拉伯糖、50μg/ml卡那霉素和1mM IPTG)液体培养基重悬,向其中添加5mMβ-酮己二酸,阳性菌株能将培养基中的β-酮己二酸代谢。而且阳性菌株能够以β-酮己二酸为碳源生长。
有益效果:
本发明优化并合成了β-酮己二酸代谢相关三个基因,并能在大肠杆菌中成功表达,阳性菌株能够有效代谢培养基中的β-酮己二酸,并能以β-酮己二酸为碳源在生长。在废水处理和环境修复等领域具有应用潜力。
附图说明:
图1 为用于在大肠杆菌中表达邻苯二酚降解相关四个基因的载体示意图。
图2 为阳性株系对β-酮己二酸的利用。
图3 为阳性株系在以5mMβ-酮己二酸为碳源的M9的液体培养基中的生长。
图4 为阳性株系在以5mMβ-酮己二酸为碳源的M9的固体培养基中的生长。
具体实施方式:
下面结合具体实施方式来进一步阐述本发明。实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明的技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
本发明实施中未注明的实验方法,如连接、转化、相关培养基的配制等参照分子克隆实验指南第三版(黄培堂等译,中国,科学出版社,2002)中方法进行。所用大肠肝菌由上海市农业科学院生物技术研究所植物基因工程研究室保存,各类限制性内切酶、连接酶等购自上海皓嘉公司。未注明的化学药品为分析纯级,购自生工生物工程(上海)股份公司或上海国药集团有限公司。
实施例 1
beta-酮己二酸代谢相关三个基因pcaI、pcaJpcaF基因的优化设计与合成
将来源于不同菌株的三个基因pcaI、pcaJpcaF基因的编码序列,按以下原则:(一)优化基因密码子,兼顾大肠杆菌和植物的密码子偏爱,提高基因翻译效率。(二)消除基因内部的常用限制性内切酶的识别位点,便于表达盒构建。(三)消除逆向重复序列、茎环结构和转录终止信号,使基因内部的GC/AT均衡,提高RNA的稳定性。(四)使基因编码蛋白符合N端原则,以提高翻译蛋白的稳定性。(五)优化mRNA二级结构自由能,以提高基因表达效率。每个基因两端分别边上T7启动子与终止子,完整序列两端分别连接EcoRⅠ和HindⅢ酶切位点,全长序列由生工生物工程(上海)股份公司合成。
实施例 2
大肠杆菌表达载体的构建与转化
将合成的基因片段经EcoRⅠ和HindⅢ双酶切后,连入相同酶切的载体pET-28a,得到重组质粒pET-pca。并将其通过热激转化大肠杆菌BL21(DE3),在涂布在加有卡那霉素抗性人固体2YT平板上,37℃过夜培养后得到阳性克隆。对阳性克隆中的质粒进行酶切和DNA序列测定确定基因序列完整性和正确性。
实施例 3
阳性菌株对β-酮己二酸的降解与利用
阳性菌株在100毫升M9(含1%甘油和50μg/ml卡那霉素)液体培养中37℃摇菌24小时,离心去上清,菌体用10毫升M9(含1%甘油、0.2%阿拉伯糖、50μg/ml卡那霉素和1mM IPTG)液体培养基重悬,向其中添加5mMβ-酮己二酸,阳性菌株能将培养基中的β-酮己二酸消耗(参见图2)。
当将按上述条件培养24小时的阳性菌株,用M9碳源用5mMβ-酮己二酸替代的液体培养基(不加甘油与酪蛋白水解物)重悬为OD600=0.5左右时,于30℃摇菌24小时后菌量较对照明显增加(参见图3);将重悬的菌,于M9碳源用5mMβ-酮己二酸替代的固体培养基30℃培养5天后,长出明显菌落(参见图3)。
培养基中β-酮己二酸的GC-MS检测方法:
取10mL发酵液,使用液氮冻融的方法将细胞破壁,超声波提取后,离心取上清液,冻干后加入衍生化试剂BSTFA,60℃下衍生半小时,待GC-MS检测。
气相色谱-质谱联用仪(GC-MS/MS,7890B-7000C,美国Agilent公司);HP-5 MS毛细管柱(30m×0.25mm×0.25μm,美国Agilent公司);真空干燥箱(上海一恒科学仪器有限公司);超声机(上海一恒科学仪器有限公司)、氮吹仪(上海安谱科技有限公司)、超纯水系统(美国Merck Millipore 公司)。
色谱条件:色谱柱:Agilent HP-5 MS毛细管柱(30 m×0.25 mm×0.25 µm);载气He(99.999%),流速1.0mL/min;进样口温度290 ℃;升温程序:100 ℃以40 ℃/min升至160℃,再以10 ℃/min升至250 ℃,最后以20 ℃/min升至300 ℃;进样量1.0 μL,分流比50:1。
GC-MS质谱分析条件:电子轰击离子源(EI),电离能量70 eV;全扫描(scan)模式,扫描范围m/z:50 ~ 400;离子源温度230 ℃,四级杆温度150 ℃,接口温度300℃。
序列表
<110> 上海市农业科学院
<120> β-酮己二酸代谢相关三个基因的结构优化与应用
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 750
<212> DNA
<213> artifical synthesize
<400> 1
atggtgaaca aggtgttcgc aactgctgct gaggctgttg ctgatgttcc tgacggtgca 60
tcacttgctg ttggtggctt tggactcgtg ggaatcccat ctgtcctgat cgatgcactg 120
cttgcacaag gtgcaactga tctggagact gtgtccaaca actgtggaac tgacggcttc 180
ggactgggac tgctgcttga gcagcatcgt atccgtcgta ccatctcatc ctacgttggt 240
gccaacaagg agttcgcacg tcagtacctg tctggtgagc tggaggttga gctgactcca 300
cagggaaccc ttgctgagcg tatgcgtgct ggaggagcag gcatccctgc cttctacact 360
cctgctggtg ttggaactca ggttgctgat ggtggactgc caatccgtta cgatggacaa 420
ggaggcatcg ctgttgcatc caagcctaag gagactcgtg agttcgatgg tgaggcattc 480
gttcttgaac gtgccatccg taccgacttc gcactggttc atgcatggaa gggtgatcgt 540
cttggcaacc ttgtgtatcg tgagactgca cgtaacttca atcctgatgc tgctggtgct 600
ggacgtatca ccatcgcaca ggttgagtac cttgttgaac ctggtgagat cgatcctgct 660
gaggtccaca ctcctggcat cttcgttcag cgtgttgtcg aggttggcaa gcaggagact 720
ggcatcgaga accgtactgt tcgtgcataa 750
<210> 2
<211> 642
<212> DNA
<213> artifical synthesize
<400> 2
atgtcatgga ctcgtgatga gatggcagca cgtgttgcag ctgagctgga ggatggtcag 60
tacgtcaacc tgggaatcgg aatgccaact ctgattcctg gacacattcc tgctggcaag 120
gatgtgatcc ttcactctga gaacggaatc cttggtgttg gaccataccc aactgatgac 180
gaggttgatc ctgaactgat caatgctggc aaggagacca tcactgttgt tcctggagga 240
gcattcttct cctcatctga ctcattctcc atgatccgtg gtggctctgt cgatgttgct 300
gttcttggtg caatgcaggt ctcatcacat ggtgatctgt ccaactggat ggttcctggt 360
gcaatggtga agggaatggg aggagcaatg gatcttgttc atggagcagg caaggtgatc 420
gtcatgatgg accacgtgac caagaagggt gagcacaaaa tcttggagga gtgcactctg 480
ccatacactg gcaagcgttg cgtgcagaag atcgtgactg atctggctgt gatcgacgtg 540
actcctgatg gactgcgtct ggttgagact gcacctggac actctgttga ggatgttcag 600
gctgcaactg gtgccactct gcttgttgat gccactgtgt aa 642
<210> 3
<211> 1212
<212> DNA
<213> artifical synthesize
<400> 3
atgcctgaag ctgtgatctg cgaaccactt cgtactcctg ttggacgttt cggtggacag 60
ttccgtgaca tctctgcaca agcactggct gctactgtga tcactgaact ggttgcacgt 120
actggcatct ctggtgctga catcgacgac gtcatccttg gacaggcatc acctaacggt 180
gatgcacctg ctatcggacg tatcgctgca ctggacgctg accttggcat cgatgttcct 240
ggtatgcaga tcgaccgtcg ttgtggatct ggactccaag ctgtgctgca agcctgtatg 300
caggttcagt ctggtggcaa cgatctggtt ctggctggtg gtgtggagtc catgtcacag 360
accgagttct atgcaactgg tatgcgttgg ggtgtgaagg ctgaggctgt tgcactgtct 420
gatcgtcttg cacgtgcacg tgtgactgct ggtggcaaga acttccctgt tcctggtggc 480
atgatcgaga ctgctgagaa ccttcgtcag gagttctcca tctcacgtgc tgaccaggat 540
gcacttgctg ttcagtcaca ccgtcgtgct gttgctgcac agaactctgg tgtcttcgct 600
gaagagatcg ttggtgtctc tgttccacag cgtaagtccg agcctgtgct ggtgtcaact 660
gatgagcatc cacgtgctga cactactgtt gagtcactgg ccaagctgaa ggccatccgt 720
gcatccatcg atcctgagtc cactgtcact gctggcaatg catctggaca gaacgatggt 780
gcagcaatcg caatcgtgac tactcctgag aaggctgctg cactgggact tcgtccactt 840
gcacgtcttg catcatgggg tgttgctggt gttgcaccac gtactatggg catcggacct 900
gttcctgcat ctgagaaggc acttggacgt cttggactga ctcttgatga catgggtgtg 960
atcgaactga acgaagcatt cgctgcacag gcactggctg tgactcgttc atggggtatc 1020
gagtctgatg atccacgtct gaacccacat ggttctggca tctcacttgg acatcctgtt 1080
ggtgctactg gtgcacgtat ccttgccact ctgcttcgtg agatggatcg tcgtgaagtt 1140
cgttacggac tggagaccat gtgcattggt ggtggacagg gacttgctgc tgtcttcgaa 1200
cgtctgtcat aa 1212
<210> 4
<211> 249
<212> PRT
<213> artifical synthesize
<400> 4
Met Val Asn Lys Val Phe Ala Thr Ala Ala Glu Ala Val Ala Asp Val
1 5 10 15
Pro Asp Gly Ala Ser Leu Ala Val Gly Gly Phe Gly Leu Val Gly Ile
20 25 30
Pro Ser Val Leu Ile Asp Ala Leu Leu Ala Gln Gly Ala Thr Asp Leu
35 40 45
Glu Thr Val Ser Asn Asn Cys Gly Thr Asp Gly Phe Gly Leu Gly Leu
50 55 60
Leu Leu Glu Gln His Arg Ile Arg Arg Thr Ile Ser Ser Tyr Val Gly
65 70 75 80
Ala Asn Lys Glu Phe Ala Arg Gln Tyr Leu Ser Gly Glu Leu Glu Val
85 90 95
Glu Leu Thr Pro Gln Gly Thr Leu Ala Glu Arg Met Arg Ala Gly Gly
100 105 110
Ala Gly Ile Pro Ala Phe Tyr Thr Pro Ala Gly Val Gly Thr Gln Val
115 120 125
Ala Asp Gly Gly Leu Pro Ile Arg Tyr Asp Gly Gln Gly Gly Ile Ala
130 135 140
Val Ala Ser Lys Pro Lys Glu Thr Arg Glu Phe Asp Gly Glu Ala Phe
145 150 155 160
Val Leu Glu Arg Ala Ile Arg Thr Asp Phe Ala Leu Val His Ala Trp
165 170 175
Lys Gly Asp Arg Leu Gly Asn Leu Val Tyr Arg Glu Thr Ala Arg Asn
180 185 190
Phe Asn Pro Asp Ala Ala Gly Ala Gly Arg Ile Thr Ile Ala Gln Val
195 200 205
Glu Tyr Leu Val Glu Pro Gly Glu Ile Asp Pro Ala Glu Val His Thr
210 215 220
Pro Gly Ile Phe Val Gln Arg Val Val Glu Val Gly Lys Gln Glu Thr
225 230 235 240
Gly Ile Glu Asn Arg Thr Val Arg Ala
245
<210> 5
<211> 213
<212> PRT
<213> artifical synthesize
<400> 5
Met Ser Trp Thr Arg Asp Glu Met Ala Ala Arg Val Ala Ala Glu Leu
1 5 10 15
Glu Asp Gly Gln Tyr Val Asn Leu Gly Ile Gly Met Pro Thr Leu Ile
20 25 30
Pro Gly His Ile Pro Ala Gly Lys Asp Val Ile Leu His Ser Glu Asn
35 40 45
Gly Ile Leu Gly Val Gly Pro Tyr Pro Thr Asp Asp Glu Val Asp Pro
50 55 60
Glu Leu Ile Asn Ala Gly Lys Glu Thr Ile Thr Val Val Pro Gly Gly
65 70 75 80
Ala Phe Phe Ser Ser Ser Asp Ser Phe Ser Met Ile Arg Gly Gly Ser
85 90 95
Val Asp Val Ala Val Leu Gly Ala Met Gln Val Ser Ser His Gly Asp
100 105 110
Leu Ser Asn Trp Met Val Pro Gly Ala Met Val Lys Gly Met Gly Gly
115 120 125
Ala Met Asp Leu Val His Gly Ala Gly Lys Val Ile Val Met Met Asp
130 135 140
His Val Thr Lys Lys Gly Glu His Lys Ile Leu Glu Glu Cys Thr Leu
145 150 155 160
Pro Tyr Thr Gly Lys Arg Cys Val Gln Lys Ile Val Thr Asp Leu Ala
165 170 175
Val Ile Asp Val Thr Pro Asp Gly Leu Arg Leu Val Glu Thr Ala Pro
180 185 190
Gly His Ser Val Glu Asp Val Gln Ala Ala Thr Gly Ala Thr Leu Leu
195 200 205
Val Asp Ala Thr Val
210
<210> 6
<211> 403
<212> PRT
<213> artifical synthesize
<400> 6
Met Pro Glu Ala Val Ile Cys Glu Pro Leu Arg Thr Pro Val Gly Arg
1 5 10 15
Phe Gly Gly Gln Phe Arg Asp Ile Ser Ala Gln Ala Leu Ala Ala Thr
20 25 30
Val Ile Thr Glu Leu Val Ala Arg Thr Gly Ile Ser Gly Ala Asp Ile
35 40 45
Asp Asp Val Ile Leu Gly Gln Ala Ser Pro Asn Gly Asp Ala Pro Ala
50 55 60
Ile Gly Arg Ile Ala Ala Leu Asp Ala Asp Leu Gly Ile Asp Val Pro
65 70 75 80
Gly Met Gln Ile Asp Arg Arg Cys Gly Ser Gly Leu Gln Ala Val Leu
85 90 95
Gln Ala Cys Met Gln Val Gln Ser Gly Gly Asn Asp Leu Val Leu Ala
100 105 110
Gly Gly Val Glu Ser Met Ser Gln Thr Glu Phe Tyr Ala Thr Gly Met
115 120 125
Arg Trp Gly Val Lys Ala Glu Ala Val Ala Leu Ser Asp Arg Leu Ala
130 135 140
Arg Ala Arg Val Thr Ala Gly Gly Lys Asn Phe Pro Val Pro Gly Gly
145 150 155 160
Met Ile Glu Thr Ala Glu Asn Leu Arg Gln Glu Phe Ser Ile Ser Arg
165 170 175
Ala Asp Gln Asp Ala Leu Ala Val Gln Ser His Arg Arg Ala Val Ala
180 185 190
Ala Gln Asn Ser Gly Val Phe Ala Glu Glu Ile Val Gly Val Ser Val
195 200 205
Pro Gln Arg Lys Ser Glu Pro Val Leu Val Ser Thr Asp Glu His Pro
210 215 220
Arg Ala Asp Thr Thr Val Glu Ser Leu Ala Lys Leu Lys Ala Ile Arg
225 230 235 240
Ala Ser Ile Asp Pro Glu Ser Thr Val Thr Ala Gly Asn Ala Ser Gly
245 250 255
Gln Asn Asp Gly Ala Ala Ile Ala Ile Val Thr Thr Pro Glu Lys Ala
260 265 270
Ala Ala Leu Gly Leu Arg Pro Leu Ala Arg Leu Ala Ser Trp Gly Val
275 280 285
Ala Gly Val Ala Pro Arg Thr Met Gly Ile Gly Pro Val Pro Ala Ser
290 295 300
Glu Lys Ala Leu Gly Arg Leu Gly Leu Thr Leu Asp Asp Met Gly Val
305 310 315 320
Ile Glu Leu Asn Glu Ala Phe Ala Ala Gln Ala Leu Ala Val Thr Arg
325 330 335
Ser Trp Gly Ile Glu Ser Asp Asp Pro Arg Leu Asn Pro His Gly Ser
340 345 350
Gly Ile Ser Leu Gly His Pro Val Gly Ala Thr Gly Ala Arg Ile Leu
355 360 365
Ala Thr Leu Leu Arg Glu Met Asp Arg Arg Glu Val Arg Tyr Gly Leu
370 375 380
Glu Thr Met Cys Ile Gly Gly Gly Gln Gly Leu Ala Ala Val Phe Glu
385 390 395 400
Arg Leu Ser

Claims (4)

1.人工优化后的β-酮己二酸利用相关的三个基因,其特征在于,这三个基因的核苷酸序列分别如SEQ ID No 1、SEQ ID No 2和SEQ ID No 3所示。
2.根据权利要求1所述的三个基因的核苷酸序列,其特征在于,其编码的蛋白质的氨基酸序列如SEQ ID No 4、SEQ ID No 5和SEQ ID No 6所示。
3.根据权利要求1所述的三个基因的核苷酸序列构建大肠杆菌表达载体pET-pca,其特征在于,每段基因序列均与T7启动子和终止子相连组成一个表达单元,将三个表达单元串连插入表达载体。
4.根据权利要求3所述的大肠杆菌表达载体,其特征在于,该载体转化大肠杆菌后,阳性菌株将β-酮己二酸完全降解且以β-酮己二酸为碳源生长。
CN202010742556.3A 2020-07-29 2020-07-29 β-酮己二酸代谢相关三个基因的结构优化与应用 Active CN111662892B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010742556.3A CN111662892B (zh) 2020-07-29 2020-07-29 β-酮己二酸代谢相关三个基因的结构优化与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010742556.3A CN111662892B (zh) 2020-07-29 2020-07-29 β-酮己二酸代谢相关三个基因的结构优化与应用

Publications (2)

Publication Number Publication Date
CN111662892A true CN111662892A (zh) 2020-09-15
CN111662892B CN111662892B (zh) 2022-07-01

Family

ID=72392802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010742556.3A Active CN111662892B (zh) 2020-07-29 2020-07-29 β-酮己二酸代谢相关三个基因的结构优化与应用

Country Status (1)

Country Link
CN (1) CN111662892B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112322640A (zh) * 2020-11-09 2021-02-05 上海市农业科学院 一种在大肠杆菌中表达并降解4-氟苯酚的基因组及其应用
CN114703222A (zh) * 2022-03-15 2022-07-05 上海市农业科学院 一种可完全降解多环芳烃植物的培育方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010132845A1 (en) * 2009-05-15 2010-11-18 Genomatica, Inc. Organisms for the production of cyclohexanone
CN102892893A (zh) * 2009-03-11 2013-01-23 帝斯曼知识产权资产管理有限公司 α-酮庚二酸的制备
US20150044755A1 (en) * 2012-01-30 2015-02-12 Myriant Corporation Production of muconic acid from genetically engineered microorganisms
CN109468331A (zh) * 2018-11-17 2019-03-15 上海市农业科学院 人工优化的双亚基苯酚羟化酶基因及其应用
CN109517833A (zh) * 2018-11-17 2019-03-26 上海市农业科学院 邻苯二酚降解相关四个基因的优化重组与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892893A (zh) * 2009-03-11 2013-01-23 帝斯曼知识产权资产管理有限公司 α-酮庚二酸的制备
WO2010132845A1 (en) * 2009-05-15 2010-11-18 Genomatica, Inc. Organisms for the production of cyclohexanone
US20150044755A1 (en) * 2012-01-30 2015-02-12 Myriant Corporation Production of muconic acid from genetically engineered microorganisms
CN109468331A (zh) * 2018-11-17 2019-03-15 上海市农业科学院 人工优化的双亚基苯酚羟化酶基因及其应用
CN109517833A (zh) * 2018-11-17 2019-03-26 上海市农业科学院 邻苯二酚降解相关四个基因的优化重组与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CP049344.1: "Sulfitobacter pontiacus strain S1704 chromosome", 《GENBANK》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112322640A (zh) * 2020-11-09 2021-02-05 上海市农业科学院 一种在大肠杆菌中表达并降解4-氟苯酚的基因组及其应用
CN114703222A (zh) * 2022-03-15 2022-07-05 上海市农业科学院 一种可完全降解多环芳烃植物的培育方法
CN114703222B (zh) * 2022-03-15 2024-02-02 上海市农业科学院 一种可完全降解多环芳烃植物的培育方法

Also Published As

Publication number Publication date
CN111662892B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
JP5468680B2 (ja) 新規なアルファ−ネオアガロビオース加水分解酵素及びそれを用いた単糖類の獲得方法
CN109182284B (zh) 一种7β-羟基类固醇脱氢酶突变体、编码序列、重组表达载体、基因工程菌及应用
CN111662892B (zh) β-酮己二酸代谢相关三个基因的结构优化与应用
CN110551771B (zh) 一种手性3-氨基-1-丁醇的合成方法
Javidpour et al. Investigation of proposed ladderane biosynthetic genes from anammox bacteria by heterologous expression in E. coli
CN110373370B (zh) 一种耦合atp再生系统的催化体系及其在生产谷胱甘肽过程中的应用
CN109055324B (zh) 一种改进的酮还原酶及其应用
Pan et al. Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO 2 valorization
US20220049235A1 (en) Engineering Bacteria for Ferulic Acid Production, Preparation Method and Use Thereof
He et al. Metabolic engineering of Zymomonas moblis for ethylene production from straw hydrolysate
WO2023035527A1 (zh) 用于生产橄榄醇和橄榄醇酸的工程化微生物
WO2023035396A1 (zh) 橄榄醇合成酶变体和表达其的工程化微生物
du Toit et al. Expression of alternative nitrogenases in Rhodopseudomonas palustris is enhanced using an optimized genetic toolset for rapid, markerless modifications
CN104480127B (zh) 超嗜热糖苷酶突变体及其在人参皂苷ck制备中的应用
CN113122563B (zh) 构建r-3-氨基丁酸生产菌的方法
CN107513525B (zh) 一种d-扁桃酸脱氢酶、基因、基因工程菌及其应用
KR20160111947A (ko) 재조합 미생물의 생산 방법
CN111808871B (zh) 3-氯邻苯二酚降解基因簇的优化重组与应用
CN111850024B (zh) 4-氯邻苯二酚降解基因簇的优化重组与应用
CN101037686A (zh) 用pHsh表达系统制备重组耐热性木糖/葡萄糖异构酶的方法
CN114174506A (zh) 芳樟醇合酶
CN114317631B (zh) 单胺氧化酶在制备托品酮中的应用
Li et al. The expression of NOX from synthetic promoters reveals an important role of the redox status in regulating secondary metabolism of Saccharopolyspora erythraea
CN108795833A (zh) 乙酸CoA转移酶缺陷型大肠杆菌工程菌及其应用
CN114525266B (zh) 一种来源于南极细菌的磷脂酶d突变体及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant