CN111850024B - 4-氯邻苯二酚降解基因簇的优化重组与应用 - Google Patents

4-氯邻苯二酚降解基因簇的优化重组与应用 Download PDF

Info

Publication number
CN111850024B
CN111850024B CN202010742557.8A CN202010742557A CN111850024B CN 111850024 B CN111850024 B CN 111850024B CN 202010742557 A CN202010742557 A CN 202010742557A CN 111850024 B CN111850024 B CN 111850024B
Authority
CN
China
Prior art keywords
ala
leu
gly
glu
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010742557.8A
Other languages
English (en)
Other versions
CN111850024A (zh
Inventor
王波
姚泉洪
彭日荷
田永生
高建杰
许晶
付晓燕
韩红娟
李振军
王丽娟
张福建
邓永东
张文慧
黄悠楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Academy of Agricultural Sciences
Original Assignee
Shanghai Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Academy of Agricultural Sciences filed Critical Shanghai Academy of Agricultural Sciences
Priority to CN202010742557.8A priority Critical patent/CN111850024B/zh
Publication of CN111850024A publication Critical patent/CN111850024A/zh
Application granted granted Critical
Publication of CN111850024B publication Critical patent/CN111850024B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/02Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by biological methods, i.e. processes using enzymes or microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)
    • C12Y505/01007Chloromuconate cycloisomerase (5.5.1.7)
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种优化后适用于大肠杆菌表达的4‑氯邻苯二酚降解相关的基因簇及其应用。该基因簇包含四个基因,每个基因都由独立的T7启动子和终止子控制,其核苷酸序列分别如SEQ ID No 1、SEQ ID No 2、SEQ ID No 3和SEQ ID No 4所示,其编码的蛋白质的氨基酸序列分别如SEQ ID No 5、SEQ ID No 6、SEQ ID No 7和SEQ ID No 8所示。本发明优化合成的基因能够在大肠杆菌中成功表达,表达这个基因簇的大肠杆菌不仅能够降解4‑氯邻苯二酚,还能够降解邻苯二酚和3‑氯邻苯二酚,因此该基因簇可用于制备降解邻苯二酚,3‑氯邻苯二酚和4‑氯邻苯二酚的微生物。

Description

4-氯邻苯二酚降解基因簇的优化重组与应用
技术领域
本发明属于基因工程领域,具体涉及结构优化的、包含4-氯邻苯二酚降解相关四个基因的基因簇序列。
背景技术
随着化学工业的高速发展,人工合成的各种自然界中本不存在的有机物日益增多。氯代芳香族化合物是由芳香烃及其衍生物上的一个或几个氢原子被氯原子取代后生成的,主要包括氯苯、氯酚、多氯联苯等。它们广泛应用于工农业生产过程中,但也不可避免的会进入环境造成污染。它们大多具有毒性,对生物具有致癌、致畸、致突变作用,是一类重要的环境污染物。
微生物对外来化合物的降解或转化具有巨大的应用潜力。由于氯代芳香族化合物多为人工合成,自然界中的微生物缺乏降解相关的酶。但它们通过长期的自然驯化,通过遗传变异,逐渐改变自身特性、适应外部环境的变化,产生新的酶系来获得新的代谢功能,因此引起了国内外研究者的广泛兴趣。通过生物处理将有毒物质转化为无毒物质,投资少、成本低、且无二次污染是近年来污染修复相关研究的热点。
研究发现,微生物对氯代芳香族化合物的降解,受氯原子取代的位置和数量影响,降解途径也存在明显差异,而部分氯代芳香族化合物的降解都能够先通过不同的代谢途径转化为3-氯邻苯二酚或4-氯邻苯二酚,再经过相同或相似的途径打开苯环,最终进入三羧酸循环为微生物所利用。例如,有研究发现,4-氯邻苯二酚是一种伯克氏菌(Burkholderiasp. RKJ 800)降解4-氯,2-氨基酚途径中的重要中间代谢产物(Environ Sci Pollut ResInt, 21(2014) :2298-2304)。
虽然,不断有新的能够降解氯代芳香族化合物的微生物被分离与鉴定。但面对复杂多样的生物修复需求,可供选择的降解微生物仍十分有限。通过生物技术手段,有目的的改造合适的微生物,使它们获得相应的生物修复能力,是一种可行的解决方案。为高效降解氯代芳香族化合物、修复污染场地、开发新的有机污染生物控制技术奠定技术基础。
发明内容
本发明所要解决的技术问题在于提供能够在大肠杆菌中表达的4-氯邻苯二酚降解基因簇,包含四个相关基因:
ccaA基因,编码氯代邻苯二酚1,2双加氧酶;
ccaB基因,编码氯代粘康酸环异构酶;
ccaC基因,编码二烯内酯水解酶;
ccaD基因,编码己烯二酸还原酶。
基于假单胞菌属Pseudomonas reinekei菌原始基因簇GenBank no. EF159980.1(全长5129bp),该基因簇包含4个结构基因和1个转录因子基因,结构基因所编码的酶可以将4-氯邻苯二酚降解为β-酮己二酸。我们首先去除非编码序列及一个转录因子基因,只保留4个结构基因,缩短了序列长度、降低遗传操作的难度。针对ccaAccaBccaCccaD四个结构基因,对其进行结构优化与重组并分别连接上独立的T7启动子和终止子调控其表达。基因的结构优化遵循以下原则:(一)优化基因密码子,提高基因翻译效率。(二)消除基因内部的常用限制性内切酶的识别位点,便于表达盒构建。(三)消除逆向重复序列、茎环结构和转录终止信号,使基因内部的GC/AT均衡,提高RNA的稳定性。(四)使基因编码蛋白符合N端原则,以提高翻译蛋白的稳定性。(五)优化mRNA二级结构自由能,以提高基因表达效率。
所述经优化的4-氯邻苯二酚降解相关四个基因的核苷酸序列如SEQ ID No 1、SEQID No 2、SEQ ID No 3和SEQ ID No 4所示。每个基因两端分别边上T7启动子与终止子,完整序列两端分别连接EcoRⅠ和HindⅢ酶切位点,全长序列由生工生物工程(上海)有限公司合成。
将合成的基因片段经EcoRⅠ和Hind Ⅲ双酶切后,连入相同酶切的载体pET-28a,得到重组质粒pET-cca(参见图1),并将其转化大肠杆菌BL21(DE3),得到阳性株系BL-cca
阳性菌株在100毫升M9(含1%甘油和50μg/ml卡那霉素)液体培养中37℃摇菌24小时,离心去上清,菌体用10毫升M9(含1%甘油、0.2%阿拉伯糖、50μg/ml卡那霉素和1mM IPTG)液体培养基重悬,向其中添加1mM的邻苯二酚、3-氯邻苯二酚和4-氯邻苯二酚,结果证明阳性菌株能够有效去除培养基中的这三种底物。
有益效果:
本发明优化并合成了包含四个相关基因的4-氯邻苯二酚降解基因簇,并能在大肠杆菌中成功表达。阳性菌株能够有效去除培养基中的邻苯二酚、3-氯邻苯二酚和4-氯邻苯二酚,经本发明优化后的基因簇可用于制备降解邻苯二酚、3-氯邻苯二酚和4-氯邻苯二酚的微生物。在环境修复等领域具有应用潜力。
附图说明:
图1为用于在大肠杆菌中表达4-氯邻苯二酚降解基因簇的载体示意图。
图2为阳性株系对不同底物的降解效果。
图3 为培养基中终产物β-酮己二酸的GC-MS检测。
具体实施方式:
下面结合具体实施方式来进一步阐述本发明。实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明的技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
本发明实施中未注明的实验方法,如连接、转化、相关培养基的配制等参照分子克隆实验指南第三版(黄培堂等译,中国,科学出版社,2002)中方法进行。所用大肠肝菌由上海市农业科学院生物技术研究所植物基因工程研究室保存,各类限制性内切酶、连接酶等购自上海皓嘉公司。未注明的化学药品为分析纯级,购自生工生物工程(上海)股份公司或上海国药集团有限公司。
实施例 1
4-氯邻苯二酚降解相关四个基因ccaAccaBccaCccaD的优化设计与合成
基于假单胞菌属Pseudomonas reinekei原始基因簇GenBank no. EF159980.1中的四个结构基因ccaAccaBccaCccaD基因,按以下原则进行结构优化:(一)优化基因密码子,提高基因翻译效率。(二)消除基因内部的常用限制性内切酶的识别位点,便于表达盒构建。(三)消除逆向重复序列、茎环结构和转录终止信号,使基因内部的GC/AT均衡,提高RNA的稳定性。(四)使基因编码蛋白符合N端原则,以提高翻译蛋白的稳定性。(五)优化mRNA二级结构自由能,以提高基因表达效率。并为每个基因两端分别边上T7启动子与终止子,完整序列两端分别连接EcoRⅠ和HindⅢ酶切位点。
实施例 2
大肠杆菌表达载体的构建与转化
将合成的基因片段经EcoRⅠ和HindⅢ双酶切后,连入相同酶切的载体pET-28a,得到重组质粒pET-cca。并将其通过热激转化大肠杆菌BL21(DE3),在涂布在加有卡那霉素抗性的固体2YT平板上,37℃过夜培养后得到阳性克隆。对阳性克隆中的质粒进行酶切和DNA序列测定确定基因序列完整性和正确性。
实施例 3
阳性菌株对邻苯二酚、3-氯邻苯二酚和4-氯邻苯二酚的降解作用
阳性菌株接菌于100毫升M9液体培养中(含1%甘油和50μg/ml卡那霉素),37℃摇菌24小时(150rpm),离心去上清,菌体用灭菌的蒸馏水洗一遍,之后用10毫升M9液体培养基重悬(含1%甘油、0.2%阿拉伯糖、50μg/ml卡那霉素和1mM IPTG),向其中添加1mM的4-氯邻苯二酚,37℃摇菌处理,不同时间取菌液,通过HPLC检测培养基中残余的4-氯邻苯二酚含量(参见图2)。并对终产物β-酮己二酸进行GC-MS检测(参见图3)。同时,检测阳性菌株对邻苯二酚和3-氯邻苯二酚的降解能力(参见图2)。
培养基中邻苯二酚、3-氯邻苯二酚和4-氯邻苯二酚的HPLC检测方法:
不同时间取500μL发酵液,12000rpm离心1分钟后取上清,过滤后经HPLC检测。
安捷伦1100高效液相色谱系统;C18柱(120Å,4.6×150mm,5μm);流动相为10mM 磷酸溶液:乙腈=50:50,流速为1 ml/min;柱温为30℃;检测波长为203 nm;进样量为20 μL。
培养基中β-酮己二酸的GC-MS检测方法:
取10mL发酵液,使用液氮冻融的方法将细胞破壁,超声波提取后,离心取上清液,冻干后加入衍生化试剂BSTFA,60℃下衍生半小时,待GC-MS检测。
气相色谱-质谱联用仪(GC-MS/MS,7890B-7000C,美国Agilent公司);HP-5 MS毛细管柱(30m×0.25mm×0.25μm,美国Agilent公司);真空干燥箱(上海一恒科学仪器有限公司);超声机(上海一恒科学仪器有限公司)、氮吹仪(上海安谱科技有限公司)、超纯水系统(美国Merck Millipore 公司)。
色谱条件:色谱柱:Agilent HP-5 MS毛细管柱(30 m×0.25 mm×0.25 µm);载气He(99.999%),流速1.0mL/min;进样口温度290 ℃;升温程序:100 ℃以40 ℃/min升至160℃,再以10 ℃/min升至250 ℃,最后以20 ℃/min升至300 ℃;进样量1.0 μL,分流比50:1。
GC-MS质谱分析条件:电子轰击离子源(EI),电离能量70 eV;全扫描(scan)模式,扫描范围m/z:50 ~ 400;离子源温度230 ℃,四级杆温度150 ℃,接口温度300℃。
序列表
<110> 上海市农业科学院
<120> 4-氯邻苯二酚降解基因簇的优化重组与应用
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 786
<212> DNA
<213> artifical synthesize
<400> 1
atggcagttt cacgtttggc agaacttgtg actgcactgg agtctgacct gctggacttc 60
atgcgtcgtc atcgtgtgtc acatgatgag tatcgtgctg caactgactt gatcatcgac 120
tccatcaaga agggtgaaga gtcactgctg ttcgacgtgt tcttcgaggc acaggcaact 180
gacacctcca acatcggtcg tcaaggttca cctgaggcaa tcgaaggtcc attctacttc 240
gaaggtgcac cactgctgtc atcacctgct gtgatgccac aacgtcctga cgaacctggt 300
gacatcctgt tcttcaaggg tcatgtgtct gatgcacaag gtaacgctgt tgctgagatg 360
gagatcgatc tgtggcacgc tgatgctgaa ggtctgtact cacagatcca tcctggtatc 420
ccacacttca accttcgtgg tcgtttccac accaacgatc agggtgactt cgaggtgaag 480
actatcctgc caccaccata cgagatccct aagtctggtc ctactggtta cgtgcttggt 540
cagctgggtc gtcactactt ccgtcctgca catctgcaca tgaagctgcg tcatcctaag 600
catcatgaga tgacctcaca gctgtacttc tctggtggtg agtacctgga gactgacgtt 660
gctaacgctg ttcgtgaagg tttgattggt gaactggttc acgtgactga cactgctgag 720
atcgcacgtc gtggtctgtg caagccattc tacatctacc gttacgactt cgagatgcct 780
gcataa 786
<210> 2
<211> 1134
<212> DNA
<213> artifical synthesize
<400> 2
atgtcacagg gtttcgtgat tggtcgtgtt cttgcacaac gtctggacat cccattctca 60
cagcctatcc gtatgtcatt cggtactctt gatcgtctga acctgcttct ggttcgtctg 120
atcgatgaga atggtatcga aggtgttggt gaagcaactg tgatgggtgg tccatactgg 180
ggtggtgagt ctatcgaagc tgttgaagca gcagtggtga agtacctggg tccacagctg 240
atcggtcaac gtttccgtgg tctggaagag ttctcatacc gtctgtccaa gaccgtgaag 300
ggtaacgcag ctgcacgttc tgcactggag atggcagcat tcgacctggt tggtaagcag 360
ctgggtgtgt ctgcatcagc actgctgggt ggtcgttgtc gtgaccgtct tcaggttgca 420
tggactctgt caactggttc tgaaggtggt gacatcgctg aaggtgaacg tgcaatccaa 480
gcacgtggtc acactcgttt caagctgaag ttcggttctg gtgatcctga cgctgagttg 540
ttgcgtgttg ctggtatcgc tgaggcattc cgtggtcgtg catccatcat cctggacatc 600
aaccagggtt gggatctggg tactgcactg cgttacttcc ctgtgctgga agaagctggt 660
gttgagtgca ttgaacaacc actggcagca cttgacctgc atggtgcagc acgtctgaag 720
gcatcaacct caatggagat catcgctgat gaggtgttga ctgatctgcg ttctgcattc 780
gaagttgcaa ctgccaacgc tgcatctgcc gtgtcactga agcctaaccg tgatggtggt 840
atgctggctg ctaagcgtgt tgcaactgtt gcatctgcat ctggtctgaa aatctacggt 900
ggtactgcac tggagtcatc actgggtact gctgcatctg cactgatcta cgcatcactg 960
ccatcactgc aactgggtac tgaactgttc ggtccactgc gtcttcaggc tgacatcgtg 1020
aaggcaccac tgcttcctat cgatggtcac ttggacgtgc ctactggtga aggtcttggt 1080
gtggttctgg atgaagacct gatccgttca ctgtctgtgg acgtgctgca ctaa 1134
<210> 3
<211> 1011
<212> DNA
<213> artifical synthesize
<400> 3
atgactgaca cttctaagtc acttccaact tacaagcagc tgctggaacg taaggatgca 60
ccacctggtt catcatgggg tctgttcggt aaggacgatc aggttggtac tctgaacctg 120
attgacaatg ctgcacgtct gcgtggtatc gcatctgctg ttgaaggtaa ggcattctca 180
ctggacttgc catccacttc catctaccca tcactggcac ctactcgtaa gcctatcact 240
catcacatct tccaacgtaa cgacttccat catgatgagt ggctggacaa cttctacact 300
cagtatggtt cacagatcga tggtctgcgt cacatcggtc atcctgagta cggtttctac 360
aacggttacg accacactca gttcaagcct ggtactgata ctctgtcaat ccatcacttc 420
gctgcacttc ctattgctac tcgtggtgtg ttgatcgatg tgcagcgtta catggctaag 480
gcaggtctgg atcttgatca agcatctggt caggcaatct cagcacaagt gctggaggct 540
gcacgtgtgt cacaaggtgt gactatcgaa cctggtgatg ctgtgatcat ccgtttcggt 600
tggctggact actacctgaa ccgtgcatct gaagaagcac gtaccaacct ggtgactgaa 660
cagttccatc ctggtctgga gcagtctgag aagactctgg catggctgtg ggacaatcgt 720
atctctatca tcgctgctga caacttcgca ctggagtgct ggcctgctaa gcctgaatca 780
ccattcttca ctccagcaga ggttcgtcat gaggcttgct ctgttcatgc tggtatcatg 840
caccgtgcaa tcatcccact gttgggtatg ccaatcggtg aactgtgggc aatcgatgca 900
ctggcagaag catgtgctgc tgatggtcgt tacactttca tgctgactgc tgcaccactt 960
ccaatcgttg gtggtgtggg ttcaccagca aacgcaatcg caatccgtta a 1011
<210> 4
<211> 921
<212> DNA
<213> artifical synthesize
<400> 4
atggaagcac tgaaggaagt gattggtgct aacgctgttg cactgttcga tggtgcagct 60
atgcatactc ctgttgctgt gactgaacaa gcaatggcaa tcgtggcaca gctggacatc 120
gatggtgttg tgggtcttgg tggtggttca tccatcggtc tgtccaaggc aatcgcattc 180
cgtactggtc ttccacagat cgttgtgcct actacttact ctggttctga gatgactgca 240
atcctgggtg agactcaaga cggtctgaag atcaccaagt ctgacccacg tatccgtcct 300
gagactgtga tctacgacgt tgagctgacc actactctgc ctgtggacat ctctgtgact 360
tctggtatga acgcaatcgc acatgctgtg gaagcactgt atgcacacga caccaaccct 420
gtgattgcag cactggctga agagggtgtt cgttcactgg ctgctgcact gcctaagctg 480
gctaagtcac ctgacaacat ctctgcacgt gagcaggcac tgtatggttc atggctgtgt 540
ggtatctgcc tgggttccac tgcaatggca atccaccaca agctgtgtca tactctgggt 600
ggtactttcg atctgccaca tgcacctact cacactgcac tgctgccaca tgcactggca 660
tacaacgctg gtcatgcacc tcaagctatc gaacgtctga agcgtgcact gaaccatgac 720
aaccctgctg ttgcactgtt cgatctggca cagtcacttg gtgctgagat gtcactgaag 780
aacctgggta tgcctgaaga aggtatcgac cgtgcaaccg atcttgcatt caagaacgtg 840
tatcctaacc cacgtcgtct tgagcctgaa ggtgttcgtc aagtgatctc tgacgcatgg 900
aacggtaagc gtcctgcata a 921
<210> 5
<211> 261
<212> PRT
<213> artifical synthesize
<400> 5
Met Ala Val Ser Arg Leu Ala Glu Leu Val Thr Ala Leu Glu Ser Asp
1 5 10 15
Leu Leu Asp Phe Met Arg Arg His Arg Val Ser His Asp Glu Tyr Arg
20 25 30
Ala Ala Thr Asp Leu Ile Ile Asp Ser Ile Lys Lys Gly Glu Glu Ser
35 40 45
Leu Leu Phe Asp Val Phe Phe Glu Ala Gln Ala Thr Asp Thr Ser Asn
50 55 60
Ile Gly Arg Gln Gly Ser Pro Glu Ala Ile Glu Gly Pro Phe Tyr Phe
65 70 75 80
Glu Gly Ala Pro Leu Leu Ser Ser Pro Ala Val Met Pro Gln Arg Pro
85 90 95
Asp Glu Pro Gly Asp Ile Leu Phe Phe Lys Gly His Val Ser Asp Ala
100 105 110
Gln Gly Asn Ala Val Ala Glu Met Glu Ile Asp Leu Trp His Ala Asp
115 120 125
Ala Glu Gly Leu Tyr Ser Gln Ile His Pro Gly Ile Pro His Phe Asn
130 135 140
Leu Arg Gly Arg Phe His Thr Asn Asp Gln Gly Asp Phe Glu Val Lys
145 150 155 160
Thr Ile Leu Pro Pro Pro Tyr Glu Ile Pro Lys Ser Gly Pro Thr Gly
165 170 175
Tyr Val Leu Gly Gln Leu Gly Arg His Tyr Phe Arg Pro Ala His Leu
180 185 190
His Met Lys Leu Arg His Pro Lys His His Glu Met Thr Ser Gln Leu
195 200 205
Tyr Phe Ser Gly Gly Glu Tyr Leu Glu Thr Asp Val Ala Asn Ala Val
210 215 220
Arg Glu Gly Leu Ile Gly Glu Leu Val His Val Thr Asp Thr Ala Glu
225 230 235 240
Ile Ala Arg Arg Gly Leu Cys Lys Pro Phe Tyr Ile Tyr Arg Tyr Asp
245 250 255
Phe Glu Met Pro Ala
260
<210> 6
<211> 377
<212> PRT
<213> artifical synthesize
<400> 6
Met Ser Gln Gly Phe Val Ile Gly Arg Val Leu Ala Gln Arg Leu Asp
1 5 10 15
Ile Pro Phe Ser Gln Pro Ile Arg Met Ser Phe Gly Thr Leu Asp Arg
20 25 30
Leu Asn Leu Leu Leu Val Arg Leu Ile Asp Glu Asn Gly Ile Glu Gly
35 40 45
Val Gly Glu Ala Thr Val Met Gly Gly Pro Tyr Trp Gly Gly Glu Ser
50 55 60
Ile Glu Ala Val Glu Ala Ala Val Val Lys Tyr Leu Gly Pro Gln Leu
65 70 75 80
Ile Gly Gln Arg Phe Arg Gly Leu Glu Glu Phe Ser Tyr Arg Leu Ser
85 90 95
Lys Thr Val Lys Gly Asn Ala Ala Ala Arg Ser Ala Leu Glu Met Ala
100 105 110
Ala Phe Asp Leu Val Gly Lys Gln Leu Gly Val Ser Ala Ser Ala Leu
115 120 125
Leu Gly Gly Arg Cys Arg Asp Arg Leu Gln Val Ala Trp Thr Leu Ser
130 135 140
Thr Gly Ser Glu Gly Gly Asp Ile Ala Glu Gly Glu Arg Ala Ile Gln
145 150 155 160
Ala Arg Gly His Thr Arg Phe Lys Leu Lys Phe Gly Ser Gly Asp Pro
165 170 175
Asp Ala Glu Leu Leu Arg Val Ala Gly Ile Ala Glu Ala Phe Arg Gly
180 185 190
Arg Ala Ser Ile Ile Leu Asp Ile Asn Gln Gly Trp Asp Leu Gly Thr
195 200 205
Ala Leu Arg Tyr Phe Pro Val Leu Glu Glu Ala Gly Val Glu Cys Ile
210 215 220
Glu Gln Pro Leu Ala Ala Leu Asp Leu His Gly Ala Ala Arg Leu Lys
225 230 235 240
Ala Ser Thr Ser Met Glu Ile Ile Ala Asp Glu Val Leu Thr Asp Leu
245 250 255
Arg Ser Ala Phe Glu Val Ala Thr Ala Asn Ala Ala Ser Ala Val Ser
260 265 270
Leu Lys Pro Asn Arg Asp Gly Gly Met Leu Ala Ala Lys Arg Val Ala
275 280 285
Thr Val Ala Ser Ala Ser Gly Leu Lys Ile Tyr Gly Gly Thr Ala Leu
290 295 300
Glu Ser Ser Leu Gly Thr Ala Ala Ser Ala Leu Ile Tyr Ala Ser Leu
305 310 315 320
Pro Ser Leu Gln Leu Gly Thr Glu Leu Phe Gly Pro Leu Arg Leu Gln
325 330 335
Ala Asp Ile Val Lys Ala Pro Leu Leu Pro Ile Asp Gly His Leu Asp
340 345 350
Val Pro Thr Gly Glu Gly Leu Gly Val Val Leu Asp Glu Asp Leu Ile
355 360 365
Arg Ser Leu Ser Val Asp Val Leu His
370 375
<210> 7
<211> 336
<212> PRT
<213> artifical synthesize
<400> 7
Met Thr Asp Thr Ser Lys Ser Leu Pro Thr Tyr Lys Gln Leu Leu Glu
1 5 10 15
Arg Lys Asp Ala Pro Pro Gly Ser Ser Trp Gly Leu Phe Gly Lys Asp
20 25 30
Asp Gln Val Gly Thr Leu Asn Leu Ile Asp Asn Ala Ala Arg Leu Arg
35 40 45
Gly Ile Ala Ser Ala Val Glu Gly Lys Ala Phe Ser Leu Asp Leu Pro
50 55 60
Ser Thr Ser Ile Tyr Pro Ser Leu Ala Pro Thr Arg Lys Pro Ile Thr
65 70 75 80
His His Ile Phe Gln Arg Asn Asp Phe His His Asp Glu Trp Leu Asp
85 90 95
Asn Phe Tyr Thr Gln Tyr Gly Ser Gln Ile Asp Gly Leu Arg His Ile
100 105 110
Gly His Pro Glu Tyr Gly Phe Tyr Asn Gly Tyr Asp His Thr Gln Phe
115 120 125
Lys Pro Gly Thr Asp Thr Leu Ser Ile His His Phe Ala Ala Leu Pro
130 135 140
Ile Ala Thr Arg Gly Val Leu Ile Asp Val Gln Arg Tyr Met Ala Lys
145 150 155 160
Ala Gly Leu Asp Leu Asp Gln Ala Ser Gly Gln Ala Ile Ser Ala Gln
165 170 175
Val Leu Glu Ala Ala Arg Val Ser Gln Gly Val Thr Ile Glu Pro Gly
180 185 190
Asp Ala Val Ile Ile Arg Phe Gly Trp Leu Asp Tyr Tyr Leu Asn Arg
195 200 205
Ala Ser Glu Glu Ala Arg Thr Asn Leu Val Thr Glu Gln Phe His Pro
210 215 220
Gly Leu Glu Gln Ser Glu Lys Thr Leu Ala Trp Leu Trp Asp Asn Arg
225 230 235 240
Ile Ser Ile Ile Ala Ala Asp Asn Phe Ala Leu Glu Cys Trp Pro Ala
245 250 255
Lys Pro Glu Ser Pro Phe Phe Thr Pro Ala Glu Val Arg His Glu Ala
260 265 270
Cys Ser Val His Ala Gly Ile Met His Arg Ala Ile Ile Pro Leu Leu
275 280 285
Gly Met Pro Ile Gly Glu Leu Trp Ala Ile Asp Ala Leu Ala Glu Ala
290 295 300
Cys Ala Ala Asp Gly Arg Tyr Thr Phe Met Leu Thr Ala Ala Pro Leu
305 310 315 320
Pro Ile Val Gly Gly Val Gly Ser Pro Ala Asn Ala Ile Ala Ile Arg
325 330 335
<210> 8
<211> 306
<212> PRT
<213> artifical synthesize
<400> 8
Met Glu Ala Leu Lys Glu Val Ile Gly Ala Asn Ala Val Ala Leu Phe
1 5 10 15
Asp Gly Ala Ala Met His Thr Pro Val Ala Val Thr Glu Gln Ala Met
20 25 30
Ala Ile Val Ala Gln Leu Asp Ile Asp Gly Val Val Gly Leu Gly Gly
35 40 45
Gly Ser Ser Ile Gly Leu Ser Lys Ala Ile Ala Phe Arg Thr Gly Leu
50 55 60
Pro Gln Ile Val Val Pro Thr Thr Tyr Ser Gly Ser Glu Met Thr Ala
65 70 75 80
Ile Leu Gly Glu Thr Gln Asp Gly Leu Lys Ile Thr Lys Ser Asp Pro
85 90 95
Arg Ile Arg Pro Glu Thr Val Ile Tyr Asp Val Glu Leu Thr Thr Thr
100 105 110
Leu Pro Val Asp Ile Ser Val Thr Ser Gly Met Asn Ala Ile Ala His
115 120 125
Ala Val Glu Ala Leu Tyr Ala His Asp Thr Asn Pro Val Ile Ala Ala
130 135 140
Leu Ala Glu Glu Gly Val Arg Ser Leu Ala Ala Ala Leu Pro Lys Leu
145 150 155 160
Ala Lys Ser Pro Asp Asn Ile Ser Ala Arg Glu Gln Ala Leu Tyr Gly
165 170 175
Ser Trp Leu Cys Gly Ile Cys Leu Gly Ser Thr Ala Met Ala Ile His
180 185 190
His Lys Leu Cys His Thr Leu Gly Gly Thr Phe Asp Leu Pro His Ala
195 200 205
Pro Thr His Thr Ala Leu Leu Pro His Ala Leu Ala Tyr Asn Ala Gly
210 215 220
His Ala Pro Gln Ala Ile Glu Arg Leu Lys Arg Ala Leu Asn His Asp
225 230 235 240
Asn Pro Ala Val Ala Leu Phe Asp Leu Ala Gln Ser Leu Gly Ala Glu
245 250 255
Met Ser Leu Lys Asn Leu Gly Met Pro Glu Glu Gly Ile Asp Arg Ala
260 265 270
Thr Asp Leu Ala Phe Lys Asn Val Tyr Pro Asn Pro Arg Arg Leu Glu
275 280 285
Pro Glu Gly Val Arg Gln Val Ile Ser Asp Ala Trp Asn Gly Lys Arg
290 295 300
Pro Ala
305

Claims (1)

1.人工优化后的基因簇,包含4-氯邻苯二酚降解相关的四个基因,其特征在于,这四个基因的核苷酸序列分别如SEQ ID No 1、SEQ ID No 2、SEQ ID No 3和SEQ ID No 4所示;
每段基因序列均与T7启动子和终止子相连组成一个表达单元,将四个表达单元串连插入表达载体;
所述载体转化大肠杆菌后,阳性菌株能够有效去除培养基中的4-氯邻苯二酚。
CN202010742557.8A 2020-07-29 2020-07-29 4-氯邻苯二酚降解基因簇的优化重组与应用 Active CN111850024B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010742557.8A CN111850024B (zh) 2020-07-29 2020-07-29 4-氯邻苯二酚降解基因簇的优化重组与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010742557.8A CN111850024B (zh) 2020-07-29 2020-07-29 4-氯邻苯二酚降解基因簇的优化重组与应用

Publications (2)

Publication Number Publication Date
CN111850024A CN111850024A (zh) 2020-10-30
CN111850024B true CN111850024B (zh) 2023-03-14

Family

ID=72944955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010742557.8A Active CN111850024B (zh) 2020-07-29 2020-07-29 4-氯邻苯二酚降解基因簇的优化重组与应用

Country Status (1)

Country Link
CN (1) CN111850024B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621520A (zh) * 2003-11-28 2005-06-01 中国科学院微生物研究所 2-氨基酚1,6-双加氧酶、其基因及用途
CN109517833A (zh) * 2018-11-17 2019-03-26 上海市农业科学院 邻苯二酚降解相关四个基因的优化重组与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621520A (zh) * 2003-11-28 2005-06-01 中国科学院微生物研究所 2-氨基酚1,6-双加氧酶、其基因及用途
CN109517833A (zh) * 2018-11-17 2019-03-26 上海市农业科学院 邻苯二酚降解相关四个基因的优化重组与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Characterization of a Gene Cluster Involved in 4-Chlorocatechol Degradation by Pseudomonas reinekei MT1;Beatriz Ca´mara et al;《JOURNAL OF BACTERIOLOGY》;20090831;第191卷(第15期);摘要,图6 *

Also Published As

Publication number Publication date
CN111850024A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
Rui et al. Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-1, 2-diol
van Hylckama Vlieg et al. Halohydrin dehalogenases are structurally and mechanistically related to short-chain dehydrogenases/reductases
Hossain et al. Metabolic engineering of Raoultella ornithinolytica BF60 for production of 2, 5-furandicarboxylic acid from 5-hydroxymethylfurfural
Addlesee et al. Physical mapping and functional assignment of the geranylgeranyl-bacteriochlorophyll reductase gene, bchP, of Rhodobacter sphaeroides
CN111979163B (zh) 一种重组罗氏真氧菌及其制备方法和应用
CN112342223A (zh) 一种在大肠杆菌中表达的有机磷水解酶基因组及其应用
CN112322640B (zh) 一种在大肠杆菌中表达并降解4-氟苯酚的基因组及其应用
CN112322639A (zh) 一种在大肠杆菌中表达的对硝基苯酚降解酶基因组及其应用
GB2473401A (en) Recombinant bacteria for producing deoxyviolacein and uses thereof
CN111778229B (zh) 环己烯甲酸酯水解酶及其突变体、编码基因、表达载体、重组菌与应用
EP2970953B1 (en) Improved surface display of functional proteins in a broad range of gram negative bacteria
CN112359046A (zh) 一种在大肠杆菌中表达的对苯二酚降解酶基因组及其应用
CN111662892B (zh) β-酮己二酸代谢相关三个基因的结构优化与应用
CN111850024B (zh) 4-氯邻苯二酚降解基因簇的优化重组与应用
CN110396507A (zh) 源自Cnuibacter physcomitrellae的L-泛解酸内酯脱氢酶
Hernáez et al. Identification of a serine hydrolase which cleaves the alicyclic ring of tetralin
Arif et al. Novel dehalogenase mechanism for 2, 3-dichloro-1-propanol utilization in Pseudomonas putida strain MC4
CN110607335B (zh) 一种烟酰胺腺嘌呤二核苷酸类化合物生物合成方法
CN111808871B (zh) 3-氯邻苯二酚降解基因簇的优化重组与应用
JP2019533481A (ja) プロリン水酸化酵素及びその応用
CN114214308B (zh) 一种经半理性改造提升活性的腈水解酶突变体
JPWO2017175694A1 (ja) アルギン酸リアーゼ及び当該酵素を用いる不飽和ウロン酸単糖の製造方法
Zhang et al. Determination of the second autoproteolytic cleavage site of cephalosporin C acylase and the effect of deleting its flanking residues in the α-C-terminal region
CN109182233B (zh) 一种多环芳烃降解工程菌及其工程改造方法和应用
CN107523580B (zh) 一种卤代对羟基苯甲酸氧化脱羧酶基因odcA及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant