CN111662085A - 基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法 - Google Patents

基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法 Download PDF

Info

Publication number
CN111662085A
CN111662085A CN202010387961.8A CN202010387961A CN111662085A CN 111662085 A CN111662085 A CN 111662085A CN 202010387961 A CN202010387961 A CN 202010387961A CN 111662085 A CN111662085 A CN 111662085A
Authority
CN
China
Prior art keywords
tungsten carbide
diamond
sample
ceramic
flash firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010387961.8A
Other languages
English (en)
Other versions
CN111662085B (zh
Inventor
胡春峰
范龙凤
付帅
索尔沃托瑞·格拉索
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202010387961.8A priority Critical patent/CN111662085B/zh
Publication of CN111662085A publication Critical patent/CN111662085A/zh
Application granted granted Critical
Publication of CN111662085B publication Critical patent/CN111662085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法,包括以下过程:以碳化钨粉末和金刚石颗粒为原料,在通风橱中将其混合均匀,得到金刚石质量分数在5%‑90%之间的碳化钨陶瓷混合物,滴加胶黏剂溶液,以至陶瓷混合物完全浸湿,待样品结成块状,胶黏剂溶液完全挥发后,将得到的块状样品置于模具环中,用手或冷压的方式将样品压至圆柱状,最大压力不超过100kg,保证陶瓷坯体取出后不松散;将制备好的陶瓷坯体放在电极表面的铜制坩埚中,开启工业水冷机,利用氩弧焊机在高纯氩气的保护下进行闪烧。

Description

基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备 方法
技术领域
本发明涉及含有金刚石的碳化钨陶瓷制备技术领域,具体涉及含有金刚石的碳化钨陶瓷及其制备方法。
背景技术
金刚石是自然界中目前已知的最硬的材料,因其优异的高硬度、耐磨性、良好的化学稳定性,而广泛应用于多种耐磨材料中,无论是在微加工还是大型的工业生产,都有所涉及。将金刚石和陶瓷基体紧密地结合在一起,获得致密的陶瓷体,是目前的研究热点。而且金刚石在高温下处于亚稳态,容易转变成石墨,这也成为研究中的一大难点。
1978年,Bakul等人采用高频感应电流源作为间接加热源,以提高加热速率,其速率可达到104°C/min。较高的加热速率防止了金刚石石墨化,并确保在保温过程中,WC-6Co/金刚石复合片的温度分布均匀。2011年,Salvatore Grasso等人利用放电等离子烧结炉,以较高的升温速率2000℃/min和较短的保温时间1.5min,成功制备出含有金刚石的碳化钨陶瓷。在这里,我们提供一种利用非接触式闪烧技术制出备含有金刚石的碳化钨陶瓷的方法,其升温速率可达到30000-48000/min,可有效防止金刚石的石墨化,并得到致密的陶瓷体。
发明内容
本发明提供一种利用非接触式闪烧技术制备出含有金刚石的碳化钨陶瓷的方法,在未来的超硬刀具材料及耐磨部件等方向的应用会有广泛前景。
为实现上述目的,本发明采用的技术方案如下所述:
基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法,包括以下过程:以碳化钨粉末和金刚石颗粒为原料,在通风橱中将其混合均匀,得到金刚石质量分数在5%-90%之间的碳化钨陶瓷混合物,滴加胶黏剂溶液,以至陶瓷混合物完全浸湿,待样品结成块状,胶黏剂溶液完全挥发后,将得到的块状样品置于模具环中,用手或冷压的方式将样品压至圆柱状,最大压力不超过100kg,保证陶瓷坯体取出后不松散;
将制备好的陶瓷坯体放在电极表面的铜制坩埚中,开启工业水冷机,利用氩弧焊机在高纯氩气的保护下进行闪烧。
作为一种优选技术方案,胶黏剂为聚碳酸丙烯酯溶解在丙酮中形成的溶剂。
作为一种优选技术方案,用手或冷压的方式将样品压至0.2mm厚的圆柱状。
作为一种优选技术方案,具体的制备方法包括以下步骤:
步骤一:胶黏剂制备
采用聚碳酸丙烯酯(QPAC40,(Karlsruhe,Germany))作为粘结剂,丙酮(分析纯,成都科龙化工试剂厂)作为作为溶解QPAC40的溶剂。QPAC粘结剂的用量应为粉末样品质量的2%,即1g粉末样品需用0.02g粘结剂。将QPAC40置于丙酮中震荡10min以至QPAC40粘结剂完全溶解得到质量分数大约为5%的胶黏剂溶液。胶黏剂的粘结程度需将陶瓷坯体在冷压使完全粘结而不发生松散。
步骤二:陶瓷坯体的制备工艺
以碳化钨粉末和金刚石粉末为原料,所选用的金刚石外层可由钛、钽包裹,也可选用无包裹的金刚石,所加金刚石的质量分数在5%-90%之间。在通风橱中将称好的样品混合均匀,得到碳化钨和金刚石的陶瓷混合物,其总质量不得超过0.5g。将混合物置于干净的容器中,滴2-3滴胶黏剂溶液,以至陶瓷混合物完全浸湿,将样品置于空气中干燥五分钟,待样品结成块状胶黏剂溶液完全挥发。将得到的块状样品置于模具环中,用手或冷压的方式将样品压至0.2mm厚的圆柱状,最大压力不超过100kg,保证陶瓷坯体取出后不松散。
步骤三:利用非接触式闪烧技术制备含有金刚石的碳化钨陶瓷
将得到的陶瓷坯体置于电极表面的坩埚中,打开氩气以及工业水冷机,将氩弧焊枪靠近样品后开启电源,在靠近样品的电极表面,与电极靠近5-10mm后缓慢滑动,或直接靠近电极表面但不接触,距离足够近时即可产生电弧。产生电弧后可以置于距样品横向距离2-3cm处停顿3-5s,这个过程能够使陶瓷坯体中残余的丙酮挥发,也能够使部分QPAC40分解。但应注意的是防止陶瓷坯体被氧化。
之后将电弧移至陶瓷坯体,依据陶瓷坯体成分的不同以及水冷电极表面的清洁程度,施加不同的电流。陶瓷坯体上表面发生致密后翻转样品,重复上述操作使下表面也致密化,这样可以增加烧结速率,且能够避免样品在烧结时炸裂。烧结完成后,在氩气保护的条件下进行冷却。
本发明的有益效果是:
1、工艺简单,成本低。本发明为世界上首次合成出含有金刚石的碳化钨陶瓷。利用电弧熔炼技术进行烧结,工艺简单,成本低廉。
2、烧结速度快,可进行快速制备。使用非熔化极气体保护焊进行烧结,整个烧结过程不足一分钟,可进行快速制备。
附图说明
图1为利用非接触式闪烧技术制备得到的含有金刚石的碳化钨陶瓷截面扫描图像
图2为利用放电等离子烧结炉制备得到的不含有金刚石的碳化钨陶瓷截面扫描图像。
图3为利用放电等离子烧结炉制备得到的含有金刚石的碳化钨陶瓷截面扫描图像。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
实施例1
以下通过具体实施方案进一步描述本发明,本发明也可通过其它的不脱离本发明技术特征的方案来描述,因此所有在本发明范围内或等同本发明范围内的改变均被本发明包含。
实施例1
含有金刚石的碳化钨陶瓷制备:以碳化钨粉末、金刚石粉末(可选用外层由钛、钽包裹的金刚石,也可选用无包裹的金刚石)为原料,所加金刚石的质量分数在5%-90%之间。将其混合均匀,称取0.5g,置于干净的容器中,加入一定量的胶黏剂。混合均匀后,在空气中自然风干。待其完全干燥,倒入特定的模具环中,加热至80℃,并施加一定压力,将粉末压制成块状的坯体。
将块状的陶瓷坯体置于电极表面的铜制坩埚中,打开氩气以及工业水冷机,将氩弧焊枪靠近样品后开启电源,在靠近样品的电极表面,与电极靠近5-10mm后缓慢滑动,或直接靠近电极表面但不接触,距离足够近时即可产生电弧。烧结值样品熔融后即可切断氩弧焊枪电源,但等到后吹时间结束样品冷却后再离开样品,氩弧焊枪与样品之间的距离应不大于1cm才能有效的减少样品在冷却过程中的氧化。
对比例1
利用放电等离子烧结炉制备不含金刚石的碳化钨陶瓷:以纯净的碳化钨粉体为原料,将其放入外径50mm,内径20mm,高40mm的石墨模具中,粉体与模具以及压头间利用石墨纸进行分隔。烧结炉在烧结过程中需保持真空状态,所施加压力为20MPa,样品在2100A的直流电流下进行烧结,待压头的位移曲线趋于稳定时,样品达到致密化,烧结结束。
对比例2
利用放电等离子烧结炉制备含有金刚石的碳化钨陶瓷:以碳化钨粉体、金刚石颗粒为原料,所加金刚石的质量分数在5%-90%之间,利用滚筒式球磨机将其混合均匀,得到匀质的粉末。随后,将样品粉末放入外径50mm,内径20.5mm,高40mm的石墨模具中,粉体与模具以及压头间利用碳纸进行分隔。整个烧结过程在真空下进行,所施加压力为120MPa,升温至1600℃,保温30s,即可得到致密的含有金刚石的碳化钨陶瓷。
下面具体介绍含有金刚石的碳化钨陶瓷截面扫描分析。
图1为利用非接触式闪烧技术制备得到的含有金刚石的碳化钨陶瓷截面扫描图像。从断口截面的SEM结果分析,可以看到样品含有一定数量的金刚石颗粒,金刚石颗粒与基体紧密结合,快速烧结有效防止了金刚石的石墨化。所获得的样品相当致密,孔隙率极低。
图2为利用放电等离子烧结炉制备得到的不含有金刚石的碳化钨陶瓷截面扫描图像。从断口截面的SEM结果分析,可以看到样品不含有金刚石颗粒,通过放电等离子技术烧结得到了致密的碳化钨的陶瓷体。
图3为利用放电等离子烧结炉制备得到的含有金刚石的碳化钨陶瓷截面扫描图像。从断口截面的SEM结果分析,可以看到通过放电等离子烧结的样品含有一定数量的金刚石颗粒,而且所获得的样品相当致密,孔隙率低。
由实施例以及对比例的实验结果表明,本方法成功制备出含有金刚石的碳化钨陶瓷,且样品非常致密,有效阻止了金刚石的石墨化。相比于放电等离子炉制备碳化钨陶瓷,具有工艺简单,成本低,烧结速度更快,可进行快速制备的特点。
值得说明的是,基于上述结构设计的前提下,为解决同样的技术问题,即使在本发明上做出的一些无实质性的改动或润色,所采用的技术方案的实质仍然与本发明一样,故其也应当在本发明的保护范围内。
值得说明的是,基于上述结构设计的前提下,为解决同样的技术问题,即使在本发明上做出的一些无实质性的改动或润色,所采用的技术方案的实质仍然与本发明一样,故其也应当在本发明的保护范围内。

Claims (3)

1.基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法,其特征在于,包括以下过程:以碳化钨粉末和金刚石颗粒为原料,在通风橱中将其混合均匀,得到金刚石质量分数在5%-90%之间的碳化钨陶瓷混合物,滴加胶黏剂溶液,以至陶瓷混合物完全浸湿,待样品结成块状,胶黏剂溶液完全挥发后,将得到的块状样品置于模具环中,用手或冷压的方式将样品压至圆柱状,最大压力不超过100kg,保证陶瓷坯体取出后不松散;
将制备好的陶瓷坯体放在电极表面的铜制坩埚中,开启工业水冷机,利用氩弧焊机在高纯氩气的保护下进行闪烧。
2.根据权利要求1所述的基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法,其特征在于,胶黏剂为聚碳酸丙烯酯溶解在丙酮中形成的溶剂。
3.根据权利要求1所述的基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法,其特征在于,用手或冷压的方式将样品压至0.2mm厚的圆柱状。
CN202010387961.8A 2020-05-09 2020-05-09 基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法 Active CN111662085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010387961.8A CN111662085B (zh) 2020-05-09 2020-05-09 基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010387961.8A CN111662085B (zh) 2020-05-09 2020-05-09 基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN111662085A true CN111662085A (zh) 2020-09-15
CN111662085B CN111662085B (zh) 2021-08-20

Family

ID=72383255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010387961.8A Active CN111662085B (zh) 2020-05-09 2020-05-09 基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN111662085B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112829434A (zh) * 2020-12-28 2021-05-25 长飞光纤光缆股份有限公司 一种金刚石表面涂层的方法
CN113526959A (zh) * 2021-09-07 2021-10-22 西南交通大学 一种无粘接剂的碳化钨粉末快速烧结的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140087210A1 (en) * 2012-09-27 2014-03-27 Allomet Corporation Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same
CN106830939A (zh) * 2017-02-27 2017-06-13 武汉碳十二科技有限公司 一种金刚石基底及其制备方法
US20180036696A1 (en) * 2015-02-28 2018-02-08 Element Six (Uk) Limited Superhard constructions and methods of making same
CN110695632A (zh) * 2019-10-10 2020-01-17 内蒙古第一机械集团股份有限公司 一种耐磨主动轮齿圈及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140087210A1 (en) * 2012-09-27 2014-03-27 Allomet Corporation Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same
US20180036696A1 (en) * 2015-02-28 2018-02-08 Element Six (Uk) Limited Superhard constructions and methods of making same
CN106830939A (zh) * 2017-02-27 2017-06-13 武汉碳十二科技有限公司 一种金刚石基底及其制备方法
CN110695632A (zh) * 2019-10-10 2020-01-17 内蒙古第一机械集团股份有限公司 一种耐磨主动轮齿圈及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
METTAYA KITIWAN ET.AL: "Fabrication of tungsten carbide–diamond composites using SiC-coated diamond", 《INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS》 *
OLIVIER LAVIGNE ET.AL: "Characterization of the residual stresses introduced by a new joining method in diamond and tungsten carbide composites", 《INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS》 *
SALVATORE GRASSO ET.AL: "Spark Plasma Sintering of Diamond Binderless WC Composites", 《J. AM. CERAM. SOC.》 *
贺定勇 等: "含WC陶瓷相电弧喷涂层耐磨粒磨损性能的研究", 《摩擦学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112829434A (zh) * 2020-12-28 2021-05-25 长飞光纤光缆股份有限公司 一种金刚石表面涂层的方法
CN113526959A (zh) * 2021-09-07 2021-10-22 西南交通大学 一种无粘接剂的碳化钨粉末快速烧结的方法及装置

Also Published As

Publication number Publication date
CN111662085B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
AU2017279628B2 (en) A system and method for extraction and refining of titanium
US5736092A (en) Microwave sintering process
CN100575515C (zh) 一种超细晶WC-Co硬质合金制备方法
JP2682823B2 (ja) 耐火材の製造方法
FI93540C (fi) Menetelmä itsekantavan keraamisen sekarakenteen tuottamiseksi ja itsekantava keraaminen sekarakenne
CN111662085B (zh) 基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法
CA2494366C (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
CN108838404B (zh) 钛合金低成本近净成形方法
CN114988917B (zh) 一种纳米复合高硬度陶瓷刀具材料及其制备方法
CN1322165C (zh) 放电表面处理用电极及其制造方法及放电表面处理方法
CN104150908B (zh) 碳化钛钼陶瓷粉及其制备方法
Yu et al. Restoring WC in plasma sprayed WC–Co coatings through spark plasma sintering (SPS)
JP2001261440A (ja) 耐酸化性炭化ハフニュウム焼結体及び耐酸化性炭化ハフニュウムーLaB6焼結体とこれらの製造方法およびこれを用いたプラズマ発生用電極
CN111411282A (zh) 一种聚晶复合材料
JP2004169064A (ja) 銅−タングステン合金およびその製造方法
KR101345359B1 (ko) 마찰교반 융접툴용 텅스텐 카바이드-몰리브덴 카바이드-코발트 소결체 제조 방법
CN116606166B (zh) 一种快速制备碳化硅非晶涂层的方法
Schembri et al. Understanding the Potential of U-FAST Sintering Process–An Overview
CN106941060B (zh) 一种高电子发射率复合阴极材料的制备方法
CN106312055A (zh) 铜包铬合金粉及其铜铬触头制备方法
JP2001261431A (ja) クロミア−ジルコニア焼結体とその製造方法
CN109721362A (zh) 基于非接触闪烧技术制备稳定的碳化物固溶体陶瓷的方法
CN118108528A (zh) 一种高纯高致密碳陶复合材料的制备方法
JP4320523B2 (ja) 放電表面処理用電極及びその製造方法並びに放電表面処理方法
JP3852580B2 (ja) 放電表面処理用電極及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant