CN111656355A - 种子分类的系统及方法 - Google Patents

种子分类的系统及方法 Download PDF

Info

Publication number
CN111656355A
CN111656355A CN201880088001.2A CN201880088001A CN111656355A CN 111656355 A CN111656355 A CN 111656355A CN 201880088001 A CN201880088001 A CN 201880088001A CN 111656355 A CN111656355 A CN 111656355A
Authority
CN
China
Prior art keywords
seeds
seed
image
classification
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880088001.2A
Other languages
English (en)
Other versions
CN111656355B (zh
Inventor
莫德凯·申伯格
埃德·卡蒙
沙瑞尔·阿什肯纳兹
戴维·格达尔亚霍·维斯伯格
雪隆·阿亚尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seed X Technology
Original Assignee
Seed X Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seed X Technology filed Critical Seed X Technology
Publication of CN111656355A publication Critical patent/CN111656355A/zh
Application granted granted Critical
Publication of CN111656355B publication Critical patent/CN111656355B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2148Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the process organisation or structure, e.g. boosting cascade
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • G06F18/2193Validation; Performance evaluation; Active pattern learning techniques based on specific statistical tests
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24147Distances to closest patterns, e.g. nearest neighbour classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2431Multiple classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C2501/00Sorting according to a characteristic or feature of the articles or material to be sorted
    • B07C2501/009Sorting of fruit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/68Food, e.g. fruit or vegetables

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开一种用于种子分类的多个系统,以及公开一种已经使用多个所述系统分类的成批种子。

Description

种子分类的系统及方法
相关申请的交叉引用
本申请主张于2017年12月03日提交的美国专利临时申请案申请号为62/593,949的优先权以及于2018年7月31日提交的国专利临时申请案申请号为62/712,270的优先权,两者公开内容均通过引用并入本文作为参考。
技术领域及背景技术
本发明在一些实施例中,是有关于一种种子分析,并且更具体地但不限于是有关于一种用于种子分类的系统及方法。
杂交种子是通过两个亲本植物的交叉授粉而产生的种子。产生的后代种子含有遗传物质,因此具有来自父母双方的性状。亲本植物是经过长期的研发过程而产生的,它们的大多数DNA是同型的,这一过程称为稳定亲本。由于亲本稳定,因此产生的F1后代在遗传上是一致的,并具有所期望的性状。许多农作物具有自花授粉的能力,这将产生仅包含母本遗传基因的果实和种子,而无需亲本植物参与该过程。自花授粉的种子不包含必需的父母遗传,也不包含必需的性状。
传统上,根据所需种子属性对种子进行分离是手动执行的,这是容易出错且耗时的任务。
发明内容
根据本发明的一些实施例的一个目的,本发明提供一种种子分类的系统,包括:一非暂时性存储器,所述非暂时性存储器储存有用于由至少一硬件处理器执行的一代码,所述代码包括:
代码,用于将包括至少一种子的至少一图像输入到至少一神经网络中,所述至少一图像由至少一图像传感器捕获;
代码,用于通过所述至少一神经网络计算所述至少一种子的至少一分类类别的一指示,其中至少一分类类别的所述指示至少根据所述至少一神经网络的权重来计算,其中一经训练的非神经网络统计分类器基于所述至少一种子的一视觉特性和一物理特性中的至少一种,根据从所述至少一图像中取得的至少一明确定义的视觉特征,计算统计意义不大的所述至少一分类类别;
其中,所述至少一神经网络是根据包含由所述至少一图像传感器捕获的多个种子的多个训练图像的训练数据集所训练的,其中,所述多个训练图像中的每一个各别的训练图像与在各别的训练图像中描述的至少一种子的至少一分类类别的一指示相关联;以及
代码,用于根据至少一分类类别的所述指示生成用于由一自动分类设备的一分类控制器执行的多个指令,用于多个种子的自动分类。
根据本发明的一些实施例,所述至少一图像包括多个种子,其中所述经训练的非神经网络统计分类器根据所述至少一视觉特征将所述多个种子的所述至少一图像分类为一相同的至少一分类类别,其中所述神经网络将具有统计意义的所述多个种子的至少一图像分类为两个或两个以上不同的分类类别。
根据本发明的一些实施例,从一第一种子的至少一图像中取得的至少一视觉特征在公差要求内与从一第二种子的至少一图像中取得的对应的至少一视觉特征在统计上相似。
根据本发明的一些实施例,所述至少一种基于所述物理特性的视觉特征选自于下列所组成的群组:一手工制作的特征、至少一种种子的至少一种尺寸大小、至少一种种子的颜色、至少一种种子的形状和至少一种种子的纹理。
根据本发明的一些实施例,所述至少一图像包括多个种子,所述多个种子在公差范围内通过一单一特征彼此不同,所述单一特征不能由所述至少一视觉特征取得,还包括根据为每一个种子计算的一各别的二元分类类别来计算群集,其中所述各别的二元分类类别指示包括所述单一特征或不包括所述单一特征的各别的种子,并且其中所述多个指令包括用于根据所述经计算的群集对所述多个种子进行分类的指令。
根据本发明的一些实施例,指示所述单一特征的所述二元分类类别是选自于下列所组成的群组:自花授粉或杂交授粉、抗逆性或非抗逆性、转基因或非转基因、所述单一特征不同的等基因种子、以及具有不同父本花粉的共享母本植物的种子。
根据本发明的一些实施例,所述至少一分类类别包括一非可视类别,所述非可视类别不能基于所述至少一种子的目视检查而手动确定。
根据本发明的一些实施例,所述至少一分类类别包括一种子变体。
根据本发明的一些实施例,所述至少一分类类别与DNA标记不直接相关。
根据本发明的一些实施例,所述至少一分类类别为一产量相关性状。
根据本发明的一些实施例,所述至少一分类类别为一单基因性状、多效性性状或多基因性状。
根据本发明的一些实施例,所述至少一分类类别为一植物品质相关性状。
根据本发明的一些实施例,所述植物品质相关性状包括抗感染性、抗胁迫性、降低的致敏性性状、预测发芽率、果实味道、果实大小、活力、含油量、纤维品质、纤维长度、籽粒充实期、开花、抽穗、植物高度、光合作用能力和肥料利用效率。
根据本发明的一些实施例,与所述训练数据集的各别的多个训练图像相关联的至少一分类类别的指示是基于破坏所述种子的一DNA测试获得。
根据本发明的一些实施例,所述产量相关性状选自于下列所组成的群组:生长速度、生物量、纤维产量及收获指数。
根据本发明的一些实施例,所述至少一分类类别是一基因型。
根据本发明的一些实施例,所述至少一分类类别由破坏性测试确定,所述破坏性测试在所述至少一图像传感器捕获各别的所述种子的各别的训练图像之后破坏所述种子。
根据本发明的一些实施例,所述至少一分类类别表示在一未来时间间隔预测在所述至少一种子中发展的至少一表现型特性,所述未来时间间隔相对于所述至少一图像被捕获时的一时间间隔。
根据本发明的一些实施例,所述图像传感器选自于下列所组成的群组:RGB、多光谱、高光谱、可见光频率范围、近红外(NIR)频率范围、红外(IR)频率范围,以及上述各项的组合。
根据本发明的一些实施例,包括至少一种子的所述至少一图像包括从包含多个种子的一图像分割出的一单一个种子的一单一个图像。
根据本发明的一些实施例,与所述训练数据集的各别的多个训练图像相关联的至少一分类类别的指示包括根据一亲本植株确定的种子变体。
根据本发明的一些实施例,所述至少一神经网络计算所述至少一图像的一嵌入,并且其中所述至少一分类类别是根据从储存多个训练图像的多个嵌入的所述训练数据集中的一识别的至少一相似的嵌入图像的一注释来确定的,根据所述至少一图像的嵌入与所述训练图像的嵌入之间的一相似距离的一要求来识别所述至少一相似的嵌入图像。
根据本发明的一些实施例,所述嵌入是由被选择作为一嵌入层的经训练的至少一神经网络的一内层来计算的。
根据本发明的一些实施例,所述嵌入被储存为具有一预定长度的一向量,其中所述相似距离被计算为储存所述至少一图像的所述嵌入的一向量与分别储存各个训练图像的嵌入的多个向量之间的一距离。
根据本发明的一些实施例,所述相似距离在所述至少一图像的所述嵌入和多个训练图像的多个嵌入的一群集之间被计算,多个训练图像的每一个与一相同的至少一分类类别相关联。所述至少一图像包括多个图像,所述多个图像包括多个种子,并且所述至少一图像更包括用于根据多个各个分类类别对所述多个图像进行群集的代码,其中,由所述分类控制器执行的多个所述指令包括用于根据各个分类类别对与所述多个图像相对应的多个所述种子进行分类的多个指令。
根据本发明的一些实施例,根据多个分类类别的一目标比率执行群集化,其中根据所述目标比率排列群集的多个构件。
根据本发明的一些实施例,根据所述多个种子的一样品的一DNA分析计算多个所述分类类别的所述目标比率。
根据本发明的一些实施例,所述多个各个分类类别包括种子纯度或种子杂质的一二元指示,其中所述多个图像被群集为一种子纯度群集以表示被分类为纯的种子,或被群集为种子杂质群集以表示被分类为不纯的种子。
根据本发明的一些实施例,所述群集为种子纯度群集或种子杂质群集根据一目标统计分布被执行。
根据本发明的一些实施例,所述目标统计分布根据以下的至少一项来计算:一目标真阳性、一目标真阴性、一目标假阳性、一目标假阴性、一手动输入的分布,根据对所述多个种子的一样本进行的一DNA测试所测量的一分布。
根据本发明的一些实施例,所述分类控制器的指令包括丢弃被分类为不纯的多个种子的多个指令。
根据本发明的一些实施例,所述训练数据集储存与所述多个训练图像相关联的多个分类类别的一比率的一指示。
根据本发明的一些实施例,所述多个种子是等基因的。
根据本发明的一些实施例,所述多个种子来自同一母植株,并且父本花粉不同,并且多个所述群集根据不同的父本花粉计算。
根据本发明的一些实施例,所述多个种子包括多个自花授粉种子和多个杂交种子,并根据自花授粉和杂交指示计算多个所述群集。
根据本发明的一些实施例,多个不同分类类别的多个群集被建立以在相同的环境条件下培育多个种子。
根据本发明的一些实施例,多个不同分类类别的多个群集被建立以在一相同生长季节培育多个种子。
根据本发明的一些实施例,多个不同分类类别的多个群集被建立以在一相同地理位置培育多个种子。
根据本发明的一些实施例,多个不同分类类别的多个群集被建立以在一公差范围内具有多个相同的物理参数下培育多个种子。
根据本发明的一些实施例,所述物理参数选自于下列所组成的群组:颜色、纹理、大小、面积、长度、圆度、宽度、千粒重和上述的组合。
根据本发明的一些实施例,所述至少一图像包括多个图像,所述多个图像包括多个不同分类类别的多个种子;
其中至少一神经网络计算所述多个图像中的每一个的一嵌入,其中,所述多个图像的所述嵌入通过群集化代码群集,并且其中用于由所述分类控制器执行的多个指令包括用于根据相应的多个群集对所述多个种子进行排序的多个指令。
根据本发明的一些实施例,所述群集被计算,使得每一个相应的群集的每一个嵌入的图像构件与另一个群集至少相距一阈值距离。
根据本发明的一些实施例,所述群集被计算,使得每一个相应的群集的每一个嵌入的图像构件与相同的相应的群集的每一个其他构件之间的距离小于一阈值距离。
根据本发明的一些实施例,同一群集的多个嵌入之间计算的一群集内距离小于多个不同群集的多个嵌入之间计算的一群集内距离。
根据本发明的一些实施例,多个种子对应于多个嵌入,所述多个嵌入位于一异常距离阈值以上且距离以下至少一项:被表示为一异常并聚集到一异常群集中的另一嵌入和一群集。
根据本发明的一些实施例,根据分配给至少两个图像的嵌入的多个分类类别及/或接近被标记为异常的种子的嵌入的至少两个群集的多个分类类别,将表示为异常的多个种子分配为一新的分类类别。
根据本发明的一些实施例,所述新的分类类别是根据与所述至少两个图像的嵌入及/或接近被标记为异常的种子的嵌入的至少两个群集的相对距离来计算的。
根据本发明的一些实施例,每一个群集计算至少一个统计值,其中,当一特定种子的图像的嵌入在统计上与所有其他多个群集不同时,将所述特定种子表示为异常。
根据本发明的一些实施例,每一个群集计算至少一个统计值,其中,一特定种子被分配给一特定群集的一特定分类类别,当所述特定种子的图像的嵌入在统计上类似于所述特定群集的至少一个统计值时。
根据本发明的一些实施例,各个群集的至少一个统计值选自于下列所组成的群组:各个群集的嵌入的均值,各个群集的嵌入的方差以及各个群集的嵌入的较高矩。
根据本发明的一些实施例,所述系统更包括提供一目标种子的一图像,通过至少一神经网络计算目标种子的嵌入,根据所述图像嵌入的位置距离所述目标种子的嵌入的位置小于一目标距离阈值,选择多个图像嵌入的一子集,其中,由所述分类控制器执行的多个所述指令包括用于选择与多个图像嵌入的所述子集相对应的多个种子的多个指令。
根据本发明的一些实施例,所述系统更包括提供一目标种子的一图像,通过至少一神经网络计算目标种子的嵌入,对多个图像嵌入和所数目标种子的嵌入进行群集,并选择包含所述目标种子的嵌入的一群集,其中,由所述分类控制器执行的多个所述指令包括用于选择与所选群集相对应的多个种子的多个指令。
根据本发明的一些实施例的一个目的,提供了一种用于训练至少一神经网络进行多个种子的分类的系统,所述系统包括:
一非暂时性存储器,所述非暂时性存储器储存有用于由至少一硬件处理器执行的一代码,所述代码包括:
代码,用于进入一训练数据集,所述训练数据集包括由至少一图像传感器捕获的多个种子的多个训练图像,其中,所述多个训练图像中的每一个训练图像与在所述多个训练图像中描绘的至少一种子的至少一分类类别的一指示相关联;以及
代码,用于根据所述训练数据集训练至少一神经网络,所述至少一神经网络被训练用于根据至少一目标图像来计算至少一分类类别的一指示,所述至少一目标图像包括至少一种子,所述至少一图像由至少一图像传感器捕获;
其中,至少根据至少一经训练的神经网络的权重来计算至少一目标图像的至少一分类类别的所述指示,其中,一经训练的非神经网络统计分类器基于所述至少一种子的一视觉特性和一物理特性中的至少一种,根据从所述至少一图像中取得的至少一明确定义的视觉特征,计算统计意义不大的所述至少一分类类别。
根据本发明的一些实施例的一个目的,提供了一种容器,所述容器包括多个种子,其中所述多个种子在性状、微生物组或基因组方面是相同的。
根据本发明的一些实施例,所述多个种子根据如本文所述的系统被分类。
根据本发明的一些实施例,所述多个种子包括超过一千个种子。
根据本发明的一些实施例,所述多个种子的重量超过100克。
根据本发明的一些实施例,所述性状选自于下列所组成的群组:氮肥利用效率提高、非生物胁迫耐受性增强、生物胁迫耐受性增强、生物量增加、生长速度加快、活力增强、产量增加和纤维产量增加或品质提高、以及油量增加。
根据本发明的一些实施例的一个目的,提供了一种使一农作物生长的方法,包括将如本文所述的容器中的多个种子播种,从而使所述农作物生长。
根据本发明的一些实施例,所述多个种子在多个压力条件下的一环境中生长。
根据本发明的一些实施例,所述多个压力条件包括非生物胁迫耐受性或生物胁迫耐受性。
根据本发明的一些实施例的一个目的,本发明提供一种种子分类的系统,包括:一非暂时性存储器,所述非暂时性存储器储存有用于由至少一硬件处理器执行的一代码,所述代码包括:
代码,用于将包括至少一种子的至少一图像输入到至少一神经网络中,所述至少一图像由至少一图像传感器捕获;
代码,用于通过所述至少一神经网络计算所述至少一种子的至少一分类类别的一指示,所述至少一种种子选自下列所组成的群组:杂交和非杂交;
其中至少一分类类别的所述指示至少根据所述至少一神经网络的权重来计算,其中一经训练的非神经网络统计分类器基于所述至少一种子的一视觉特性和一物理特性中的至少一种,根据从所述至少一图像中取得的至少一明确定义的视觉特征,计算统计意义不大的所述至少一分类类别;
其中,所述至少一神经网络是根据包含由所述至少一图像传感器捕获的多个种子的多个训练图像的训练数据集所训练的,其中,所述多个训练图像中的每一个各别的训练图像与在各别的训练图像中描述的选自杂交和非杂交所组成的群组的至少一种子的至少一分类类别的一指示相关联;以及
代码,用于根据选自于下列所组成的群组中的至少一分类类别的所述指示生成用于由一自动分类设备的一分类控制器执行的多个指令,用于多个种子的自动分类:杂交和非杂交。
根据本发明的一些实施例的一个目的,本发明提供一种种子分类的系统,包括:一非暂时性存储器,所述非暂时性存储器储存有用于由至少一硬件处理器执行的一代码,所述代码包括:
代码,用于进入一训练数据集,所述训练数据集包括由至少一图像传感器捕获的多个种子的多个训练图像,其中,所述多个训练图像中的每一个训练图像与在所述多个训练图像中描绘的选自于杂交和非杂交所组成的群组的至少一种子的至少一分类类别的一指示相关联;以及
代码,用于根据所述训练数据集训练至少一神经网络,所述至少一神经网络被训练用于根据至少一目标图像来计算选自于杂交和非杂交所组成的群组至少一分类类别的一指示,所述至少一目标图像包括至少一种子,所述至少一图像由至少一图像传感器捕获;
其中,至少根据至少一经训练的神经网络的权重来计算至少一目标图像的至少一分类类别的所述指示,其中,一经训练的非神经网络统计分类器基于所述至少一种子的一视觉特性和一物理特性中的至少一种,根据从所述至少一图像中取得的至少一明确定义的视觉特征,计算统计意义不大的所述至少一分类类别。
根据本发明的一些实施方式的一个目的,提供了一种容器,所述容器包括多个种子,其中至少90%的种子是杂交种种子。
根据本发明的一些实施例的一个目的,本发明提供一种种子分类的系统,包括:一非暂时性存储器,所述非暂时性存储器储存有用于由至少一硬件处理器执行的一代码,所述代码包括:
代码,用于将包括至少一种子的至少一图像输入到至少一神经网络中,所述至少一图像由至少一图像传感器捕获;
代码,用于通过所述至少一神经网络计算所述至少一种子的至少一分类类别的一指示,所述至少一种种子选自下列所组成的群组:压力抗性和非压力抗性;
其中至少一分类类别的所述指示至少根据所述至少一神经网络的权重来计算,其中一经训练的非神经网络统计分类器基于所述至少一种子的一视觉特性和一物理特性中的至少一种,根据从所述至少一图像中取得的至少一明确定义的视觉特征,计算统计意义不大的所述至少一分类类别;
其中,所述至少一神经网络是根据包含由所述至少一图像传感器捕获的多个种子的多个训练图像的训练数据集所训练的,其中,所述多个训练图像中的每一个各别的训练图像与在各别的训练图像中描述的选自压力抗性和非压力抗性所组成的群组的至少一种子的至少一分类类别的一指示相关联;以及
代码,用于根据选自于下列所组成的群组中的至少一分类类别的所述指示生成用于由一自动分类设备的一分类控制器执行的多个指令,用于多个种子的自动分类:压力抗性和非压力抗性。
根据本发明的一些实施例,所述至少一图像包括多个种子,其中所述经训练的非神经网络统计分类器根据所述至少一视觉特征将所述多个种子的所述至少一图像分类为一相同的至少一分类类别,其中所述神经网络将具有统计意义的所述多个种子的至少一图像分类为压力抗性和非压力抗性两个分类类别。
根据本发明的一些实施例,所述压力包括非生物胁迫。
根据本发明的一些实施例,所述压力包括生物胁迫。
根据本发明的一些实施例的一个目的,本发明提供一种种子分类的系统,包括:一非暂时性存储器,所述非暂时性存储器储存有用于由至少一硬件处理器执行的一代码,所述代码包括:
代码,用于进入一训练数据集,所述训练数据集包括由至少一图像传感器捕获的多个种子的多个训练图像,其中,所述多个训练图像中的每一个训练图像与在所述多个训练图像中描绘的选自于压力抗性和非压力抗性所组成的群组的至少一种子的至少一分类类别的一指示相关联;以及
代码,用于根据所述训练数据集训练至少一神经网络,所述至少一神经网络被训练用于根据至少一目标图像来计算选自于压力抗性和非压力抗性所组成的群组至少一分类类别的一指示,所述至少一目标图像包括至少一种子,所述至少一图像由至少一图像传感器捕获;
其中,至少根据至少一经训练的神经网络的权重来计算至少一目标图像的至少一分类类别的所述指示,其中,一经训练的非神经网络统计分类器基于所述至少一种子的一视觉特性和一物理特性中的至少一种,根据从所述至少一图像中取得的至少一明确定义的视觉特征,计算统计意义不大的所述至少一分类类别。
根据本发明的一些实施方式的一个目的,提供了一种容器,所述容器包括多个种子,其中至少90%的种子是具压力抗性种子。
根据本发明的一些实施例的一个目的,提供了一种使一农作物生长的方法,包括将如本文所述的容器中的多个种子播种,从而使所述农作物生长。
除非另有定义,否则本文使用的所有技术及/或科学术语具有与本发明所属领域的普通技术人员通常理解的相同的含义。虽然在本发明实施例的实施或测试中可以使用与本文所述方法和材料类似或等同的方法和材料,下面描述的方法及/或材料为例示性的。如果发生矛盾,以权利要求书包括其定义的范围为准。另外,这些材料、方法和实例仅是说明性的,并非用以限制。
附图说明
这里仅通过举例的方式参考附加的图式来描述本发明的一些实施例。现在具体参照附图详细说明,强调的是,所示出的细节是作为例示并且出于对本发明实施例的说明性讨论的目的。就这一点而言,对于本领域技术人员而言,利用附图进行的描述对于可以如何实践本发明的实施例是显而易见的。
在附图中:
图1是根据本发明的一些实施例的用于根据多个种子的多个图像对多个种子进行分类的处理流程示意图;
图2是根据本发明的一些实施例的用于多个种子的多个图像对多个种子进行分类及/或群集及/或用于训练用于分类及/或群集种子图像的多个神经网络的一系统的多个组件的方块图;
图3是根据本发明的一些实施例的用于训练用于根据多个种子图像计算多个分类类别及/或多个嵌入的一个或多个神经网络的过程的流程示意图;以及
图4A至图4E是基于参考图1及/或图3所述方法的示例性数据流的数据流程示意图。根据本发明的一些实施例,可由参照图2描述的系统200的多个组件执行。
具体实施方式
本发明在一些实施例中,是有关于一种种子分析,并且更具体地但不限于是有关于一种用于种子分类的系统及方法。
本发明的一些实施例的一个目的涉及用于种子的自动分类,可选地有关于一种根据类别将种子自动分类的系统、方法、设备及/或代码指令。多个种子的分类可以指具有相似分类类别的种子的群集。将包括一个或多个种子的每一个图像输入一个或多个神经网络。可选地,对多个图像进行分割,使得每一个图像包括一单一个种子。(多个)神经网络可选地至少根据训练后的神经网络的权重及/或构成,为图像中描绘的每个种子计算一个或多个分类类别的一指示。在一些实施例中,传统特征,例如基于种子的一个或多个物理特性的视觉特征,没有被明确定义以用于通过本文所述的神经网络进行提取。这种传统特征(例如视觉特征)可以在训练期间由神经网络以隐式方式自动识别,例如,由神经网络的权值及/或构成所隐含。但是,神经网络并不是明确编程以用来明确提取定义的视觉特征。相比之下,多个这些传统特征被明确地定义并通过非神经网络统计分类器从多个图像中提取出来的。例如,线性分类器、支持向量机、K-近邻算法和决策树。基于由非神经网络统计分类器从多个种子的多个图像中提取的种子的一个或多个物理特性的视觉特征的示例,包括手工制作的特征、种子的大小尺寸、种子的颜色、种子的形状、种子的纹理、上述的组合等。训练后的非神经网络统计分类器无法计算具有统计显着性的种子的分类类别(即计算统计意义不大的分类类别,例如,指示非神经网络统计分类器执行的分类结果的准确性的概率低于预定义的阈值(例如,低于约20%、或50%、或70%、或90%或其它值),例如,由于分类的准确性,实际上与种子的物理分类无关),当种子在视觉上相似及/或具有相似的物理特性时,仅根据提取的明确定义的视觉特征。例如,当图像包括两个或多个彼此在视觉及/或物理上非常相似的种子时,本文描述的经训练的神经网络能够根据经训练的神经网络的储存的权重将种子的图像分类(具有统计意义,例如,高于阈值)到不同的分类类别中。相反的,经训练的非神经网络统计分类器无法基于提取的视觉特征将种子图像分类为具有统计意义的两个不同分类类别。例如,非神经网络统计分类器可以根据提取的多个视觉特征将多个种子的多个图像分类为相同的分类类别。当种子在视觉及/或物理上相似时,从一个种子的一个图像中提取的(多个)视觉特征与从另一种子的另一图像中提取的相应的(多个)视觉特征在统计上相似(例如在公差阈值内)。例如,种子具有相同的大小及/或相同的颜色及/或相同的纹理。由经训练的神经网络执行的分类至少是根据一个或多个分类类别来进行的,所述分类类别表示未明确定义其视觉特征的种子之间的差异。例如,预测表现型及/或差异是等基因种子之间的遗传特性。值得注意的是,在一些实施例中,神经网络可以提取和使用这些传统视觉特征以及非传统的甚至是未解释的特殊特征。这样的非传统和未解释的特殊特征是由神经网络自动学习的,但是不能由非神经网络统计分类器学习及/或提取。可以根据计算的分类类别的指示来创建用于由一自动分类装置的一分类控制器执行的多个指令。例如,根据分类类别对种子进行分类,以使相同分类群集的种子具有相同的分类类别。
与提取明确定义的视觉特征的非神经网络统计分类器相比,本文描述的神经网络以相对更高的精度及/或更高的统计确定性来计算分类类别。
与基于提取明确定义的视觉特征的非神经网络统计分类器相比,基于本文所述的神经网络的输出,根据多个群集及及/或多个嵌入对种子进行分类,具有相对更高的准确性及/或更高的统计确定性。
发明人发现,对于提取明确定义的视觉特征(例如大小、形状、颜色、纹理)的非神经网络统计分类器来说,视觉及/或物理上无法区分多个种子图像,而经训练的多个神经网络能够区分多个种子图像(例如计算分类类别及/或创建群集)。例如,例如,根据预测的分类类别(例如,在未来的时间间隔内会明显出现的表现型)及/或种子中未表现的微小遗传差异(例如同基因的种子),可以通过非神经网络统计分类器提取视觉特征进行分类。发明人发现,在训练期间,神经网络自动计算其权重,这使神经网络能够自动学习及/或发现先前未知的特征及/或不一定与种子的视觉及/或物理特性直接相关的特征。这种非神经网络统计分类器所无法达成的自动发现的特征使神经网络能够区分视觉上及/或物理上相似的种子图像。下面的“实施例”部分提供了发明人发现的实验支持。
任选地,图像包括在公差范围内彼此不同的多个种子,所述单一个特征不是由种子(例如预测的表型)在视觉及/或物理上明确表示的单一个特征。单一特征不能仅根据非神经网络统计分类器提取的(多个)视觉特征进行提取。对于在视觉及/或物理上相似的种子,非神经网络统计分类器将多个种子的图像分类到同一个分类类别中,及/或者无法将种子的图像分类(例如,输出误差或统计上不重要的类别,因为不能仅通过至少一个视觉特征来提取单个特征)。根据神经网络输出的多个分类类别及/或多个嵌入,对多个种子图像进行聚类。分类类别可以是指示各个种子是包括单一个特征还是不包括单一个特征的二元分类类别。指示单一特征或缺乏单一特征的示例性二元分类类别包括:自花授粉或杂交授粉(即,非自花授粉)、耐胁迫或不耐胁迫、杂交或非杂交、转基因或非转基因,同基因的种子根据一个单一的特征而彼此不同,同卵母系的种子,由于父系花粉而彼此不同。根据群集生成用于分类的指令,以根据群集对种子进行分类。
任选地,种子不能根据人工视觉观察及/或基于视觉特征(如大小和颜色)来区分。
任选地,仅根据提取的基于物理特征(例如大小、颜色、纹理)的视觉特征,非神经网络统计分类器就无法将种子彼此区分开。
任选地,种子是在相同(或相似)的环境条件下生长的,例如在相同的生长季节、相同的地理位置(例如相同的田地、相同的温室)及/或相同的温度下生长。
任选地,根据在训练神经网络的训练阶段中确定的多个分类类别,将与多个种子相对应的多个图像分类。种子的训练集应该是已知的分类类型。在一个实施例中,在捕获种子的图像之后,在对训练集种子具有破坏性的测试之后识别分类类型。训练是使用完整的(最好是可行的)训练种子的图像来进行的。根据多个训练种子的多个图像,由训练后的神经网络对活种子进行非侵入式分类。
本文所述的系统、方法、装置及/或代码指令中的至少一些解决了产生目标纯度水平的种子批次的技术问题。由于自花授粉的种子表现出不希望的杂质,因此不希望所生产的种子含有高于目标量的自花授粉的种子。种子生产者大量利用资源来确保不会发生异花授粉,从而达到目标种子纯度。本文所述的系统、方法、装置及/或代码指令中的至少一些通过对种子图像进行分析,以非侵入方式确定种子批次的纯度水平,为技术问题提供了技术解决方案。根据种子图像的分析,可能会检测到不纯种子并将其去除。
本文所述的系统、方法、装置及/或代码指令中的至少一些解决了减少或避免种子的破坏性测试的技术问题,例如,确定种子的估计纯度水平及/或根据期望的特征估计的种子分布。使用传统方法进行质量保证(QA)破坏性DNA测试,以证明种子批次的纯度,例如,基于蛋白质的QA方法及/或酶联免疫吸附测定(ELISA)。这种破坏性测试破坏了一部分的种子批次,因此不能直接用于分类被破坏的种子。由于测试的是种子样本,而不是测试批次的所有(或大部分)种子,因此所述样本仅代表整个批次的估计值。而且,样品的测试很耗时。本文描述的系统、方法、装置及/或代码指令中的至少一些通过执行种子的图像分析以确定种子的分类类别来提供技术问题的技术解决方案。对种子图像的分析避免了对一批种子中的样本种子进行破坏性测试。
本文描述的系统、方法、装置及/或代码指令中的至少一些解决了快速及/或有效地确定种子的分类类别(例如所需性状)的技术问题。使用传统方法,希望生产新品种的育种者在不同种子之间进行许多异花授粉。在此过程中,产生的种子可能会或可能不会继承所需的性状。育种人员可以使用DNA测试来发现哪些种子具有哪些性状,或者使种子生长并找出每种种子产生的植物/果实。当DNA测试对种子有破坏性时,另一种选择是培育种子,例如,等一个月直到叶子长出来,然后把叶子送到DNA测试。育种人员选择所需的种子,并将其持续到下一个生长季节,这一过程可能需要长达10年的时间,直到稳定一个新的商业品种。此外,另一个技术问题是许多所需的植物性状没有DNA标记,例如有些病毒需要进行植物病理学测试以选择对病毒有抗性的种子,或者需要确定种子发芽率的种子的发芽率。其他性状,如水果的味道、大小等,也没有DNA标记。种植者可能会把种子种上整整一代,结果却发现这些种子不具所期望的性状。本文所述的系统、方法、装置及/或代码指令中的至少一些通过对多个种子的多个图像进行分析以确定种子的分类类别(例如期望的性状)来提供技术问题的技术解决方案。多个图像的分析提供实时结果,而不需要使种子生长。
本文所述的系统、方法、装置及/或代码指令中的至少一些解决了快速及/或有效地确定种子的表现型(即分类类别)的技术问题。一个生物体(即植物、种子)的表型是可观察到的性状和特征的组合。一般而言,表现型受遗传因素以及环境的未知关系影响。种子的表现型和基因型之间存在联系。种子与产生种子的亲本植物/果实之间存在基因型和表现型联系。种子与从种子中生长出来的植物/果实之间存在基因型和表现型的联系。种子表现型和种子生长的环境条件之间存在联系。即使知道基因型,生长环境条件和亲本植物/果实中的一种或多种,也很难使用标准方法预测种子的表现型。此外,具有相同基因型,在相同环境条件下生长且源自同一亲本的种子可以表达不同的表现型。本文描述的系统、方法、装置及/或代码指令中的至少一些通过对种子的图像进行分析以预测种子的表现型及/或可以在种子之间进行区分来提供技术问题的技术解决方案。即使种子具有相似的基因型,在相同的环境条件下生长及/或源自相同的亲本,它们也具有不同的预测表现型。
本文所述的系统、方法、装置及/或代码指令中的至少一些解决了快速及/或有效地区分等基因种子的技术问题(例如,将多个等基因种子的每一个种子分类到各自的分类类别中,及/或对多个等基因种子进行群集)。等基因种子是一对几乎相同的种子,尽管有一个单一的(可观察的)特征。它们的遗传相似性至少在99%左右。等基因种子之间的主要(或只是部分)差异是一个特定的性状,例如,病毒抗性可能受成对种子之间的单一个基因差异的影响,或者果实大小可能受成对种子之间多个基因差异的影响。使用标准方法,很难将等基因种子根据单一性状分离,例如分成具有单一性状的种子和没有单一性状的种子。等基因种子之间的遗传差异很小,几乎不存在,因此很难使用标准方法进行检测。此外,等基因种子之间的小遗传差异不太可能表现为明显的表现型差异。因此,即使使用标准方法检测到遗传差异,也难以基于遗传差异预测表现型差异。本文所述的系统、方法、装置及/或代码指令中的至少一些通过对种子图像进行分析以预测种子是否具有性状,从而为技术问题提供了技术解决方案,及/或根据具有特征的一个群集和不具有所述特征的另一群集将种子群集。
本文所述的系统、方法、装置及/或代码指令中的至少一些解决了快速及/或有效地区分共享(即相同)母体的种子的技术问题(例如,将共享母体的每个种子分类为各自的分类类别,及/或将来自共享母体的种子聚集在一起)。种子的外层覆盖组织完全来自母本植物(例如,来自果实)。因此,在同一母株的两个或两个以上的果实中生长的两个或多个种子,尽管父系花粉不同,但看起来还是一样的,这使得基于人工视觉方法(例如由专业种植者)区分种子变得困难或不可能。此外,自花授粉和杂交种子看起来应该是一样的,因为种子是在同一种母本植物的果实中生长的,因此很难或不可能根据人工视觉方法(例如由专业种植者)区分种子。本文描述的系统、方法、装置及/或代码指令中的至少一些通过执行多个种子的多个图像的一分析来区分同一母体的多个种子来提供技术问题的技术解决方案,例如,将共享母体的每个种子分类到各自的分类类别中,及/或基于分类类别将来自共享母体的种子聚类到各自的群集中。
本文所述的系统、方法、装置及/或代码指令中的至少一些解决了在相同环境条件及/或相同地理位置下生长的种子之间快速及/或有效区分的技术问题。例如,将每个种子分类为各自的分类类别,及/或将种子聚类为群集。植物具有根据环境条件改变其表现型的显著能力。发明人认为,种子表现型的一个重要组成部分是由于种子发育过程中的环境条件,而不是种子的遗传学。因此,使用标准方法,很难或不可能根据分类类别(可选地如表现型)在相同的环境条件及/或相同的地理位置下对种子进行分类及/或群集。本文所述的至少一些系统、方法、装置及/或代码指令通过执行种子的图像分析以区分在相同环境条件及/或相同地理位置下生长的多个种子,提供了技术问题的技术解决方案。例如,将每个种子分类到各自的分类类别(例如,基于预测的表现型),及/或基于分类类别将种子聚类到各自的群集中(例如,预测的表现型)。
本文所述的系统、方法、装置及/或代码指令中的至少一些改进了种子自动分类的技术领域。传统的种子分类机器是根据种子的物理性质来分类的,例如,根据重量对种子进行分类的重力台。基于光学方法的分类机器仍然依赖于基于物理特性的种子的视觉特性,例如,大小、颜色、形状和纹理。传统的分类机器可以通过去除污垢、异物、破碎的种子和畸形的种子,间接地确保种子的物理性质(如大小、形状、颜色)均匀。传统的分类机器没有分析种子来评估种子的表现型特征,如活力及/或发芽率。活力及/或发芽率被间接地提高及/或被间接地评估,例如,对于玉米来说,通过去除不会发芽的黑谷粒。去除黑谷粒可间接提高发芽率。其他剩余的谷粒不被分析来预测它们的发芽率。此外,去除外来种子、异常种子及/或其他异物(例如污垢)是基于与所需种子显着不同的视觉外观,例如,大小、形状及/或颜色显着不同。此外,发明人所已知的唯一能够将自花授粉种子与杂交种子分离的分选机(即Brimrose SeedMeister AOTF-NIR分析仪)仅设计用于无籽西瓜,在这种情况下,自花授粉种子和杂交种子在遗传学上存在显着差异(即三倍体与单倍体)这是表示在种子大小方面的显着差异。因此,自花授粉和杂交种子的分类化是根据种子大小间接进行的。相比之下,本文所述的系统、方法、装置及/或代码指令中的至少一些生成用于视觉上相同及/或具有相同物理特性(例如在一公差范围内)的种子的自动分类的指令(例如,根据分类类别及/或通过群集)。例如,当用户手动查看种子时,及/或当由非神经网络统计分类器基于根据视觉及/或物理特性提取的明确定义的特征进行分析时,及/或当标准机器根据物理及/或视觉特性进行处理时,这将被认为是相同的,将以相同的方式进行分类(例如,所有种子都被移走或所有种子都保持在同一批次中)。例如,通过本文描述的系统、方法、装置及/或代码指令中的至少一些来分类及/或聚集(在公差范围内,但不能通过基于提取的视觉特征的手动视觉方法及/或标准图像处理方法区分)的种子包括类似的种子:颜色、纹理,千粒重、在相同的环境条件下生长、在同一季节生长、在同一地理位置生长。值得注意的是,在同一块地及/或同一个温室内或在附近的田地中生长的多个种子,在公差范围内,被视为在同一地理位置及/或在相同的环境条件下生长。
本文所述的至少一些系统、方法、装置及/或代码指令改进了预测种子发芽的技术领域。根据华盛顿大学的一篇学术论文,使用标准方法,例如CF分析仪y SEQSO,基于叶绿素含量的测量来预测种子的发芽。这种方法只对特定作物有效。相比之下,本文所述的至少一些系统、方法、装置及/或代码指令根据对种子的图像的一分析来预测种子的萌发,而不管种子是否具有叶绿素,并且不直接估计叶绿素的量。
现在描述一些示例性的现有过程,以帮助理解由本文描述的系统、方法、设备及/或代码指令中的至少一些提供的种子分类技术领域的改进。需要注意的是,现有的方法都没有利用神经网络,它会自动从种子图像中学习以前未知的(及/或无法解释的)特征,这些特征不同于基于种子的视觉及/或物理特性(如颜色、大小和纹理)从图像中提取的经典视觉特征。此外,现有的方法中没有一种能够区分彼此相似的种子(例如同一母体、在耐受范围内的相同地理位置、在耐受范围内的相同环境条件及/或等基因种子)。
*Santosh Shrestha、Lise Christina Deleuran和RenéGislum所著的“通过多光谱可见-近红外光谱学和化学计量学对不同西红柿种子品种进行分类”,似乎与使用多光谱相机捕捉图像有关,这些图像是用经典方法分析的,其中在视觉上提取基于种子物理特性的独特特征。例如,颜色和大小。作者使用了5种不同的西红柿品种,这些品种之间似乎没有任何特定的遗传关系,使它们在遗传上非常不同,在物理及/或视觉上也有很大差异,因此使用基于视觉提取特征的标准方法很容易区分。
*Santosh Shrestha、Lise Christina Deleuran和RenéGislum所著的“多光谱成像在西红柿品种鉴定中的应用,似乎涉及到使用多光谱相机捕捉图像,这些图像通过经典方法进行分析,这些方法基于种子的物理特性,在视觉上具有明显的特征被提取出来。例如颜色和大小。此外,成对的自花授粉种子和杂交种子可能已经在不同的环境条件下生长,这导致视觉上明显的表型差异,这些差异很容易使用标准方法进行检测。
*“通过多光谱成像识别单倍体和二倍体玉米籽粒”似乎涉及到使用多光谱相机捕捉图像,这些图像使用经典方法进行分析,在这些方法中,根据种子的物理特性提取视觉上不同的特征。例如,颜色和大小。分类准确率约为50%,这对于工业分类应用来说是不切实际的。
本文所述的至少一些系统、方法、装置及/或代码指令改进了多个种子的自动分选及/或自动分类的技术领域。自动分选及/或自动分类不是基于现有手动过程在计算器上的简单编码。而是,本文所述的至少一些系统、方法、装置及/或代码指令基于本文所述的经训练的神经网络代码将主观方法转变为客观的、可再现的方法。发明人开发了新的步骤,这些步骤以前在手动过程中不存在,并且在手动过程中没有对应的步骤,即训练神经网络代码及/或执行经训练的神经网络代码以自动分类及/或群集多个种子的多个图像。至少本文描述的经训练的神经网络代码提供了客观的、可再现的分类及/或群集结果,这是使用标准手动过程无法获得的。此外,如本文所述,如果种子在视觉上无法由用户区别的情况下,本文所述的自动化过程能够执行不能手动进行的分类及/或群集。
如本文所用术语“种子”是指一植物的种子,它是一个完整的独立生殖单元,通常由有性受精或无性繁殖(无融合生殖)产生的合子胚、储存营养物质的结构(称为子叶、胚乳或大型配子体)组成,以及一层保护性的种皮,它包围了储藏结构和胚胎。
根据本发明的实施例进行分类的种子通常是有存活能力的,即能够发芽,尽管在某些情况下,也考虑了无存活能力种子的分类,如下文进一步所述。
有性合子和无融合生殖植物种子的萌发通常是由一种或多种环境线索触发的,例如水、氧气的存在,最佳温度或冷/热处理,以及暴露于光及其持续时间。种子萌发是通过一系列的事件开始的,这些事件是从静止的干种子摄取(吸收)水分开始的,然后经过各种生物物理、生物化学和生理事件,最终导致胚胎沿着其轴伸长和后代的发育。
种子发芽的连续过程可以分为三个阶段。第一阶段被称为吸水,其特征是种子中迅速开始吸水。在第一阶段中发生的其他重要事件是修复损伤的细胞核和粒线体DNA的修复,这可能是在种子干燥及/或成熟过程中发生的,以及随后通过现有mRNA促进的蛋白质合成。
第二阶段的特点是吸水率大大降低(即吸水已经完成)。这伴随着酶的激活或从头合成,这些酶专门用于水解胚胎、子叶或大型配子体中碳水化合物、蛋白质和脂类的复杂的储备储存。这些复杂的储存储备的水解提供了种子胚的呼吸和生长所需的基础物质。
第三阶段的特征是吸水率第二次快速增加。在第三阶段吸收的水主要用于在胚胎的根和芽顶端开始分生细胞分裂,并用于沿胚轴吸收细胞。胚轴细胞吸收的水分施加了膨胀压力,导致细胞轴向伸长。最终结果是,胚胎通过种皮伸长到出芽点。芽或根的胚根通过种皮突出表明发芽已经完成,幼苗开始生长和发育。
本文所用术语“植物”包括整个植物、嫁接植物、植物的祖先和后代。植物可以是任何形式,包括悬浮培养物、胚胎、分生组织、愈伤组织、叶片、配子体、孢子体、花粉和小孢子。
根据本发明分类的种子可来自任何植物,例如属于绿色植物超科的植物,尤其是单子叶植物和双子叶植物,包括饲料或豆科植物、观赏植物、粮食作物、树木或灌木,选自于下列中:相思属植物、槭属植物、猕猴桃属植物、七叶树属植物、澳洲龙胆属植物、阿比齐亚属植物、三色阿尔索拉属植物、须芒草属植物、花生属植物、槟榔属、阿斯特里亚香属、黄芪属、百日香属、桦木属、芸苔属、芸苔属、芸苔属、非洲伯克属、布地亚属、卡达巴粉藻属、木兰属、山茶属、美人蕉属、辣椒属、决明子属、毛茛属、木瓜属、肉桂属、小粒种咖啡、山茱萸、小冠花、栒子酸橙木属、山楂属、黄瓜属、柏木属、银荆桫椤属、榅属、柳杉属、香茅属、银蕨属、榲桲属、小叶黄檀、黄檀、大叶黄檀、山茱萸属、地榆属、地肤子属、地榆属、杜立科属、杜利乔斯属、多利库姆属、羚羊草、拉菲草属、科拉卡纳属、刺槐属、刺桐属、欧几里香属、欧几里亚属、欧加利亚六世/洛萨属、帕戈皮鲁姆属、斐济果、草莓属、佛莱明属、雀儿属、天竺葵、银杏叶、野生种大豆、油麻菌属、多毛棉子属、白花棉属、毛果海棠属、海棠属、海棠属、海棠属、野大麦属、红扁豆属、金丝桃属、风信草、靛蓝、鸢尾属、火龙果、羽扇豆属、莴苣属、银合欢、单瓣金盏花、豆科罗顿豆属、莲花属、长硬皮豆属、苹果属植物、马力浩特海棠、苜蓿唾液、水杉属、沙拐枣属、烟草属、野蔷薇属、鸟足麒麟属、草本稻属、非洲狼尾草属、狼尾草属、大花蕙兰属、矮牵牛属、菜豆属、加拿利凤凰、黄花楠、石楠、云杉、松属、豌豆、罗汉松、罗汉果、胡杨白杨、胡杨、金钱草、铁杉、星叶蕨、梨、栎属、伞形鼠李属、沙皮栎属、纳豆树属、罗汉果、醋栗属、刺槐属、蔷薇属、悬钩子属、柳属、血红石楠、石楠、红杉、巨杉、高粱、菠菜属、流苏孢子虫属、秃头针茅属、矮柱花属、塔德哈吉属、落羽杉、三叶草、白三叶草属、小麦、铁杉、越橘属、豇豆属、葡萄属、水曲柳属、马蹄莲属、玉米属、苋菜、朝鲜蓟、芦笋、西兰花、抱子甘蓝、卷心菜、双低油菜籽、胡萝卜、花椰菜、芹菜、羽衣甘蓝、亚麻、甘蓝、扁豆、油菜、秋葵、洋葱、马铃薯、大米、大豆、稻草、甜菜、甘蔗、向日葵、西红柿、南瓜茶、玉米、小麦、大麦、黑麦、燕麦、花生、豌豆、小扁豆和苜蓿、棉花、油菜籽、低芥酸菜子、胡椒、向日葵、烟草、茄子、桉树、树木、观赏植物、多年生草和饲料作物。或者,藻类和其他非绿色植物可用于本发明的方法。
根据本发明的一些实施例,种子来自作物植物,例如水稻、玉米、小麦、大麦、花生、马铃薯、芝麻、橄榄树、棕榈油、香蕉、大豆、向日葵、油菜、甘蔗、苜蓿、小米、豆科(豆、豌豆)、亚麻、羽扇豆、油菜、烟草、杨树和棉花。
根据具体实施例,多个所述种子是玉米种子。
根据本发明的一些实施例,多个所述种子来自双子叶植物。
根据本发明的一些实施例,多个所述种子来自单子叶植物。
在自然界中,植物种子的成熟通常伴随着水分在一段时间内逐渐流失到5%至35%的含水量水平。一旦达到这些低水分水平,植物种子就可以长期储存。
因此,在一个实施方案中,种子是干燥的种子。干燥过程的合适条件(温度、相对湿度和时间)将根据种子而变化,并且可以凭经验确定(例如参见,Jeller等人,2003年。同上)。
本发明的种子也可以是发芽的种子。
根据本发明的教示,本领域技术人员已知的任何种子发芽方法都可以使用。发芽可在各种温度和通风条件下进行(例如搅动、搅拌、起泡等),使用任何控制吸水的技术:使用溶液(无机物,例如盐/营养物,或有机物,如PEG)或固体颗粒系统,或通过用水控制水合作用来进行发芽,例如,在Taylor,A G.等人,1998年,种子科学技术8:245-256中所述)。
一发芽基质的特征在于其有效的渗透潜力。有效的渗透势通常会降低种子吸水可利用的水势,从而允许或导致有限量的水进入种子,直至足以萌发初始步骤的水平,而没有真正突出的根,即使种子发芽。只有当种子的水分达到生理发育所需的潜力时,种子才会发芽,而这种潜力因植物种类而异。通常,该值在0到-2mPa之间。许多提供适当渗透势的发芽基质正在被使用,包括水、含有一种或多种溶质的水、固体基质等。例如,发芽基质可包含有机性质之渗透材料之充气溶液,例如聚乙二醇(PEG)(见美国专利号US5,119,598)、甘油、甘露醇或无机盐(或盐之组合)例如磷酸钾、硝酸钾等。或者,种子可以用固体基质来发芽。固体基质材料应该有很高的保水能力,以使种子能够吸收。在该方法中,底漆基质可包含吸收性介质,例如粘土、蛭石、珍珠岩、锯末、玉米芯及/或泥炭,以吸收水分,然后将其转移到种子中(例如,美国专利号US4,912,874)。通过改变培养基中的水含量和培养基/种子的比例来控制水合程度。还已知将种子吸收在PEG 6000和蛭石或其他基质的浆液中的方法(例如,美国专利号US5,628,144)。在其他方法中,使用半透膜进行发芽,所述膜调节水从具有给定渗透压的溶液中转移到种子中(例如美国专利号US5,873,197)。在其他方法中,可以使用超声波能量来辅助发芽过程(例如,美国专利号US6,453,609)。可选的是,发芽基质中可以包含多种添加剂、化学物质及/或化合物,包括表面活性剂、选择性剂、杀真菌剂、调节渗透势的试剂、渗透保护剂、在干燥过程中有助于干燥或保护种子的试剂、增强种子加工的试剂、延长储存货架期的试剂、促进外皮生长及/或种子饱满的试剂、促进种子发芽的试剂等。发芽基质中可包含杀真菌剂,例如硫草胺、硫丹、甲霜灵、五氯硝基苯、苯氨基磺胺、杀菌剂或其他防腐剂。另外,各种生长调节剂或激素,如赤霉素或赤霉素、细胞分裂素、脱落酸抑制剂、2-(3,4-二氯苯氧基)三乙胺(DCPTA)、硝酸钾和乙交酯也可以存在于发芽基质中。其他可选试剂包括甘油、聚乙二醇、甘露醇、二甲基亚砜、Triton X-100、吐温-20、NP-40、离子化合物、非离子化合物、表面活性剂、洗涤剂等。足以产生发芽种子的时间可使种子内发芽前的代谢过程达到任何水平,包括紧接在胚根出现之前的水平。产生发芽种子的时间取决于特定的种子品种,其状态或条件以及发芽基质的水势。对于某些种子,通常已知给定种子类型的典型含水量和介质水势,通常最好在易于确定的渗透势和温度范围内测试一个新种子的小样本,以确定什么样的温度、水势和时间条件提供了适当的吸胀作用种子和由此产生的发芽前阶段。进行发芽处理的温度可能随要处理的种子而异,但通常在18℃至30℃之间。种子萌发后,种子可以保留在发芽基质中,用根部出现来表示。通过这种方法生产的种子可以进一步干燥(例如,如美国专利号US4,905,411中)。
根据本发明实施例分类的种子可以来自栽培植物。
如本文所用术语“栽培植物”,是指经过育种、诱变或者基因工程改良的植物。
通过育种改良的植物:
传统或现有植物的育种。这涉及到紧密或远缘相关植物的故意杂交(杂交),从而产生具有理想特性的新品种。
回交或导入育种。在这个过程中,一个有理想特性的植物与一个不具有该特性但在所有其他特性上都是可取的植物杂交。为了保证品质的变化,只有一个步骤,那就是改变原有的品质。下一代植物被称为后代,在下文中有进一步的定义。这重复几次,总是交叉回到高产的亲本或具有所需性状的亲本,并选择具有所需性状的后代。这一过程确保下一代在大多数方面与高产亲本相似,同时从另一个亲本身上增加性状。
如本文所用术语“后代植物”是指从一个或多个亲本植物或其后代的营养或有性生殖中产生的任何植物。例如,一个后代植物可通过克隆或自交亲本植物或通过使两个亲本植物杂交获得,包括自交以及F1或F2或更后代。F1是由亲本产生的第一代后代,其中至少有一个首次用作特征的供体,而第二代(F2)或后代(F3,F4等)的后代则是由F1、F2等的自交、异交、回交或其他杂交产生的样本。因此,F1可以是(并且在一些实施例中是)由两个真正的育种亲本之间的杂交产生的杂交后代(即,真正育种的双亲都是感兴趣的性状或其等位基因的纯合子,例如,在这种情况下,具有如本文所述的有长柱头和恢复系的雄性不育),而F2可以是(并且在一些实施例中是)由F1杂种的自花授粉产生的后代。
近亲繁殖。根据物种,某些植物可能会自己受精。这样做是为了产生一个自交品种,它与后代完全相同。
杂交育种。在这种情况下,将两个不同的自交品种杂交以产生具有稳定特性和杂种存活力的后代,其中后代的生产力要比任一亲代高得多。
如本文所用术语“杂交种子”是由两个植物交叉授粉产生的种子。用杂交种子培育的植物可能具有更好的农业特性,例如更好的产量、更高的均匀性及/或抗病性。杂交种子不能繁殖,也就是说,通过自交杂交植物(由杂交种子生长的植物)产生的种子不能可靠地使下一代产生相同的杂交植物。因此,每次种植必须从亲本植物系中产生新的杂交种子。由于大多数农作物都具有雄性和雌性器官,因此只能通过防止雌性亲本的自花传粉并允许或促进所需花粉的授粉来生产杂种种子。有多种方法可以防止雌性亲本的自花授粉,其中一种防止自花授粉的方法是在花粉脱落前机械除去花粉产生器官。商业杂交玉米种子(玉米、甜玉米)的生产通常涉及将所需的雄性和雌性亲本种植,通常在隔离的田地中以单独的行或块进行,处理雌性亲本植物以防止花粉脱落,确保只有指定的雄性亲本为雌性授粉,只从雌性亲本中收获杂交种子。杂种种子可能是单杂交(例如,两个自交系之间的第一代杂交)、改良的单杂交(例如,两个自交系之间的第一代杂交,其中一个或另一个可能已通过使用密切相关的杂交进行了轻微修改)、双杂交(例如两个自交系之间的第一代杂交的结果单交种、三向杂交(例如,单交与自交系之间的第一代杂交)、顶杂交(例如,自交系和自由授粉品种之间的第一代杂交,或单杂交与自由授粉品种之间的第一代杂交)、或自由授粉品种(例如,按照标准选择的植物群体,这些植物可能表现出变异,但具有将一个品种与其他品种区分开来的特性)的结果。
突变育种改良的植物
突变可能是自然原因引起的,也可能是由于将植物暴露于化学物质或辐射下而人为造成的。
转基因植物
如本文所述由神经网络计算的分类类别,及/或如本文所述由神经网络计算的嵌入,及/或如本文所述创建的群集,可以基于种子的以下一个或多个性状。转基因产生的结果,这构成了根据转基因产生的以下特征对种子进行分选的基础。
在一实施例中,种子获自转基因植物。在又一个实施例中,可以处理种子,使得它们直接摄取异源DNA,参见例如美国专利号US 20150040268,其内容通过引用并入本文。这些植物可以通过基因改造来表达一种蛋白质,或者另一种方法是删除一种蛋白质的表达。
通常,一个或多个基因被整合到转基因植物的遗传物质中,以改善植物的某些特性。此类遗传修饰还包括但不限于蛋白质(寡肽或多肽)的靶向翻译后修饰,例如通过糖基化或聚合物添加,例如预酸化、乙酰化或法尼酰化部分或PEG部分(例如,在生物技术期刊中公开的,2001年7月至8月;17(4):720-8.;蛋白质工程,2004年1月;17(1):57-66;自然实验步骤,2007年;2(5):1225-35;化学生物学杂志,2006年10月;10(5):487-91,2006年8月28日;生物材料期刊,2001年3月;22(5):405-17;生物结合化学,2005年1月至2月;16(1):113-21)。在一个实施例中,已对植物进行基因修饰以使其能够耐受特定类别的除草剂的应用,例如羟基苯丙酮酸双加氧酶(HPPD)抑制剂;乙酰乳酸合成酶(ALS)抑制剂,例如磺酰脲(参见美国专利号US 6222100、世界知识产权组织WO 01/82685、WO 00/26390、WO 97/41218、WO98/02526、WO 98/02527、WO 04/106529、WO 05/20673、WO 03/14357、WO 03/13225、WO 03/14356、WO 04/16073)或咪唑啉酮(参见美国专利号US6222100、世界知识产权组织WO 01/82685、WO 00/26390、WO 97/41218、WO 98/02526、WO 98/02527、WO 04/106529、WO 05/20673、WO 03/14357、WO 03/13225、WO 03/14356、WO 04/16073);烯醇丙酮酸基莽草酸-3-磷酸合成酶(EPSPS)抑制剂,例如草甘膦(例如参见世界知识产权组织专利WO 92/00377);谷氨酰胺合成酶(GS)抑制剂,例如草甘膦酸盐(例如参见EP-A-0242236、EP-A-242246)或含氧除草剂(参见美国专利号US5559024)。神经网络可以计算分类类别,及/或嵌入,及/或进行群集,以便根据整合的遗传材料对种子进行分类。
在另一实施例中,已对植物进行基因修饰以表达一种或多种杀虫蛋白质,尤其是来自细菌属芽孢杆菌、尤其是苏云金芽孢杆菌已知的蛋白质,例如a-内毒素,例如CryIA(b)、CryIA(c)、CryIF、CryIF(a2)、CryIIA(b)、CryIIA、CryIIIB(b1)或Cry9c;植物性杀虫蛋白(VIP),如VIP1,VIP2,VIP3或VIP3A;寄生于线虫的细菌的杀虫蛋白质,例如光弹线虫或异种线虫;动物产生的毒素,如蝎子毒素、蜘蛛毒素、黄蜂毒素或其他昆虫特异性神经毒素;由真菌产生的毒素,如链霉菌毒素、植物凝集素,如豌豆或大麦凝集素;凝集素;蛋白酶抑制剂,如胰蛋白酶抑制剂、丝氨酸蛋白酶抑制剂、马铃薯块茎蛋白、胱抑素或木瓜蛋白酶抑制剂;核醣体失活蛋白(RIP),如蓖麻蛋白、玉米-RIP、鸡母珠毒素、抗丝瓜籽核糖体失活蛋白、皂素或溴代丁啶;类固醇代谢酶,例如3-羟基类固醇氧化酶、蜕皮甾类IDP-糖基转移酶、胆固醇氧化酶、蜕皮激素抑制剂或HMG-CoA还原酶;离子通道阻滞剂,如钠或钙通道阻滞剂;保幼激素酯酶;利尿激素受体(螺旋激酶受体);斯蒂尔本合酶、双苄基合酶、几丁质酶或葡聚糖酶。在本发明的背景下,这些杀虫蛋白质或毒素也应明确地理解为前毒素、杂交蛋白质、截短或以其他方式修饰的蛋白质。杂交蛋白质的特征是蛋白质结构域的新组合(例如,参见世界知识产权组织WO 02/015701)。此类毒素或能够合成此类毒素的基因修饰植物的其他实例公开于例如EP-A 374 753、WO 93/007278、WO 95/34656、EP-A 427529、EP-A 451 878、WO 03/018810和WO 03/052073。本领域技术人员通常知道用于生产此类转基因植物的方法,并在下文简要描述。转基因植物中所含的这些杀虫蛋白质赋予生产这些蛋白质的植物以保护其免受某些节肢动物分类学类群的有害害虫的侵害,特别是甲虫(鞘翅目)、苍蝇(双翅目)、蝴蝶和飞蛾(鳞翅目)和植物寄生线虫(线虫)。神经网络可以计算分类类别及/或嵌入及/或进行群集,以便根据所表达的杀虫剂蛋白质对种子进行分类。
在另一实施例中,种子来自表达一种或多种蛋白质的植物,以增加这些植物对细菌、病毒或真菌病原体的抗性或耐受性。这类蛋白质的例子是所谓的“发病相关蛋白”(PR蛋白,例如参见EP-A 039225)、植物抗病基因(例如马铃薯品种,其表达对来自墨西哥野生马铃薯-装饰性的茄属植物茄属茄属植物-的抗疫霉菌的抗性基因)或T4溶菌酶(例如,能够合成这些蛋白质的马铃薯品种,其对诸如解淀粉欧文氏菌的抗性增强)。产生这种基因修饰植物的方法是本领域技术人员通常已知的,并在下面简要描述。神经网络可以计算分类类别及/或嵌入及/或执行群集,以根据表达的蛋白质将多个种子分类。
在又一实施例中,种子来自经基因修饰以表达一种或多种蛋白质以提高生产力(例如,生物产量、谷物产量、淀粉含量、含油量或蛋白质含量)、耐旱性、耐盐分或其他限制生长的环境因素的耐受性或对害虫的耐受性的植物获得这些植物的真菌、细菌或病毒病原体。神经网络可以计算分类类别及/或嵌入及/或执行群集,以根据表达的蛋白质将多个种子分类。
在又一实施例中,种子来自经基因修饰以表达多肽以改善人类或动物营养的植物,例如产生促进健康的长链ω-3脂肪酸或不饱和ω-9脂肪酸的油料作物。神经网络可以计算分类类别及/或嵌入及/或执行群集,以根据所表达的多肽将多个种子分类。
根据本发明实施例分类的种子可以源自植物品系-例如优良品种。因此,种子可能来自等基因植物。
根据本发明的一些实施例,在植物内表达外源多核苷酸是通过用外源多核苷酸转化植物的一个或多个细胞来实现的,然后由转化的细胞生成成熟植株,并在适宜于在成熟植株内表达外源多核苷酸的条件下培养成熟植株。
根据本发明的一些实施例,通过向植物细胞引入包括本发明某些实施例的外源多核苷酸和至少一个用于指导外源多核苷酸在宿主细胞(植物细胞)中转录的启动子的核酸建构体来实现转化。神经网络可计算分类类别及/或嵌入及/或执行聚类,以根据核酸建构体对种子进行分类。下文提供了进一步的转化方法。
如上所述,根据本发明一些实施方案的核酸结构包含启动子序列和本发明一些实施方案的分离的多核苷酸。
根据本发明的一些实施例,分离的多核苷酸可操作地连接至启动子序列。
如果调节核酸序列能够对与其连接的编码序列发挥调节作用,则将编码核酸序列“有效连接”到调节序列(例如启动子)。
本文中使用的术语“启动子”是指位于基因转录起始位点上游的DNA区域,RNA聚合酶与之结合以启动RNA的转录。启动子控制基因在何处(例如,植物的哪个部分)及/或何时(例如,在生物体生命的哪个阶段或条件下)表达。
根据本发明的一些实施例,启动子与分离的多核苷酸及/或宿主细胞异源。
如本文所使用的术语“异源启动子”是指来自不同物种或来自同一物种但来自于分离多核苷酸序列的不同基因位点的启动子。
根据本发明的一些实施例,分离的多核苷酸与植物细胞是异源的(例如,与植物细胞相比,多核苷酸来自不同的植物物种,因此分离的多核苷酸和植物细胞并非来自同一植物物种)。
本发明的核酸建构体可使用任何合适的启动子序列。优选地,所述启动子是构成性启动子、组织特异性启动子或非生物应力诱导启动子。
根据本发明的一些实施例,所述启动子是植物启动子,其适于在植物细胞中表达外源多核苷酸。
本发明一些实施例的核酸建构体可进一步包括适当的可选择标记及/或复制起点。神经网络可以计算分类类别,及/或嵌入,及/或执行聚类,以便根据可选择的标记及/或复制起点对种子进行排序。根据本发明的一些实施例,所使用的核酸建构体是穿梭载体,其可在大肠杆菌中繁殖(其中所述建构体包括适当的可选择标记物和复制起点)并且与细胞中的繁殖相容。根据本发明的建构体例如可以是质粒、杆状体、克隆载体、黏质体、噬菌体、病毒或人工染色体。
本发明的一些实施方案的核酸建构体可以用于稳定或瞬时转化植物细胞。在稳定的转化中,外源多核苷酸被整合到植物基因组中,因此它代表了稳定和遗传的性状。在瞬时转化中,外源多核苷酸由转化的细胞表达,但未整合到基因组中,因此它代表瞬时性状。
有多种将外源基因引入单子叶植物和双子叶植物的方法(波特里库斯,阿努,植物生理学、植物分子生物学,(1991)42:205-225;岛本等人,自然期刊(1989)338:274-276)。神经网络可以计算分类类别及/或嵌入及/或执行聚类,以根据引入的外源基因对多个种子进行分类。
使外源DNA稳定整合到植物基因组DNA中的主要方法包括两种主要方法:
(i)农杆菌介导的基因转移:Klee等人,(1987)年,植物生理学,38:467-486;克莱和罗杰斯的细胞培养和植物体细胞遗传学,第6卷;植物核基因的分子生物学,Schell,J.和Vasil,L.K.编辑,学术出版社,圣地亚哥,加利福尼亚州(1989)第2-25页;盖恩比,植物生物技术,巴特沃思-海涅曼出版社,马萨诸塞州波士顿,(1989)第93-112页。
(ii)DNA直接摄取:Paszkowski等人,《植物细胞培养和体细胞遗传学》,第6卷,植物核基因的分子生物学,Schell,J.和Vasil,L.K.编辑,学术出版社,圣地亚哥,加利福尼亚州(1989)第52-68页;包括直接将DNA摄取到原生质体的方法,Toriyama,K.等人,(1988)生物技术期刊,6:1072-1074;Zhang等人,植物细胞短时间电击诱导的DNA摄取,植物细胞报导,(1988)7:379-384;From等人,自然期刊,(1986)319:791-793;通过粒子轰击将DNA注入植物细胞或组织中,Klein等人,生物技术期刊(1988)6:559-563;McCabe等人,生物技术期刊,(1988)6:923-926;桑福德,植物生理学,(1990)79:206-209;使用微量移液管系统:Neuhaus等人,理论研究期刊,(1987)75:30-36;Neuhaus和Spangenberg,植物生理学,(1990)79:213-217;细胞培养物、胚胎或愈伤组织的玻璃纤维或碳化硅晶须转化,美国专利号US5464765号,或直接用正在萌发的花粉与DNA孵育,DeWet等人,胚珠组织的实验操作,伦敦,(1985)第197-209页;Ohta,美国国家科学院院刊,(1986)83:715-719。
农杆菌系统包括质粒载体的使用,质粒载体包含整合到植物基因组DNA中的已定义的DNA片段。植物组织的接种方法因植物种类和农杆菌输送系统而异。一种广泛使用的方法是叶盘程序,它可以与任何组织外植体一起进行,为整个植物的分化提供了良好的来源。例如,见Horsch等人。植物分子生物学手册A5,Kluwer学术出版社,多德雷赫特(1988)第1-9页。另一种方法是将农杆菌输送系统与真空渗透相结合。农杆菌系统特别适用于转基因双子叶植物的创造。
有多种直接将DNA转移到植物细胞中的方法。在电穿孔中,原生质体短暂暴露于强电场中。在微量注射中,使用很小的微量移液器将DNA直接机械地注射到细胞中。在微粒轰击中,DNA吸附在微粒上,例如硫酸镁晶体或钨微粒,并且微粒物理上加速进入细胞或植物组织。
稳定转化后,进行植物繁殖。最常见的植物繁殖方法是通过种子繁殖。然而,通过种子繁殖进行再生的缺点在于,由于杂合性而导致作物缺乏均匀性,因为种子是由植物根据门德尔法则所控制的遗传变异产生的。基本上,每一颗种子在基因上都是不同的,并且每颗种子都有自己的特殊性状。因此,优选生产转化植物,使得再生植物具有与亲本转基因植物相同的性状和特征。因此,优选的是通过微繁殖来再生转化的植物,从而提供转化植株的快速、一致的繁殖。
微繁殖是从一个选定的亲本植物或品种中切除的一片组织中培养新一代植物的过程。这个过程允许具有表达融合蛋白的优选组织的植物的大量繁殖。所产生的新一代植物在遗传上与原始植物相同,并具有原始植物的所有特征。微繁殖允许在短时间内大量生产优质的植物材料,并在保持原始转基因或转化植物特征的同时,快速繁殖选定的品种。克隆植物的优点是植物繁殖的速度以及所生产植物的质量和均匀性。
微繁殖是一个多阶段的过程,需要在阶段间改变培养基或生长条件。因此,微繁殖过程包括四个基本阶段:第一阶段,初始组织培养;第二阶段,组织培养增殖;第三阶段,分化和植株形成;第四阶段,温室培养和硬化。在第一阶段,初始组织培养,建立组织培养并证明无污染。在第二阶段,将初始组织培养物繁殖,直到从幼苗中产生足够数量的组织样品以满足生产目标为止。在第三阶段,在第二阶段生长的组织样本被分成独立的小植株。在第四阶段,转化后的小植株被转移到温室中进行硬化处理,在那里植物对光的耐受性逐渐增强,从而可以在自然环境中生长。
根据本发明的一些实施例,转基因植物是通过叶细胞、分生组织细胞或整个植物的瞬时转化产生的。神经网络可以计算分类类别及/或嵌入及/或执行聚类,以便根据转基因植物的以下一个或多个指示来分类种子。
瞬时转化可以通过上述任何一种直接DNA转移方法来实现,也可以通过使用修饰的植物病毒进行病毒感染来实现。
已显示可用于植物宿主转化的病毒包括CaMV、烟草花叶病毒(TMV)、雀麦花叶病毒(BMV)和菜豆普通花叶病毒(BV或BCMV)。使用植物病毒的植物转化描述于美国专利号US4855237(豆金花叶病毒;BGV)、EP-A 67553(TMV)、日本特许公开号63-14693(TMV)、EPA194809(BV)、EPA 278667(BV)、Gluzman,Y.等人,《分子生物学通信:病毒载体》,纽约冷泉港实验室,第172-189页(1988年)。在世界知识产权组织WO 87/06261中描述了用于在包括植物在内的许多宿主中表达外源DNA的伪病毒颗粒。
根据本发明的一些实施例,用于瞬时转化的病毒是无毒的,因此不能引起诸如生长速度降低、镶嵌、环斑、卷叶、变黄、条纹、痘形成、肿瘤形成和凹陷等严重症状。合适的无毒病毒可以是自然发生的无毒病毒或人工减毒病毒。病毒的减毒可通过使用本领域公知的方法来实现,包括但不限于亚致死加热、化学处理或定向突变技术,例如Kurihara和Watanabe(分子植物病理学4:259-2692003;Gal-on等人,1992年;Atreya等人,1992;和Huet等人1994年。
合适的病毒株可以从可用的来源获得,例如,美国型培养收集(ATCC)或从受感染的植物中分离。从受感染植物组织中分离病毒可通过本领域公知的技术实现,例如由Foster和Taylor编辑的“植物病毒学协议:从病毒分离到转基因抗性(分子生物学方法,第81卷)”,Humana出版社,1998年。简而言之,被认为含有高浓度合适病毒的受感染植物的组织,最好是幼叶和花瓣,在缓冲溶液(例如磷酸盐缓冲溶液)中研磨以产生病毒感染的树液,可用于随后的接种。
以上参考文献以及Dawson,W.O.等人,病毒学(1989)172:285-292;Takamatsu等人证明了用于在植物中引入和表达非病毒性外源多核苷酸序列的植物RNA病毒的构建,胚胎期刊,(1987)6:307-311;French等人,科学期刊,(1986)231:1294-1297;Takamatsu等人,欧洲生化学会联合会快报,(1990)269:73-76;以及美国专利号US5316931。
当病毒是DNA病毒时,可以对病毒本身进行适当的修饰。或者,可以先将病毒克隆到细菌质粒中,以便于用外源DNA构建所需的病毒载体。然后病毒可以从质粒中去除。如果病毒是DNA病毒,细菌的复制起点可以附着在病毒DNA上,然后由细菌复制。这种DNA的转录和转译将产生包裹病毒DNA的外壳蛋白。如果病毒是RNA病毒,通常将病毒克隆为cDNA并插入质粒。然后质粒被用来制造所有的结构。然后通过转录质粒的病毒序列和转译病毒基因来产生RNA病毒,产生包裹病毒RNA的外壳蛋白。
在一个实施例中,本发明提供了一种植物病毒多核苷酸,其中天然外壳蛋白编码序列已从一病毒多核苷酸中删除,一个非天然植物病毒外壳蛋白编码序列和一个非天然启动子已被插入,优选地所述非天然启动子为非天然外壳蛋白编码序列的亚基因组启动子,能够在植物宿主中表达,包装重组植物病毒多核苷酸,并确保重组植物病毒多核苷酸对宿主的系统性感染。或者,可以通过在外壳蛋白基因中插入非天然多核苷酸序列使外壳蛋白基因失活,从而产生蛋白质。重组植物病毒多核苷酸可包含一种或多种其他非天然亚基因组启动子。每个非天然亚基因组启动子都能够在植物宿主中转录或表达相邻基因或多核苷酸序列,并且不能彼此重组,也不能与天然亚基因组启动子重组。如果包括多于一个的多核苷酸序列,则可以在天然植物病毒亚基因组启动子或天然和非天然植物病毒亚基因组启动子附近插入非天然(外源)多核苷酸序列。非天然多核苷酸序列在亚基因组启动子的控制下在宿主植物中转录或表达,以产生所需产物。
在第二实施例中,与第一实施例一样提供重组植物病毒多核苷酸,但天然外壳蛋白编码序列放置在非天然外壳蛋白亚基因组启动子之一附近,而不是非天然外壳蛋白编码序列上。
在第三实施例中,提供一种重组植物病毒多核苷酸,其中天然外壳蛋白基因与其亚基因组启动子相邻,并且一个或多个非天然亚基因组启动子已插入病毒多核苷酸中。插入的非天然亚基因组启动子能够在植物宿主中转录或表达相邻基因,并且不能彼此重组,也不能与天然亚基因组启动子重组。可以将非天然多核苷酸序列插入到非天然亚基因组植物病毒启动子附近,使得该序列在亚基因组启动子的控制下在宿主植物中转录或表达,以产生所需的产物。
在第四实施例中,与第三实施例一样提供重组植物病毒多核苷酸,但天然外壳蛋白编码序列被非天然外壳蛋白编码序列取代。
病毒载体被重组植物病毒多核苷酸编码的外壳蛋白包裹,产生重组植物病毒。重组植物病毒多核苷酸或重组植物病毒用于感染合适的寄主植物。重组植物病毒多核苷酸能够在宿主中复制、在宿主中系统性传播、外源基因(外源性多核苷酸)在宿主中转录或表达以产生所需的蛋白质。
将病毒接种到植物上的技术可以在Foster和Taylor,植物病毒学方案:从病毒分离到转基因抗性(分子生物学方法,第81卷”),Humana出版社,1998年;Maramorosh和Koprowski编辑,病毒学方法,第7卷,学术出版社,纽约,1967-1984年;Hill,S.A,植物病毒学方法,牛津,布莱克韦尔,1984年;沃尔基(D.G.A.),应用植物病毒学,纽约,1985年;和Kado和Agrawa合编,植物病毒学原理和技术,范·诺斯特兰德·雷因霍尔德,纽约,中找到。
除上述以外,还可以将本发明的多核苷酸引入叶绿体基因组,从而使叶绿体表达。
根据本发明的一些实施例,所转化的植物与转基因(即本发明的一些实施例的外源多核苷酸)是同型合子,因此由此产生的所有种子都包括转转基因。神经网络可以计算分类类别及/或嵌入及/或进行聚类,以便根据转基因对种子进行分类。
根据本发明的一些实施例,种子来自已经进行基因组编辑的植物。神经网络可以根据已经进行基因组编辑的指示来计算分类类别及/或嵌入及/或执行群集,以对种子进行分类。
基因组编辑是一种反向遗传学方法,使用人工工程核酸酶在基因组中的所需位置切割并产生特定的双链断裂,然后由细胞内源性过程如等基因定向修复(HDR)和非等基因末端连接(NHEJ)来修复。NHEJ直接在双链断裂处连接DNA末端,而HDR利用等基因序列作为模板在断裂点处再生缺失的DNA序列。为了给基因组DNA引入特定的核苷酸修饰,HDR过程中必须存在含有所需序列的DNA修复模板。无法使用传统的限制性内切核酸酶进行基因组编辑,因为大多数限制性内切酶都将DNA上的几个碱基对识别为目标,而且在整个基因组的许多位置上都存在被识别的碱基对组合的可能性很高,从而导致多次切割而不是限制在所需位置。为了克服这一挑战并创建特定于位点的单链或双链断裂,迄今为止已经发现了几种不同类别的核酸酶并对其进行了生物工程改造。这些包括巨核酸酶、锌指核酸酶(ZFN)、转录激活子样效应子核酸酶(TALENs)和CRISPR/Cas系统。
基因组编辑是通过修改目标植物基因组序列来影响目标性状的有力手段。这种修饰可以产生新的或修饰的等位基因或调控组件。
此外,基因组编辑技术的痕迹可用于标记辅助选择(MAS),如下所述。根据本发明的诱变/基因组编辑方法的目标植物是任何感兴趣的植物,包括单子叶植物或双子叶植物。
通过基因组编辑使多肽过度表达可以通过以下方式实现:(i)替换编码目标多肽的内源序列或放置其的调控序列,及/或(ii))在基因组的目标区插入编码所需多肽的新基因,及/或(iii)引入点突变,从而导致编码目的多肽的基因上调(例如,通过改变调控序列,例如启动子、增强子、5'-UTR及/或3'-UTR、或编码序列中的突变)。
基因组编辑系统概述
已知有几种系统可以实现基因组编辑。下面详述的示例:
巨核酸酶-巨核酸酶通常分为四个家族:LAGLIDADG家族、GIY-YIG家族、His-Cys-box家族和HNH家族。这些家族以结构基序为特征,影响催化活性和识别序列。例如,LAGLIDADG家族的成员的特征在于具有保守的LAGLIDADG基序的一个或两个复制。这四个巨核酶家族在保守的结构元素方面彼此之间有很大的区别,因此,DNA识别序列的特异性和催化活性也不同。巨核酸酶普遍存在于微生物物种中,具有独特的特性,即具有很长的识别序列(>14bp),因此它们对在所需位置切割具有天然的特异性。可以利用它来进行位点特异性双链断裂,从而在引入所需序列后指导调控组件或编码区的修饰。本领域技术人员可以使用这些天然存在的巨核酸酶,但是这种天然存在的大范围核酸酶的数目是有限的。为了克服这一挑战,突变和高通量筛选方法被用来创造识别独特序列的巨核酸酶变体。例如,不同的巨核酸酶被融合以产生识别新序列的杂合酶。或者,可以改变巨核酸酶的DNA相互作用氨基酸来设计序列特异性巨核酸酶(参见美国专利号US 8021867)。例如可以使用Certo、MT等人在自然方法期刊(2012)第9:073-975期中描述的方法;及美国专利号US8,304,222、US8,021,867、US8,119,381、US8,124,369、US8,129,134、US8,133,697、US8,143,015、US8,143,016、US8,148,098、或US8,163,514,来设计巨核酸酶。通过引用将上述文献的内容全部并入本文中。或者,可以使用商用技术,如Precision Biosciences的定向核酸酶编辑器TM的基因组编辑技术来获得具有位点特异性切割特征的巨核酸酶。
ZFNs和TALENs——两类不同的工程核酸酶,锌指核酸酶(ZFNs)和转录激活剂样效应子核酸酶(TALENs),均被证明能有效地产生靶向双链断裂(Christian等人,2010;Kim等人,1996;Li等人,2011;Mahfouz等人,2011;Miller等人,2010)。
基本上,ZFNs和TALENs限制性核酸内切酶技术利用一种非特异性DNA切割酶,该酶与一种特定的DNA结合域相连(分别是一系列锌指结构域或TALE重复序列)。通常,选择其DNA识别位点和切割位点彼此分开的限制酶。切割部分被分离,然后连接到一个DNA结合域,从而产生一种对所需序列具有非常高特异性的内切酶。具有这种性质的示例性限制酶是Fokl。另外,Fokl的优点是需要二聚化才能有核酸酶活性,这意味着当每个核酸酶伙伴识别出一个独特的DNA序列时,特异性显着提高。为了增强这种效应,Fokl核酸酶被设计成只能作为异二聚体发挥作用并提高催化活性。异二聚体功能核酸酶避免了不必要的同二聚体活性,从而增加了双链断裂的特异性。
因此,例如为了靶向一个特定的位点,ZFNs和TALENs被构造成核酸酶对,其中每一个成员都被设计成在目标位点结合相邻序列。在细胞中瞬时表达后,核酸酶结合到它们的目标位点,并且FokI结构域异源二聚体形成双链断裂。通过非等基因末端连接(NHEJ)途径修复这些双链断裂通常会导致小缺失或小序列插入。由于NHEJ所做的每一次修复都是独一无二的,使用一对核酸酶可以在目标位点产生一系列不同缺失的等位基因序列。缺失的长度范围通常从几对碱基到几百个碱基对不等,但是通过同时使用两对核酸酶在细胞培养中成功产生了较大的缺失(Carlson等人,2012;Lee等人,2010)。此外,当与目标区等基因的DNA片段与核酸酶对一起引入时,双链断裂可通过等基因定向修复进行修复,以产生特定的修饰(Li等人,2011年;Miller等人,2010年;Urnov等人,2005年)。
虽然ZFNs和TALENs的核酸酶部分具有相似的性质,但这些工程核酸酶的区别在于它们的DNA识别肽。ZFNs依靠Cys2-His2锌指,TALENs依赖TALEs。这两个DNA识别肽结构域均具有在其蛋白质中天然存在的特征。Cys2-His2锌指通常存在于间隔为3个碱基对的重复序列中,并且在多种核酸相互作用蛋白中以多种组合形式存在。另一方面,在氨基酸和识别的核苷酸对之间具有一对一识别比率的重复序列中发现了TALEs。由于锌指和TALE均以重复模式发生,因此可以尝试使用不同的组合来创建各种各样的序列特异性。制备位点特异性锌指核酸内切酶的方法包括,例如模块组装(其中与三联体序列相关的锌指连续连接以覆盖所需序列);OPEN(低严格性选择肽结构域与三联体核苷酸,然后高严格性选择肽组合与细菌系统中的最终目标);以及锌指文库的细菌一杂交筛选等。ZFNs也可以从例如SangamoBiosciencesTM(加利福尼亚里士满)的设计和市售获得。
设计和获得TALENs的方法如Reyon等人,自然生物技术,2012年5月;30(5):460-5;Miller等人,国家生物技术期刊,(2011)29:143-148;Cermak等人,核酸研究(2011)39(12):e82,以及Zhang等人,自然生物技术(2011)29(2):149–53。Mayo Clinic引入了一个最近开发的基于网络的程序,名为Mojo Hand,用于设计用于基因组编辑应用程序的TAL和TALEN构建体(可通过www.talendesign.org进入)。TALEN也可以从例如Sangamo BiosciencesTM(加利福尼亚里士满)的设计和市售获得。
引入目标序列以改善性状后,用于精确靶向的ZFN/TALEN系统功能可用于引导调控组件及/或编码区的修饰。
CRISPR/Cas9–CRIPSR/Cas9基因组编辑系统包含两个不同的组成部分:gRNA(引导RNA)和一个内切酶,如Cas9。
gRNA通常是20个核苷酸的序列,编码目标等基因序列(crRNA)和内源细菌RNA的组合,该序列在单个嵌合转录物中将crRNA与Cas9核酸酶(tracrRNA)连接。通过gRNA序列和补体基因组DNA之间的碱基配对,将gRNA/Cas9复合物募集到目标序列。为了成功结合Cas9,基因组目标序列还必须紧随目标序列后包含正确的Protospacer相邻基序(PAM)序列。gRNA/Cas9复合物的结合将Cas9定位在基因组目标序列上,因此Cas9可以切割DNA的两条链,从而导致双链断裂。就像ZFNs和TALENs一样,CRISPR/Cas产生的双链制动器可以进行等基因重组或NHEJ。
Cas9核酸酶具有两个功能域:RuvC和HNH,各自切割不同的DNA链。当这两个结构域都具有活性时,Cas9会导致基因组DNA中出现双链断裂。
CRISPR/Cas的一个重要优点是,该系统的高效率加上易于创建合成gRNA的能力,可以同时靶向多个基因。此外,大多数携带突变的细胞在目标基因中均存在双等位基因突变。
但是,gRNA序列与基因组DNA目标序列之间碱基配对相互作用的明显灵活性允许与Cas9切割的目标序列的不完全匹配。
含有单一非活性催化结构域(RuvC-或HNH-)的修饰型Cas9酶被称为“切口酶”。仅具有一个活性核酸酶结构域,Cas9切口酶仅切割靶DNA的一条链,从而形成单链断裂或“切口”。通常,以完整的互补DNA炼为模板,通过HDR途径快速修复单链断裂或切口。然而,在Cas9切口酶中引入的两个近端,相反的链切口被视为双链断裂,通常称为“双切口”CRISPR系统。可以通过NHEJ或HDR修复双切口,具体取决于对基因目标点的预期作用。因此,如果特异性和减少非靶向效应至关重要,则通过设计两个gRNA并在基因组DNA的相对链上紧靠靶序列的两个gRNA来使用Cas9切口酶来创建双切口,这将降低脱靶效应,因为任一gRNA单单会产生不会改变基因组DNA的缺口。
含有两个非活性催化结构域(无活性Cas9,或dCas9)的Cas9酶的修饰形式没有核酸酶活性,但仍能基于gRNA特异性与DNA结合。dCas9可作为DNA转录调节因子的平台,通过将非活性酶融合到已知的调控域来激活或抑制基因表达。例如,dCas9单独与基因组DNA中的目标序列结合会干扰基因转录。
有许多公开可用的工具可以帮助选择及/或设计目标序列,以及不同物种中不同基因的生物信息学确定的独特gRNA列表,如Feng Zhang实验室的target Finder、MichaelBoutros实验室的target Finder(E-CRISP)、RGEN工具:Cas-OFFinder,CasFinder:在基因组中识别特定Cas9目标的灵活算法和CRISPR最优目标查找器。
为了使用CRISPR系统,gRNA和Cas9都应该在目标细胞中表达。插入载体可以包含一个质粒上的两个片匣,或者片匣由两个单独的质粒表达。CRISPR质粒可在市场上买到,如Addgene的px330质粒。
其他的基因组编辑平台,包括重组腺相关病毒(rAAV)平台,即“肇事逃逸”或“输入输出”,“双替换”或“标记交换”策略,位点特异性重组酶、转座子酶、等基因定向修复(HDR)。
预期用于操纵种子来源植物的其他基因组编辑平台包括重组腺相关病毒(rAAV)平台、“即插即用”或“由内而外”、“双重替换”或“标记和交换”策略、位点特异性重组酶、转座酶、等基因性定向修复(HDR)。
用于鉴定功效和检测序列改变的方法在本领域中是众所周知的,包括但不限于DNA测序、电泳、基于酶的错配检测测定和杂交测定,例如PCR、RT-PCR、RNase保护、原位杂交、引子延伸、南方墨点法、北方墨点法和墨点法分析。
特定基因的序列改变也可以在蛋白质水平上用色谱法、电泳法、免疫检测法(如ELISA、西方墨点法分析和免疫组织化学)来确定。
另外,本领域普通技术人员可以容易地设计出包含阳性及/或阴性选择标记的插入/剔除建构体,以有效地选择与该建构体进行了等基因重组事件的转化细胞。阳性选择为多样化已吸收外源DNA的克隆群体提供了一种手段。这种阳性标记的非限制性实例包括谷氨酰胺合成酶、二氢叶酸还原酶(DHFR)、具有抗生素耐药性的标记物,如新霉素、潮霉素、嘌呤霉素和芽孢霉素S抗性盒。阴性选择标记对于选择随机整合及/或消除标记序列(例如阳性标记)是必要的。这种阴性标记的非限制性实例包括单纯疱疹病毒胸苷激酶(HSV-TK),其将更昔洛韦(GCV)转化为细胞毒性核苷类似物、次黄嘌呤磷酸核糖转移酶(HPRT)和腺嘌呤磷酸核糖转移酶(ARPT)。
此外,如上所述,激活感兴趣基因及/或导致感兴趣多肽过度表达的点突变也可以通过基因组编辑引入植物。这种突变可以是例如,导致感兴趣基因激活的抑制序列的缺失;及/或插入核苷酸并导致诸如启动子及/或增强子之类的调节序列激活的突变。
应当理解的是,本文所述的系统能够将异质群体或种子批次分类成组或群集。如本文所述,神经网络可计算分类类别及/或嵌入,及/或执行群集,以基于以下一个或多个指示对异质群体或种子批次进行分类。
在一个实施例中,异质群体的所有种子在相同的环境条件下、在同一季节及/或在同一地理位置中生长。
或者,种子可以是异质的,因为它们不是在相同的环境条件下、在相同一季节及/或在同一地理位置生长。
或者,种子在其对胁迫的抵抗力方面可以是异质的,如下文中进一步描述。
在一个实施例中,种子的异质群体包括有活力的种子和不具活力的种子(即不会发芽)。
在一个实施例中,种子的异质群体包括转基因种子和非转基因种子。
在另一实施例中,种子的异质群体包括单倍体种子和二倍体种子。
在又一实施例中,种子的异质群体包括具有统计学上的不同微生物组的种子。
如本文所用术语“微生物组”是指微生物(细菌、真菌、原生生物)及其遗传元素(基因组)在特定环境(即种子中)的总和。
下面描述鉴定微生物组相似性的方法。
在另一实施例中,种子的异质群体包括被致病病原体感染的种子和未被致病病原体感染的种子。致病病原体可能是病毒、真菌或细菌。
在另一实施例中,多个种子的异质群体包括相同植物物种的不同品种的种子。
在另一实施例中,多个种子的异质群体包括植物不同物种的种子。
在又一个实施例中,多个种子的异质群体包含相同品种或物种的种子的混合物,其中一些表达异源蛋白质而一些不表达异源蛋白质(例如通过遗传修饰)。
在另一个实施例中,多个种子的异质群体包含衍生自等基因植物的种子的混合物。种子在特定性状上可能有所不同。
在又一个实施例中,多个种子的异质群体包含具有不同表现型的植物的相同物种的种子的混合物。一种这样的表现型包括胁迫抗性,例如非生物胁迫抗性或生物胁迫抗性。
本文所用的术语“非生物胁迫”是指(由于非生物因子)对植物的新陈代谢、生长、繁殖及/或生存能力的任何不利影响。因此,非生物胁迫可由次优环境生长条件引起,例如,盐度、渗透胁迫、缺水、干旱、洪水、冰冻、低温或高温、重金属毒性、厌氧、营养缺乏(例如,氮缺乏或有限氮),大气污染或紫外线照射。
本文所用的术语“非生物胁迫耐受性”是指植物承受非生物胁迫而不遭受新陈代谢、生长、生产力及/或生存能力的实质性改变的能力。
非生物胁迫条件的非限制性实例包括:盐分、渗透胁迫、干旱、缺水、过量水(如洪水、渍水)、黄化、低温(如寒冷胁迫)、高温、重金属毒性、厌氧、营养缺乏(如氮缺乏或氮限制)、营养过剩、大气污染和紫外线照射。
本文所用的术语“生物胁迫”是指对植物的新陈代谢、生长、繁殖及/或生存能力产生的任何不利影响。典型的生物胁迫包括线虫胁迫、昆虫取食胁迫、真菌病原菌胁迫、细菌病原菌胁迫和病毒病原菌胁迫。
如前所述,所述系统可将种子分为抗胁迫的种子和不抗胁迫的种子(或对胁迫更具抵抗力以及对胁迫抵抗力较弱)的种子。
应当理解的是,与在相同条件下生长的抗性植物或对照植物相比,不耐胁迫的种子可以产生具有降低的生长表型的植物。与抗性植株相比,其生长表型可降低至少5%、10%、15%、20%、25%、30%、50%、45%、50%、55%、60%、65%、70.5%、75%、80%、85%、90%、95%以上。这可能被视为根生物量及/或根覆盖率及/或根密度,及/或根长度及/或根长度生长速率及/或生长速率,及/或光合作用能力,及/或活力,及/或收获指数,及/或籽粒充实期,及/或开花,及/或抽穗及/或植株高度,及/或含油量及/或种子产量与在相同条件下生长的抗性植物或对照植物相比。另外,不耐胁迫的种子的发芽速度比被分类为耐胁迫的种子的发芽速度慢。
将进一步理解的是,当将种子分类为抗胁迫和非抗胁迫分类时,优选地,所述类别使得所述抗性针对相同的胁迫。因此,例如种子可分为非生物胁迫抗性类别和非-非生物胁迫抗性类别。
在另一个实施例中,可以将种子分类及/或分类为两种不同类型的胁迫抗性,例如,一个类别是指对非生物胁迫性更高的种子,而另一类别是对生物胁迫性更高的种子。
在另一个实施例中,多个种子的混合包含种子(例如,相同变体或物种的种子),其产生从中衍生出不同生物量的植物。
如本文所使用的术语“植物生物量”是指在生长季节从植物产生的组织的数量(例如,以空气干燥组织的克计量),其也可以决定或影响植物产量或每个种植面积的产量。植物生物量的增加可以在整个植物或其部分,如地上(可收获)部分、营养生物量、叶大小或面积、叶厚度、根和种子。
在另一实施例中,种子混合物包括种子(例如相同变体或物种),其产生的植物具有不同的根生物量及/或根覆盖率及/或根密度,及/或根长度及/或根长度生长速率及/或生长速率,及/或光合作用能力,及/或活力及/或收获指数,及/或籽粒充实期及/或开花期及/或抽穗及/或植株高度,及/或含油量及/或种子产量。植物表型或性状的差异可能是由于基因改造或育种的结果。神经网络可以根据不同的根生物量及/或根覆盖率及/或根密度,及/或根长度及/或根长度生长速率及/或生长速率,及/或光合作用能力,及/或活力及/或收获指数,及/或籽粒充实期及/或开花期及/或抽穗及/或植株高度,及/或含油量及/或种子产量的预测,计算分类类别及/或嵌入及/或进行群集,如本文所述。
本文所用术语“根生物量”是指植物根的总重量。根生物量可以直接通过称重植物的根总物质(新鲜及/或干重)来确定。
如本文所使用的短语“根覆盖度”是指由植物的根所包围的土壤或任何植物生长介质的总面积或体积。
根据本发明的一些实施例,根覆盖度是由植物的根包围的最小凸面体积。
如本文所用术语“根密度”是指给定区域(例如土壤或任何植物生长介质的面积)的根系密度。根密度可通过在预定深度处计算每个预定面积的根数(以每个面积的根数为单位,例如,毫米平方、厘米平方或米平方)来确定。
如本文所用术语“根长度”是指单个植物的最长根的总长度。
如本文所用术语“根长度增长速率”是指每单位时间单位(例如每天)的每株植物的总根长度的变化。
如本文所用术语“生长速率”是指单位时间内植物器官/组织尺寸的增加(可以以每天厘米平方或厘米/天来测量)。
如本文所用术语“光合作用能力”(也称为“Amax”)是在光合作用期间叶片能够固定碳的最大速率的量度。通常将其测量为每秒每平方米固定的二氧化碳量,例如μmol m- 2sec-1。植物能够通过几种作用方式来提高其光合作用能力,例如通过增加叶片总面积(例如,通过增加叶片面积、增加叶片数以及增加植物活力,例如植物长出新叶子的能力)来实现,以及通过提高植物有效地在叶片中固碳的能力。因此,总叶面积的增加可用作光合作用能力增加的可靠测量参数。
如本文所使用的术语“植物活力”是指植物在给定时间内产生的组织量(以重量计)。因此,增加活力可以决定或影响植株的产量或每一生长时间或生长面积的产量。此外,早期活力(种子及/或幼苗)可改善田间林分。
在温带和热带水稻品种中,提高早期活力是现代水稻育种计划的重要目标。长根对于在播种水稻中适当的土壤固着很重要。水稻被直接播种到被水淹没的田地里,而植物必须在水中迅速生长,长出的嫩芽与活力有关。在进行播种的地方,较长的中胚轴和胚芽鞘对于良好的出苗很重要。将早期活力转化为植物的能力在农业上是非常重要的。例如,早期活力差一直是欧洲大西洋玉米带种质玉米(Zea mays L.)杂交种引进的一个限制因素。
如本文所用术语“收获指数”是指植物分配同化物并将营养生物量转化为生殖生物量如水果和种子产量的效率。
收获指数受产量构成、植株生物量的影响,间接地受植株中参与养分和碳水化合物转运的所有组织如茎宽、轴宽和株高的影响。提高收获指数将提高植物繁殖效率(单位生物量产量),从而提高单位面积产量。收获指数可使用如下公式15、16、17、18和65计算。
如本文所使用术语“籽粒充实期”是指谷物或种子积累营养物和碳水化合物直到种子成熟(当植物和谷物/种子干燥时)的时间。
籽粒的充实期以从开花/抽穗到种子成熟的天数来衡量。较长的“谷物充实期”有利于营养物质和碳水化合物的再流动,这将增加产量构成部分,例如谷物/种子数量,千粒重/种子重量和谷物/种子产量。
如本文所使用术语“开花”是指从发芽到第一朵花开放的时间。
如本文所使用术语“抽穗”是指从发芽到第一头状花序浸入的时间。
如本文所使用术语“植株高度”是指测量植物高度作为植物生长状态、同化物分配和产量潜力的指标。另外,在高密度农艺措施下,植物高度是防止倒伏(具有高生物量和高度的植株倒塌)的重要特征。
根据植物种类的不同,植物的高度有多种测量方法,但通常是指地面和植物顶部之间的长度,例如头部或生殖组织。
如本文所使用术语“含油量”是指指定植物器官中的脂质量,无论是种子(种子油含量)还是植物的营养部分(植物油含量),通常表示为干重(种子湿度的10%)或湿重(对于营养体部分)。
如本文所用术语“种子产量”是指每株植物的种子的数量或重量、荚果或穗重,每个荚果或每个生长区域的种子或单个种子的重量或每个种子提取的油。因此,种子产量受到种子尺寸(例如长度、宽度、周长、面积及/或体积)、(被填充的)种子的数量和种子填充率以及种子油含量的影响。因此,增加每株植物的种子产量可能会影响人们在一定的种植面积及/或生长时间内可以从植物中获得的经济利益;可以通过增加每株植物的种子产量及/或通过增加在相同给定区域上种植的植物数量或增加收获指数(每个总生物量的种子产量)来实现每单位面积增加种子产量。
应注意的是,如本文所述的植物性状[例如产量、生长速度、生物量、活力、含油量、纤维产量、纤维质量、纤维长度、收获指数、籽粒充实期、开花期、抽穗期、植株高度、光合作用能力、肥料利用效率(例如氮利用效率)]可在胁迫(如非生物胁迫、生物胁迫、氮限制条件)及/或非胁迫(正常)条件下确定。神经网络可以根据产量、生长速度、生物量、活力、含油量、纤维产量、纤维质量、纤维长度、收获指数、籽粒充实期、开花期、抽穗期、植株高度、光合作用能力、肥料利用效率的预测,计算分类类别及/或嵌入及/或群集,以对种子进行分类,如本文所述。
如本文所用术语“非胁迫条件”或“正常条件”是指生长条件(例如水、温度、明暗循环、湿度、盐浓度、土壤中的肥料浓度、养分供应,如氮、磷及/或钾),它们不会明显超出植物可能遇到的日常气候和其他非生物条件,并允许植物在其生命周期的任何阶段(例如,作物从种子到成熟植株再到种子)的生长、代谢、繁殖及/或生存能力。本领域技术人员了解给定地理位置中给定植物的正常土壤条件和气候条件。应注意的是,尽管非胁迫条件可能包括最佳条件下的一些轻微变化(从一种植物类型/物种到另一种植物类型/物种的不同),这种变化不会导致植物停止生长而没有恢复生长的能力。
应当理解的是,在根据本发明的教示对种子进行分类和分选之后,可以预期可以获得均匀的种子群体。
在一个实施例中,种子的同构型与种子发芽成具有相同特性/表现型的植物的潜力有关,如上文所述。
在另一实施例中,种子的同构型与种子的基因组有关-例如,来自相同的等基因系,或表达特定基因。
在又一实施例中,种子的同构型与从中萌发的植物果实的颜色有关。
在又一实施例中,种子的同构型与来自相同F1变体的种子有关。
在又一实施例中,种子的同构型与种子是杂交种子(与非杂交种子相反)有关。
本文所用术语“非杂交种子”是指既可以是F1杂交种子的祖先,也可以是F1杂交种子后代的种子。在一个实施例中,非杂交种子来自亲本植物系。在另一实施例中,非杂交种子来自由杂交种子生长的植物。
在又一个实施例中,种子的同构型与其微生物组的相似性有关。
根据本发明这一目的的一个实施例,当两个微生物组包含至少50%的相同微生物物种、至少60%的相同微生物物种、至少70%的相同微生物物种、至少80%的相同微生物物种、至少90%的相同微生物物种、至少91%的相同微生物物种、至少92%的相同微生物物种、至少93%的相同微生物物种、至少94%的相同微生物物种、至少95%的相同微生物物种、至少96%的相同微生物物种、至少97%的相同微生物物种、至少98%的相同微生物物种、至少99%的相同微生物物种或100%的相同微生物物种时,两个微生物组在统计学上有显着的相似性。
根据本发明这一目的的一个实施例,当两个微生物组包含至少50%的相同微生物属、至少60%的相同微生物属、至少70%的相同微生物属、至少80%的相同微生物属、至少90%的相同微生物属、至少91%的相同微生物属、至少92%的相同微生物属、至少93%的相同微生物属、至少94%的相同微生物属、至少95%的相同微生物属、至少96%的相同微生物属、至少97%的相同微生物属、至少98%的相同微生物属、至少99%的相同微生物属或100%的相同微生物属时,两个微生物组在统计学上有显着的相似性。
另外或可替代地,当至少五种相关微生物的相对数量(例如发生率)相同时,微生物组在统计学上可能是相似的。根据另一实施例,当至少10%的微生物菌种的相对量相同时,微生物组在统计学上可以显著相似。根据另一实施例,当至少20%的微生物菌种的相对量相同时,微生物组在统计学上可以显著相似。根据另一实施例,当至少30%的微生物菌种的相对量相同时,微生物组在统计学上可以显著相似。根据另一实施例,当至少40%的微生物菌种的相对量相同时,微生物组在统计学上可以显著相似。根据另一实施例,当至少50%的微生物菌种的相对量相同时,微生物组在统计学上可以显著相似。根据另一实施例,当至少60%的微生物菌种的相对量相同时,微生物组在统计学上可以显著相似。根据另一实施例,当至少70%的微生物菌种的相对量相同时,微生物组在统计学上可以显著相似。根据另一实施例,当至少80%的微生物菌种的相对量相同时,微生物组在统计学上可以显著相似。根据另一实施例,当至少90%的微生物菌种的相对量相同时,微生物组在统计学上可以显著相似。
另外或可替代地,当至少五种感兴趣的微生物的数量(例如发生率)相同时,微生物组在统计学上可能具有显着的相似性。根据另一实施例,当至少10%的微生物物种的绝对数量相同时,微生物组在统计学上可能具有显着的相似性。根据另一实施例,当至少20%的微生物物种的绝对数量相同时,微生物组在统计学上可能具有显着的相似性。根据另一实施例,当至少30%的微生物物种的绝对数量相同时,微生物组在统计学上可能具有显着的相似性。根据另一实施例,当至少40%的微生物物种的绝对数量相同时,微生物组在统计学上可能具有显着的相似性。根据另一实施例,当至少50%的微生物物种的绝对数量相同时,微生物组在统计学上可能具有显着的相似性。根据另一实施例,当至少60%的微生物物种的绝对数量相同时,微生物组在统计学上可能具有显着的相似性。根据另一实施例,当至少70%的微生物物种的绝对数量相同时,微生物组在统计学上可能具有显着的相似性。根据另一实施例,当至少80%的微生物物种的绝对数量相同时,微生物组在统计学上可能具有显着的相似性。根据另一实施例,当至少90%的微生物物种的绝对数量相同时,微生物组在统计学上可能具有显着的相似性。
根据另一实施例,当至少10%的微生物属的绝对量相同时,微生物组在统计学上可显着相似。根据另一实施例,当至少20%的微生物属的绝对量相同时,微生物组在统计学上可显着相似。根据另一实施例,当至少30%的微生物属的绝对量相同时,微生物组在统计学上可显着相似。根据另一实施例,当至少40%的微生物属的绝对量相同时,微生物组在统计学上可显着相似。根据另一实施例,当至少50%的微生物属的绝对量相同时,微生物组在统计学上可显着相似。根据另一实施例,当至少60%的微生物属的绝对量相同时,微生物组在统计学上可显着相似。根据另一实施例,当至少70%的微生物属的绝对量相同时,微生物组在统计学上可显着相似。根据另一实施例,当至少80%的微生物属的绝对量相同时,微生物组在统计学上可显着相似。根据另一实施例,当至少90%的微生物属的绝对量相同时,微生物组在统计学上可显着相似。
因此,微生物总数的分数百分比(如相对数量、比率、分布、频率、百分比等)在统计上可能是相似的。
在又一实施例中,种子的同构型与种子是特定杂交种而不是来自雌性亲本系有关。
多个种子的同质群体至少可以是至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%、99.91%、99.92%、99.93%、99.94%、99.95%、99.96%、99.97%、99.98%、99.99%、99.991%、99.992%、99.993%、99.994%、99.995%、99.996%、99.997%,99.998%、99.999%、99.9991%、99.9992%、99.9993%、99.9994%、99.9995%、99.9995%、99.9996%、99.9997%、99.9998%、99.9999%的种子以上述任何方式(或任何组合)相同。
因此,根据本发明的另一目的,提供了包含多个种子的容器或一组容器,其中所述种子在性状,基因组或微生物组方面是相同的。
容器可以是能够容纳种子的任何媒介物,例如袋子、盒子、麻袋或板条箱。
容器可以用合适的卷标进行标记,所述卷标指示种子的来源及/或批次的纯度(根据本发明的实施方式测量)。
所述容器或所述一组容器通常包含100多个种子,1000多个种子,10,000多个种子,100,000多个种子,1,000,000多个种子,10,000,000多个种子,甚至100,000,000多个种子。
所述容器可包含来自单株或优选多于一种植物的种子。
所述容器或一组容器中的多个种子的同质群体的重量可能在10克,100克,500克,1千克,10千克,20千克,50千克,100千克,1吨或更多之间。
本发明还包括在多个所述容器中种植多个种子。
因此,根据本发明的一些实施例的一个目的,提供了一种种植农作物的方法,包括播种本发明的多个种子的同质群体,从而使农作物生长。在一个实施例中,种子在非生物胁迫条件下生长。
在详细解释本发明的至少一个实施例之前,应该理解的是,本发明的应用并不一定限于以下描述及/或叙述的组件及/或方法或在附图及/或示例中示出的构造细节和设置。本发明能够具有其他实施例或者能够以各种方式被实施或执行。
本发明可以是系统、方法及/或计算机程序产品。所述计算机程序产品可以包括其上具有用于使处理器执行本发明的目的的计算机可读程序指令的计算机可读储存介质(或媒体)。
计算机可读储存介质可以是有形的设备,其可以保留和储存指令以供指令执行设备使用。计算机可读储存介质可以是,例如但不限于电子储存设备、磁储存设备、光储存设备、电磁储存设备、半导体储存设备,或上述的任何适当组合。计算机可读储存介质的更具体示例的非详尽列表包括:便携式计算机软盘、硬盘、随机存取储存器(RAM)、唯读储存器(ROM)、可擦除可编程只读储存器(EPROM或闪存)、静态随机存取储存器(SRAM)、便携式光盘唯读储存器(CD-ROM)、数字多功能磁盘(DVD)、记忆棒、软盘和上述各项的任何适当组合。此处使用的计算机可读储存介质本身不应被解释为瞬态信号,例如无线电波或其他自由传播的电磁波、通过波导或其他传输介质传播的电磁波(例如,通过光纤电缆的光脉冲),或通过电线传输的电信号。
本文描述的计算机可读程序指令可以从计算机可读储存介质下载到相应的计算/处理设备,或者经由网络,例如因特网、局域网、广域网及/或无线网络,下载到外部计算机或外部储存设备。网络可以包括铜传输电缆、光纤、无线传输、路由器、防火墙、交换机、网关计算机及/或边缘服务器。每个计算/处理设备中的网络适配器卡或网络界面从网络接收计算机可读程序指令,并将计算机可读程序指令转发到相应计算/处理设备中的计算机可读储存介质中储存。
用于执行本发明的操作的计算机可读程序指令可以是汇编程序指令、指令集体系结构(ISA)指令、机器指令、机器相关指令、微码、固件指令、状态设置数据,或者是用一种或多种编程语言的任意组合编写的源代码或目标代码,包括面向对象的编程语言,如Smalltalk、C++等,以及常规的编程设计语言,如“C”编程语言或类似的编程语言。计算机可读程序指令可以完全在用户计算机上执行,部分在用户计算机上执行,作为独立的软件包,部分在用户计算机上执行并且部分在远程计算机上执行,或者完全在远程计算机或服务器上执行。在后一种情况下,远程计算机可以通过任何类型的网络连接到用户的计算机,包括局域网(LAN)或广域网(WAN),或者可以连接到外部计算机(例如,通过使用因特网服务提供商的因特网)。在一些实施例中,包括例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA)的电子电路可通过利用计算机可读程序指令的状态信息来个人化电子电路来执行计算机可读程序指令,以执行本发明的各个目的。
本文参考根据本发明实施例的方法、装置(系统)和计算机程序产品的流程图图示及/或方块图来描述本发明的各个目的。应当理解的是,流程图及/或方块图的每个方块以及流程图及/或方块图中的方块的组合可以由计算机可读的程序指令来实现。
这些计算机可读的程序指令可以提供给通用计算机、专用计算机或其他可编程数据处理设备的处理器以产生一机器,从而使得所述指令经由计算器的处理器或其他可编程数据处理来执行。在所述装置中,创建用于实现流程图及/或方块图的方框中指定的功能/动作的手段。这些计算器可读程序指令还可以储存在计算器可读储存介质中,所述计算器可读储存介质可以指导计算器、可编程数据处理装置及/或其他设备以特定方式起作用,这样,具有储存在其中的指令的计算机可读储存介质包括构成成品,所述构成成品包括实现流程图及/或方块图中方块指定的功能/动作的各个方面的指令。
计算机可读程序指令也可以加载到计算机、其它可编程数据处理设备或其它设备上,以使在计算机、其它可编程设备或其它设备上执行一系列操作步骤以产生计算机实现的过程,使得在计算机、其他可编程设备或其他设备实现流程图及/或方块图中方块指定的功能/动作。
图示中的流程图和方块图示出了根据本发明的各种实施例的系统、方法和计算机程序产品的可能实现的架构、功能和操作。在这方面,流程图或方块图中的每个方块可以表示指令的模块、片段或部分,其包括一个或多个用于实现指定逻辑功能的可执行指令。在一些替代实施方式中,方块中指出的功能可以不按图标中指出的顺序发生。例如,实际上可以基本上同时执行连续示出的两个方块,或者根据所涉及的功能,方块有时可以以相反的顺序执行。还应注意,方块图及/或流程图的每个方块以及方块图及/或流程图中的方块组合,可由基于专用硬件的系统实现,所述系统执行指定的功能或动作,或执行专用硬件和计算机指令的组合。
如本文所用术语种子分类有时可以与术语种子群集互换,例如,当分析多个种子图像时,可以对每一个图像进行分类并用于创建群集,及/或可以种子图像被嵌入并且可以对多个嵌入物进行群集。术语分类类别有时可以与术语嵌入互换,例如,响应于一种子的一图像,经训练的神经网络的输出可以是一个或多个分类类别,或者是存储一计算的嵌入的一向量。需要注意的是,分类类别和嵌入可以由同一经训练的神经网络输出,例如,分类类别由神经网络的最后一层输出,嵌入由神经网络的一隐藏嵌入层输出。
现在参考图1,图1是根据本发明的一些实施例的用于根据多个种子的多个图像对多个种子进行分类的处理流程示意图。亦参考图2,图2是根据本发明的一些实施例的用于多个种子的多个图像对多个种子进行分类及/或群集及/或用于训练用于分类及/或群集种子图像的多个神经网络的一系统200的多个组件的方块图。系统200可以基于经训练的神经网络的输出,根据自动分类及/或群集生成多个代码指令,所述多个代码指令在由一分类装置控制器201A执行时,使得一分类装置201自动对种子进行分类。再参考图3,图3是根据本发明的一些实施例的用于训练用于根据多个种子图像计算多个分类类别及/或多个嵌入的一个或多个神经网络的过程的流程示意图。系统200可以执行如图1及/或图3所示描述的方法的动作。例如,通过一计算装置204的一硬件处理器202执行存储在一储存器206中的代码206A。
分类装置201被设计为自动、手动及/或半自动地分选种子。分类装置201例如可以被实现为被分类到多个不同桶中的单个种子或多个种子的多个群组的组装线。在另一个实施例中,分类装置201可以包括用于存储多个种子的一平台,以及用于选择单个种子进行分拣的机械臂。分类装置201可包括用于去除及/或处置某些种子例如不纯种子的机构。
分类装置控制器201A可以实现为例如,集成在分类装置201内的一硬件处理器、与分类装置201通信的一外部计算装置及/或为用户手动及/或半自动操作分类装置201呈现手动指令的一外部显示器。
(多个)图像传感器212可以安装在分类装置201内及/或与分类装置201一体成型,例如,通过分类装置201捕捉用于分类的多个种子的多个图像。图像传感器212可位于外部及/或独立于分类装置201,例如,用于捕捉多个种子的多个图像以创建用于训练本文所述神经网络的多个训练图像216。
示例性图像传感器212包括:RGB(红、绿、蓝)、多光谱、高光谱、可见光频率范围、近红外(NIR)频率范围、红外(IR)频率范围和上述组合。
计算装置204可以实现为,例如,客户端终端、虚拟机、服务器、虚拟服务器、计算云、移动设备、桌上型计算机、精简客户终端、信息处理器和移动设备(例如,智能手机、平板电脑、笔记型电脑、可穿戴计算机、眼镜计算机和手表计算机)。
可以实现基于计算装置204的系统200的多个架构。例如:
*计算装置204可以与分类装置201一体成型(即,由控制器201A控制),例如,作为控制台及/或控制单元及/或存储在分类装置201内的指令代码,以供分类装置201的硬件处理器执行(例如,由控制器201A执行)。
*计算装置204可以被实现为包括本地储存的代码指令206A的独立装置(例如,自助服务终端、客户终端、智能电话、服务器),所述代码指令206A实现参照图1描述的一个或多个动作。计算装置204在分类装置201的外部,并且例如通过网络及/或通过在数据存储装置上储存的多个指令来与分类装置201通信,然后由控制器201A对其进行访问。本地储存的指令可以例如通过在网络上下载代码及/或从便携式储存设备上传代码来从另一服务器获得。
*执行储存代码指令206A的计算装置204可以实现为一个或多个服务器(例如,网络服务器、web服务器、计算云、虚拟服务器),其通过网络210向一个或多个客户端终端218提供服务(例如,参考图1描述的一个或多个动作)。例如,向客户端终端218提供软件即服务(SaaS),提供使用软件接口(例如,应用程序编程接口(API)、软件开发工具包(SDK)),提供用于本地下载到客户端终端218的应用程序,提供对运行的web浏览器的附加组件在客户端终端218上,及/或使用对客户端终端218的远程访问会话来提供功能,例如通过由客户端终端218执行的web浏览器访问由计算装置204托管的网站。每个客户端终端208可以与相应的分类装置及/或分类装置控制器图/或图像传感器212相关联,使得计算装置204根据远程获取的图像集中生成用于在各个远程分类装置处对种子进行分类的指令。
需要注意的是,神经网络的训练和经训练的神经网络对种子图像的实现可以由相同的计算装置及/或不同的计算装置来实现,例如,一个计算装置训练神经网络,并将经训练的神经网络传送到充当服务器的另一个计算装置及/或提供经训练的神经网络用于本地安装和执行。
计算装置204接收由图像传感器212捕获的多个种子的多个图像(这里也称为种子图像)。由图像传感器212捕获的种子图像可以存储在图像存储库214中,例如,计算装置204的数据储存装置222、储存服务器、数据储存装置、计算云、虚拟存储器和硬盘。训练图像216可以基于捕获的种子图像创建,如本文所述。
训练图像216用于训练神经网络,如本文所述。须注意的是,如本文所述,训练图像216可以由服务器218储存,可以由计算装置204在网络210上访问,例如,为训练神经网络而创建的定制训练数据集。如本文所述,服务器218可以通过执行训练代码206B和使用训练图像216来创建经训练的神经网络。
计算装置204可以使用一个或多个成像接口220从图像装置212及/或图像存储库214接收训练图像216及/或种子图像,例如,有线连接(例如物理端口)、无线连接(例如天线)、本地总线、用于连接数据储存装置的端口、网络接口卡,其他物理接口实现及/或虚拟接口(例如,软件接口、虚拟专用网络(VPN)连接、应用程序编程接口(API)、软件开发工具包(SDK))。
硬件处理器202可以实现为例如中央处理单元(CPU)、图形处理单元(GPU)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)和专用集成电路(ASIC)。处理器202可以包括一个或多个处理器(同质或异构),其可以被配置为并行处理,作为群集及/或作为一个或多个多核处理单元。
储存设备206(这里也称为程序储存器及/或数据存储装置)储存用于由硬件处理器202执行的代码指令,例如,随机存取储存器(RAM)、唯读储存器(ROM)及/或储存设备,例如非易失性储存器、磁介质、半导体储存器设备、硬盘驱动器、可移动储存器和光学媒体(如DVD、CD-ROM)。储存设备206储存图像处理代码206A,所述图像处理代码206A执行参照图1描述的方法的一个或多个动作及/或特征,及/或所述训练代码206B执行参照图3描述的方法的一个或多个动作及/或特征。
存储器(这里也称为程序存储器及/或数据存储装置)存储由处理器202执行的代码指令,例如,随机存取存储器(RAM)、只读存储器(ROM)及/或存储装置,例如非易失性存储器、磁介质、半导体存储器装置、硬盘驱动器,可移动存储器和光学介质(如DVD、CD-ROM)。用于存储参照图206A的一个或多个用于存储所述代码206A中的一个或多个指令的神经网络代码206/6a。
计算装置204可以包括用于储存数据的一数据储存装置222,例如,一个或多个经训练的神经网络222A(如本文所述),及/或训练图像216及/或包括多个训练图像的训练数据集(如本文所述)。数据存储设备222可以实现为例如存储器、本地硬盘驱动器、可移动存储设备、光盘、存储设备及/或远程服务器及/或计算云(例如,通过网络210访问)。注意,经训练的神经网络222A及/或训练图像216可以存储在数据存储设备222中,执行部分被加载到存储器206中以由处理器202执行。
计算装置204可以包括数据接口224,可选的网络接口,用于连接到网络210,例如网络接口卡、连接到无线网络的无线接口、用于连接到用于网络连接的电缆的物理接口、在软件中实现的虚拟接口中的一个或多个,提供更高层次网络连接的网络通信软件及/或其他实现。计算装置204可以使用网络210访问一个或多个远程服务器218,例如,下载更新的训练图像216及/或下载图像处理代码206A、训练代码206B及/或经训练的神经网络222A的更新版本。
计算设备204可以使用网络210(或另一通信信道,例如通过直接联机(例如,有线、无线)及/或间接连线(例如,经由中间计算设备,例如服务器、及/或经由存储设备)与以下一个或多个进行通信:
*分类装置201及/或控制器201A,用于提供用于分类及/或群集种子的多个生成指令。这些指令可以是控制器201A执行时用于分类装置201的自动操作的代码指令及/或用于分类装置201及/或控制器201A的手动操作的手动指令及/或用于编程分类装置201及/或控制器201A的手动指令。
*客户端终端208,例如,例如,当计算装置204充当向远程分类装置提供图像分析服务(例如SaaS)的衣服务器时。
*例如,服务器218存储训练图像吉/或获得经训练的神经网络。
*存储由图像传感器212输出的训练图像216及/或种子图像的图像存储库214。
需要注意的是,成像接口220和数据接口224可以作为两个独立接口(例如,两个网络端口)、作为公共物理接口上的两个虚拟接口(例如,公共网络端口上的虚拟网络)及/或集成到单个接口(例如,网络接口)上。
计算装置204包括或用于与用户接口226通信,所述用户接口226包括设计用于用户输入数据(例如,选择目标分类参数,例如所需种子纯度水平、指定比较种子)及/或查看计算的分析(例如,种子分类类别、用于分类装置201的手动操作的基于文本的指令)。示例性用户接口226包括例如触摸屏、显示器、键盘、鼠标和使用扬声器和麦克风的语音激活软件中的一个或多个。
可选地,在用户接口226的显示方式上包括图形用户接口222B(例如,由数据存储设备222及/或计算装置204的存储器206存储)。图形用户接口222B可用于选择分类目标及/或查看所选种子的图像及/或查看用于手动操作分类装置的说明。
现在回到图1,在102处,训练一个或多个神经网络及/或提供经训练的神经网络。
可以训练不同的神经网络及/或提供不同的神经网络。例如,根据作物类型、根据母株类型、根据水果类型、根据图像类型(例如,频率、频道数)及/或根据分类类别。
经训练的神经网络可以从多个可用的经训练的神经网络中选择。可由用户手动执行选择(例如,通过图形用户接口,例如,通过可用神经网络的选单及/或图标)。所述选择可由代码自动执行,所述代码分析例如种子图像、种子图像的大数据、获得成像传感器的硬件类型的指示及/或获得正在成像的种子类型的指示(例如,从数据库、从分类机、从手动用户输入)。选择可以根据参照动作104描述的分类目标。
需要注意的是,动作102和104可以作为单个特征被集成和执行,并行执行,及/或动作104可以在动作102之前执行。
神经网络的架构可以例如实现为卷积、池化、非线性、局部连接、全连接层及/或上述层的组合。
示例性分类类别包括以下一个或一个组合:
*一种非视觉类别,无法根据对物理种子本身的视觉检查手动确定。例如,预测的表型(将来会出现,现在无法确定)及/或基因型(可能需要破坏性的DNA测试破坏种子)。
*一种不能基于种子图像的自动视觉分析来确定的非视觉类别,因为从种子中提取的标准视觉特征与从另一种子中提取的视觉特征相似(在公差范围内),例如,表示种子颜色、种子大小及/或种子纹理的像素值。
*种子变体。
*与DNA标记不直接相关的分类类别,例如,对一种或多种病毒的抗性、预测的发芽率、果实味道和果实大小。
*可以通过破坏种子的破坏性测试确定的分类类别。注意,在本文描述的系统、装置、方法及/或代码指令的至少一些实施例中,基于种子的图像来确定分类类别,而无需对种子执行测试并且不破坏种子。分类类别根据图像而不是执行破坏性测试来提供对测试结果的指示及/或估计,否则该测试结果可能是破坏性的。
*预测会在将来的时间间隔发生的预测,例如,预计会发芽,预计不会发芽,以及表示发芽的概率。
*感染迹象,例如,被感染(任何东西),被一种或多种病毒感染,被一种或多种真菌感染。
*指示种子是转基因种子(GMO)还是非转基因种子
*指示种子是单倍体还是二倍体。
*对一种或多种表型性状的预测,预测在种子(或由种子生长的植物)中,相对于种子图像被捕获的时间间隔,在未来的时间间隔内发展。典型的物候特征包括:对一种或多种病毒的抗性、预测的发芽率、水果的味道和果实大小。
根据训练图像的训练数据集对神经网络进行训练。训练图像描述了包括分类类别和不包含分类类别的不同种子。每个训练图像与分类类别的指示以及可选地与是否缺少分类类别相关联,例如,通过标记、与训练图像相关联地存储的大数据及/或作为存储在数据库中的值相关联。
参考图3来描述训练神经网络的示例性方法。
在104处,提供一个或多个分类目标。分类目标可以由用户手动输入(例如,通过图形用户接口,例如,从可用的分类目标列表中选择),作为存储在数据存储设备中的预定义值获得,及/或自动计算(例如,由基于种子样本的DNA测试装置)。
示例性分类目标包括:
*未提供分类目标。在这种情况下,根据神经网络的嵌入层计算出的嵌入量对种子进行群集。这些群集包括彼此最相似的种子。多个群集的不同在于单个特征或多个特征不同。
*分离种子的二元特征。除了一个特征外,彼此相似的种子可以被分离。例如,自花授粉或杂交授粉(即非自花授粉)、杂交或非杂交、转基因或非转基因、因单一性状而不同的等基因种子,以及因父系花粉而不同的共享母体的种子。
*一个或多个选定的分类类别。从其他种子的混合中有选择地挑选出符合分类类别的种子。分类类别的选择使用户能够选择某些种子以获得期望的特性。例如,用户可以输入分类类别来选择对病毒有抵抗力的种子。在另一个例子中,用户可以输入分类类别来选择产生一种带有美味西红柿的植物的种子。在另一个例子中,用户可以输入分类类别来选择产生高产量植物的种子。在另一实例中,用户可以进入分类类别除去外来转基因种子,获得一批非转基因种子。在另一个例子中,自花授粉的种子是从种子的混合中分类出来的。在另一实例中,从种子的混合中移除异常及/或非发芽种子。在另一个例子中,从种子的混合中移除受感染的种子(例如,带有病毒及/或真菌)。
*目标种子的图像。目标种子可以是所分析的种子的混合的亲本,或者是具有所需特性的植物种子。被确定为类似于目标种子的其它种子(例如,根据其图像的嵌入具有小于阈值的统计距离,如参考动作110所述)可以聚集在一起。提供种子的图像使得能够选择预期具有其他相似分类类别的其他相似种子,而不必知道所需植物如何获得其性状。
*分类类别的目标比率,例如种子纯度。例如,95%纯度。目标比率可以是种子批次中纯种子的百分比。例如,可以通过对种子样品进行破坏性分析来获得目标比率。
*分类类别的目标统计分布。例如,类型1:类型2:类型3的分类类别的比率为1:3:2。例如,可以通过对种子样本进行破坏性分析来获得目标统计分布。可以根据一个或多个提供的目标分析值来计算目标统计分布,例如,目标真阳性、目标真阴性、目标假阳性和目标假阴性。
在106,由成像传感器捕获种子的图像。
如本文所使用的术语目标种子和目标图像(或目标种子图像)是指当前正在被分析和处理的种子和图像。
示例性图像传感器212包括:RGB(红、绿、蓝)、多光谱、高光谱、可见光频率范围、近红外(NIR)频率范围、红外(IR)频率范围和上述组合。
可以捕捉种子的一个或多个图像,例如,可以使用不同的图像传感器及/或以不同的频率捕获每个图像。在另一个实现中,图像包括多个信道,对应于不同的频率。
单一个图像可以包括多个种子,或者单一个图像可以包含单一个种子。任选地,当图像包括多个种子时,执行分割代码以例如基于种子相对于背景的颜色、基于计算二元制图及/或基于边缘检测来分割图像中的每个种子。可以创建子图像,每个子图像包括一个种子,其中每个子图像按照本文所述参照种子图像进行处理。
在108处,将种子的目标图像输入到经训练的神经网络中。可选地,单一个种子的单一个图像例如按顺序处理。在某些实施例中,并行处理多个图像,每个图像都是单一个种子。
神经网络为图像中描绘的物理种子计算一个或多个分类类别的指示。分类类别的指示可以例如通过神经网络的最后一层,例如一完全连接的层来输出。
神经网络至少根据训练后的神经网络的权重来计算分类类别。在一些实例中,除了根据训练的神经网络的权重自动提取的特征之外,还可以提取和分析明确定义的特征(例如,基于种子的视觉及/或物理特性,例如颜色、大小、形状、纹理)。与至少提取表示种子的视觉及/或物理特性的明确定义的特征的非神经网络统计分类器不同,经训练的神经网络不一定提取这种明确定义的特征。虽然神经网络可以在训练过程中隐式地学习这些特征,但是与非神经网络统计分类器的训练不同,这种视觉及/或物理特征没有为神经网络明确定义。例如,非神经网络统计分类器基于种子的一个或多个物理特性来提取视觉特征,例如,手工制作的特征、种子的大小尺寸、种子的颜色、种子的形状、种子的纹理、上述的组合等等。对于在视觉及/或物理上彼此相似,但在其他性状上有所不同(如预测表型、遗传差异小)的种子,经训练的非神经网络统计分类器无法根据明确定义的视觉及/或物理特征计算具有统计意义的种子的分类类别(即,计算统计意义不大的分类类别)。例如,由于种子具有相同的视觉及/或物理特征(在公差要求内,例如阈值),将种子分类到同一分类类别中。从一个种子的一个图像中提取的视觉特征与从另一个种子的另一个图像中提取的相应视觉特征在统计上相似(例如,在公差阈值内)。相比之下,本文所述的神经网络能够区分视觉上及/或物理上相似的种子,以根据差异性状将种子分类。
可选地,图像包含多个种子,这些种子在一公差范围内通过单一个特征彼此不同。不能根据非神经网络统计分类器提取的明确定义的视觉特征来提取单个特征,例如,单个特征基于预测的表型,及/或不以视觉及/或物理明显的方式由种子表示。对于这样的图像,现有的非神经网络统计分类器将多个种子的图像分类到同一个分类类别中,并且/或不能对多个种子的多个图像进行分类(例如,输出错误或统计上不重要的类别,因为单一个特征不能由所述至少一个视觉特征来提取)。分类类别可以是指示各个种子是包括单一个特征还是不包括单一个特征的二元分类类别。指示单一特征或缺乏单一特征的示例性二元分类类别包括::自花授粉或杂交授粉(即,非自花授粉)、转基因或非转基因、根据单一特征不同的等基因种子,以及因父系花粉而不同的共享母体的种子。
由训练的神经网络输出的分类类别的指示可以是绝对分类类别,及/或落入一个或多个分类类别的概率。
神经网络可以计算种子图像的嵌入。嵌入可以被存储为一预定长度的一向量。嵌入可以由神经网络的嵌入层输出,所述神经网络可以是相同的神经网络被训练为输出分类类别。嵌入层可以是训练以输出分类类别的神经网络的中间层及/或隐藏层。嵌入层之后的层可以从神经网络中移除,使得嵌入值由作为最终层的嵌入层输出。
可选地,根据所识别的嵌入图像的注释来确定分类类别,所述注释类似于为所分析的目标种子图像计算的嵌入。可以从训练数据集获得嵌入图像,该训练数据集存储由经训练的神经网络的嵌入层计算出的训练图像的嵌入。可以根据目标图像的嵌入与训练图像的嵌入之间的相似距离的要求来识别相似的嵌入图像。
可以将相似距离计算为存储目标图像的嵌入的向量与每个存储各个训练图像的嵌入的每个向量之间的距离。可替代地,在目标图像的嵌入和训练图像的嵌入群集之间计算相似距离,多个所述训练图像的多个嵌入的一群集分别与相同的分类类别相关联。可以计算到群集的中心及/或群集的边缘的距离。
可以将相似距离计算为L2范数距离。例如,找到与目标种子图像的嵌入的向量表示最接近(即,最小距离)的训练图像的嵌入的向量表示。提取最接近的嵌入训练图像的分类类别,并作为目标种子的分类类别输出。
在110处,可以对不同分类类别(及/或不同嵌入)的多个种子的多个图像(及/或其嵌入)进行群集。
当接收到多个图像时,各个分类类别的单一个种子中的每一个,根据这些图像创建群集,其中分类到相同分类类别的图像位于同一个群集中。替代地或附加地,根据为每个种子图像计算的多个嵌入对种子的图像进行群集。嵌入的向量表示可以通过群集代码进行群集,例如,在N维空间内(其中N是预定义的向量长度)最接近的向量被聚集在一起。群集的多个图像之间的距离可以被计算为由训练的神经网络的嵌入层计算的多个图像的多个嵌入之间的统计距离,在嵌入的向量表示之间是可选的,例如,嵌入的向量表示之间的L2范数距离。多个种子可以由分类机根据所生成的指令根据所创建的多个群集在物理上群集,所述指令用于对与多个群集相对应的多个种子进行分选(例如,参考步骤112所述)。
可选地,计算多个群集,使得每个相应群集的每个嵌入图像成员与另一个群集至少相距一阈值距离。替代地或附加地,计算群集群集,使得每个相应群集的每个嵌入图像成员小于距相同相应群集的每个其他成员的一阈值距离。例如,选择阈值距离以定义群集的成员之间的相似性容限量,及/或定义不同群集的成员之间的差容量。替代地或附加地,在一相同群集的多个嵌入之间计算的一群集间距离小于在不同群集的多个嵌入之间计算的一集群间距离。同一群集的多个嵌入之间的多个距离小于一个群集与另一群集之间的距离(例如,一个群集的任何嵌入与另一群集的任何嵌入之间的距离),以防止多个群集之间的重叠,及/或确保同一个群集的成员彼此之间比另一个集群的成员更相似。
可选地,根据分类类别的目标比例进行聚类。群集的成员根据目标比率进行排列。可以参考步骤104来提供目标比率。例如,目标比率可以是针对95%纯度的种子。群集作用的执行使得95%被鉴定为纯的种子在群集内,其余的被排除在外。例如,95%的最接近的多个种子图像的多个嵌入被选为群集。在另一个实例中,根据种子样品的破坏性DNA分析来计算分类类别的目标比率。例如,将大量种子的样品送去进行破坏性DNA测试,结果是样品的纯度为94%。将其余种子库群集的目标比率设置为94%。其余的种子根据它们各自的图像与目标比率进行聚类,而无需进行额外的破坏性测试。
任选地,当各个分类类别包括种子纯度或种子杂质的分类类别(例如,二元指示)时,图像被聚集到表示被分类为纯的种子的种子纯度群集中,或者聚集到表示被分类为不纯的种子的种子杂质群集中。任选地,根据目标统计分布将其聚类为种子纯度群集或种子杂质群集,所述目标统计分布可例如如参考步骤104所述提供。可以根据以下一项或多项(例如,参考步骤104所述可以提供)来计算目标统计分布:目标真阳性、目标真阴性、目标假阳性、目标假阴性、手动输入的分布、以及根据DNA测量的分布对种子样本进行的测试(可能对种子有破坏性,也可能对种子没有破坏性)。根据目标统计分布来设置用于群集的(多个)阈值(例如,图像的编码及/或与分类类别相关联的概率值)。
可选地,根据训练数据集存储的多个训练图像计算分类类别的比率的一指示。
任选地,对彼此相似的种子,例如,在本文所述的公差范围内在视觉及/或物理上彼此相似的种子进行聚类。替代地或另外地,创建不同分类类别的群集以用于在相同环境条件下生长的种子。替代地或另外地,创建不同分类类别的群集以用于在相同生长季节生长的种子。替代地或另外地,为在相同地理位置生长的种子创建不同分类类别的群集。替代地或附加地,为具有在公差范围内的相同物理参数的种子创建不同分类类别群集。示例性物理参数包括以下之一或组合:颜色、纹理、大小、面积、长度、圆度、宽度、千粒重以及上述的组合。
任选地,种子是等基因的,并且进行聚类以群集具有单一性状的种子(根据其图像)和没有单一性状的种子。
替代地或另外地,种子来自相同的母植株但父本花粉不同,并且根据不同的父本花粉计算群集,其中每个群集的种子具有相同的父本花粉。
替代地或另外地,种子包括自花授粉和杂交种子,并且根据自花授粉和杂交指示计算群集,其中一个群集的种子是自花授粉的,另一个群集的种子是杂交的。
替代地或另外地,种子包括非杂交和杂交种子,并且根据非杂交和杂交指示计算群集,其中一个群集的种子是非杂交的,另一个群集的种子是杂交的。
可选地,当嵌入位于距与定义的分类类别相关联的另一嵌入和嵌入群集的异常距离阈值(即,表示正常或非异常种子)以上时,嵌入被聚类为异常群集(例如,表示正常种子或非异常种子,或根据嵌入产生簇的事实表明种子成员正常)。异常群集存储表示种子异常的嵌入。可以根据产生的分类指令(例如,如参考步骤112所述),由分类机从种子批次中选择性地去除异常种子。
或者,将表示为异常的种子分配一个新的分类类别。异常种子可以被确定为一种新类型的正常种子(例如,将被分类的种子),而不是完全异常的种子(例如,需要丢弃的种子)。异常距离可以包括两个阈值。第一阈值表示完全不正常的多个种子。异常种子,例如,位于高于第一异常距离阈值的,远离另一个嵌入及/或群集的多个嵌入(即,表示正常及/或非异常种子)表示为异常种子,所述异常种子将被丢弃。位于相对较近,但仍然远离另一个嵌入(即,表示正常及/或非异常种子)及/或群集的嵌入,高于第二异常距离阈值,但低于第一异常距离阈值,表示为具有新分类类别的种子,例如,要对其进行分类。被识别为与新的分类类别相关联的多个图像及/或多个嵌入可以被添加到训练数据集中以更新经训练的神经网络。例如,可以在图形用户接口上显示新种子类型的指示,并要求用户手动输入分类类别。替代地或另外地,根据分配给两个或多个图像嵌入及/或两个或更多个群集的分类类别自动计算新分类类别,所述分类类别最接近表示为异常及/或指示新分类类别的种子的嵌入。新的分类类别可以基于到最近的图像嵌入及/或群集的相对距离来计算。例如,当距离拆分为75%到最近的Type-1种子群集,25%到最近的Type-2种子群集时,新图像及/或嵌入与75%Type-1、25%Type-2的分类类别相关联。
任选地,当某个种子的图像嵌入在统计上与所有其他群集不同时,将所述种子表示为异常。统计差异可以根据嵌入值相对于为每个群集计算的统计值。可选地或另外地,当特定种子的图像的嵌入在统计上类似于该群集时,任选地当为嵌入计算的一个或多个值与为该群集计算的统计值相似时,将该种子分配给该特定群集的特定分类类别。为该群集计算的示例性统计值包括:各群集嵌入的元素平均值(例如,平均向量表示法,其中向量的每个元素是簇的嵌入向量的相应值的平均值)、各群集嵌入的方差(例如,各群集不同向量的元素方差)以及各群集嵌入的高阶矩。例如,当嵌入的向量表示不同于所有群集的99%的向量时,所述嵌入(和对应的种子)被表示为异常。
任选地,当除了提供大量混合种子之外提供目标种子的图像时(例如,如参考动作104所述),从所述批次中选择与目标种子相似的种子。目标种子图像由神经网络嵌入。选择距离目标种子的嵌入小于目标距离阈值的多个图像嵌入的子集。所生成的用于由分类控制器执行的多个指令包括用于选择与多个图像嵌入的所选子集相对应的种子的指令。在另一实施方式中,图像嵌入和目标种子的嵌入被聚类。选择包含目标种子的群集。用于由分类控制器执行的指令包括用于从种子混合物中选择与所选群集相对应的种子的指令。
在112,根据分类类别(一个或多个类别)的指示及/或根据创建的群集(例如,多个嵌入及/或多个图像的)来生成用于种子分类的分类装置的分类控制器的多个指令。这些指令用于对与所分析的种子图像相对应的物理种子进行分类。可选地,指令包括丢弃某些种子的指令,例如,被分类为不纯净及/或异常(及/或没有为其创建新的分类类别)的种子的指令。
所述指令可以例如用于从混合种子中选择某些种子。种子可以放置在托盘及/或平台的表面上。平台上每个种子的物理位置被映像到种子的图像,例如,映像到包括平台上的多个种子的图像的分段子部分。当计算每个种子的每个图像以确定其各自的分类类别及/或群集时,机械臂可以根据映射到图像的物理位置来选择种子。然后,机械臂可将每个种子放入对应于适当分类类别及/或群集的容器中。
在另一种实施方式中,所述指令可以用于将种子单独送达到达输送带上。每个种子可以被成像。放置对应于分类类别及/或对应于种子的图像群集的适当的容器,使得种子进入适当的容器。例如,将传送带移至接收器,或将适当的接收器放置在传送带的末端。指令可以表示为控制器自动执行的代码,例如,二进制代码、脚本、可读文件、源代码、编译代码及/或函数调用。可选地或另外地,可以格式化指令以供用户手动执行,例如,用户基于指令手动编程分类机。例如,多个指令在显示器上显示(例如,作为文件、影片及/或图形插图)及/或打印。
可选地,指令实时生成,例如,由动态分类机执行,种子被实时送入(例如,连续或周期性地)、成像和动态分类。
在114,根据计算的分类类别及/或群集对种子进行分类。分类可以由执行生成的分类指令的分类控制器所指示的分类设备自动执行。
在116处,重复参考方框104至114描述的一个或多个步骤。例如,可以针对每个图像执行重复。独立分析每个种子的每个图像以确定相应的分类类别,然后根据分类类别对种子进行分类。在另一个示例中,可以针对多个种子(例如一批混合的种子)的多个图像重复执行。一起分析单一个种子的图像(例如,并行地或顺序地,并存储中间结果),以对图像进行群集(例如,图像的嵌入)。这批种子是按多个群集分类的。
现在参考图3,在302,提供不同种子的多个训练图像。可选地,对多个图像进行分割,使得每个分割的图像包括一单一个种子。图像可由不同类型的图像传感器获取。这些图像包括不同分类类别的种子。
在304处,用一个或多个分类类别注释每个训练图像。注释可以由用户手动执行(例如,通过显示种子图像并接受分类类别作为用户输入的图形用户接口,例如,从列表中选择,或手动输入分类类别),及/或通过代码自动获得,例如,从对种子进行自动分析的设备(例如,DNA分析仪)。
任选地,当分类类别是种子变体时,分类类别可根据亲本植物的变异体来确定。在这种情况下,在不影响种子本身的情况下确定分类类别。可替代地,可以基于破坏种子的破坏性测试,例如获得种子的基因型的DNA测试,来确定分类类别。在这种情况下,先对种子进行成像,然后再进行破坏性测试。当亲本植物的变体未知时,可以进行破坏性测试。
任选地,分类类别是新种子变体的新类别,如参考图1的动作110所述检测。图像可以用新的分类类别自动注释。
在306,基于训练图像和相关联的分类类别创建一个或多个训练数据集。训练数据集可以根据目标神经网络来定义,例如,根据成像传感器的类型,及/或根据由神经网络分类的分类类别的数量。例如,每个分类类别训练一个单一的神经网路,或训练一个单一的神经网路来分类成多个候选分类类别。
在308,根据训练数据集训练一个或多个神经网络。所述神经网络训练用于根据图像传感器捕获的种子的目标图像来计算分类类别的指示。
任选地,现有的神经网络被重新训练及/或根据附加注释的训练图像更新,例如当检测到新的变体类型时。
神经网络可以根据损失函数进行训练。对于种子图像上的神经网络输出,可以测量损失函数,以估计网络输出与种子图像的真实标签之间的一致性度量。损失函数的一个示例是Softmax函数损失。可以使用优化过程(例如,随机梯度下降)来最小化损失函数。可以重复优化过程,直到满足停止条件为止。
在310,可以基于经训练的神经网络来创建一个或多个嵌入神经网络。通过选择经训练的神经网络的一个内隐层作为嵌入层,去掉嵌入层后的层,就可以建立嵌入神经网络。
任选地,现有的嵌入神经网络被重新训练及/或根据附加注释的训练图像更新,例如当检测到新的变体类型时。
在312,经训练的神经网络及/或嵌入神经网络被提供,例如,由计算设备存储及/或提供给远程计算设备以用于本地实现。任选地,提供神经网络的权重。
现在参考图4A至图4E,是基于参考图1及/或图3所述方法的示例性数据流的数据流程示意图。根据本发明的一些实施例,可由参照图2描述的系统200的多个组件执行。
图4A描绘了根据本发明一些实施例的用于根据多个训练种子图像404来训练嵌入神经网络402以计算种子图像的嵌入406的数据流程。图4B描绘用于确定两个种子是否属于同一类别的数据流程。将两个种子的种子图像410A-B馈送到神经元412中,以计算各自的嵌入414A-B。例如,计算多个嵌入414A-B之间的距离416,作为多个所述嵌入的向量表示之间的L2范数距离。例如,根据所述距离416来确定种子是属于同一类别418还是不同类别420,例如,当所述距离低于阈值时,种子属于相同类别418,当所述距离高于阈值时,种子属于不同类别420。
图4C描绘了用于根据DNA测试提高种子批次纯度结果的数据流程。种子图像430被馈送到经训练的神经网络432,所述神经网络将分类指示及/或嵌入输出到一决策单元434中。决策单元434接收由DNA测试装置产生的种子样品的DNA结果436作为输入。决策单元434基于已知的统计配置440计算用于对种子图像进行分类的分类阈值438。决策单元434向分类单元442提供要丢弃的种子及/或应该保留哪些种子以获得预定纯度水平的指令。分类单元434可以接收用于分类的种子和由神经网络432处理的相应种子图像430之间的映射,用于确定要除去哪些种子及/或哪些种子要离开。
图4D描绘了用于定义目标种子杂交/非杂交类别的统计数据的数据流程。多个目标种子类别450中的每一个的多个图像被输入到神经网络452中,所述神经网络计算每个图像的嵌入量454。如本文所述,嵌入的统计量456被计算。
图4E描绘用于确定目标种子是否与图4D的种子属于相同类别的数据流程。将新目标种子的图像460馈入神经网络452(图4D),以计算嵌入462。使用类别统计量456(参照图4D进行计算)来评估嵌入,以确定新的目标种子是否与图4D的类别样本450属于相同类别464,还是属于不同类别466。如上文所述且如以下权利要求书所述,本发明的各种实施例和目的在以下实施例中可以获得足够的支持。
实施例
现在参考以下训练神经网络以及根据由经训练的神经网络对种子图像进行分析对种子进行分类及/或群集的示例,这些示例与以上描述一起说明了本文描述的系统、方法、装置及/或代码指令的一些非限制性的实施例。
发明人基于参考图1至图3与本文讨论的特征及/或系统组件,根据本文所述的系统及/或方法及/或装置及/或代码指令的至少一些实施方式进行了包括种植真实种子并分析种子的实验。
实施例1:杂交(F1)分类。
材料与方法:种子样品:取西红柿、辣椒、玉米甜瓜和黄瓜的F1变种种子。同一季节在相同环境条件下的温室中生产了九个西红柿杂交种。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。在相同环境条件下,在温室内同一季节生产了五个西红柿杂交种。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。在同一季节,相同环境条件下生产了七个玉米杂交种。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。在同一季节在温室条件下生产了三个甜瓜杂交种。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。另外三个甜瓜杂交种在同一季节在温室条件下生产。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。同一季节在相同环境条件下的温室中生产了三个辣椒杂交种。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。在相同环境条件下,在温室内同一季节生产了三个黄瓜杂交种。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。
图像采集与分析:利用RGB图像传感器对每个杂交种的数百个种子进行分析。对于每一个杂交种,图像被随机分为三组,即训练组、验证组和测试组分别为80%/10%/10%。每个杂交种重复10次这个过程。利用训练集对卷积神经网络进行训练。利用经训练的神经网络对验证组和测试组图像进行种子变异预测。对于这些集合的每个种子图像,神经网络输出种子属于训练后的杂交种的概率。选择概率最高的杂交种。每一个混合体的正确预测百分比被存储。这个过程用不同的随机分割重复10次。
结果:使用从RGB图像传感器获得的数据,可以对不同作物,西红柿、玉米、辣椒、黄瓜和甜瓜中的每一种正确地对种子杂交种进行正确分类,准确率超过96%。在西红柿中测试了8个杂交种,平均品种识别率超过98%,准确率为GS13-97.14%、GS16-98.15%、GS19-100%、GS27-100%、GS3-97.62%、GS4-97.14%、GS5-96.5%、GS6A-96.67%和GS6B-100%。在第二地点又培育了五个西红柿杂交种,品种识别率在96%以上,分别为IS056为98.5%、IS057为98.7%、IS089为98.57%、IS060为96.85%、IS061为98.6%。对七个玉米杂交种进行了品种鉴定,其中TS、TS1、TS-bon、TS-0、TS-nal、TS-ro等六个杂交种的识别率为100%,TS系的识别率为92%。在甜瓜上,对三个杂交种进行了鉴定,品种识别率分别为99、98.67和99.34%。在第二地点又培育出三个甜瓜杂交种,品种识别率在86%以上,分别为IS052为88.11%、IS053为86.59%、IS054为94.57%。以辣椒为材料,对3个杂交种进行了鉴定,品种识别率在98%以上,IS066为98.2%,IS067为100%,IS068为100%。以黄瓜为试材,对三个杂交种进行鉴定,品种识别率在99%以上,G101为99.1%,G501为98.2%,G601为99.1%。
实施例2:开放式分类
材料与方法:种子样品:取小麦、大豆和莴苣的开放系(OP’s)种子。在相同条件和相同季节下,在田间种植了七个小麦开放系品种。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。在相同条件和相同季节下,在田间种植了四个大豆开放系品种。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。在相同条件和相同季节下,在田间种植了两个莴苣开放系品种。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。
图像采集与分析:利用RGB图像传感器对每个杂交种的数百个种子进行分析。对于每一个杂交种,图像被随机分为三组,即训练组、验证组和测试组分别为80%/10%/10%。每个杂交种重复10次这个过程。利用训练集对卷积神经网络进行训练。利用经训练的神经网络对验证组和测试组图像进行种子变异预测。对于这些集合的每个种子图像,神经网络输出种子属于训练后的杂交种的概率。选择概率最高的杂交种。每一个混合体的正确预测百分比被存储。这个过程用不同的随机分割重复10次。
结果:利用RGB涂像传感器获得的数据,对不同作物、小麦、大豆和莴苣的种子杂交种正确分类的准确率均在98%以上。在小麦品种鉴定中,共检测了七个开放系品种,其品种识别率的准确率均在95%以上,分别为EC122为97.67%、EC404为95.75%、EC431为95.92%、EC为646 100%、EC647为97.87%、EC651为97.78%、EC760为95.65%。在大豆中,测试了四个开放系品种,品种识别率的准确率超过98%,E298为100%,E311为100%,E506为93.3%,E619为100%。在莴苣中,对两个开放系品种进行了测试,品种识别率的准确率在98%以上,GSJ1为98.9%,GS2为98%。
例3:区分杂交种和自交种。
材料与方法:种子样品。在相同的环境条件下和相同的季节,在温室中生产了八种西红柿不同杂交种的杂交种及其雌性亲本(自交)。对于每种变体,随机选择一些花进行自花授粉,其余的花进行异花授粉以产生杂交种种子。基于本领域已知的方法,所有种子均以相同的方式处理并经过相同的过程。在相同的环境条件下和同一季节在温室中生产了三种不同的甜瓜杂交种。对于每种变体,随机选择一些花进行自花授粉,其余的则进行异花授粉以产生杂交种种子。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。在相同的环境条件和相同的季节,在温室中生产了三种辣椒不同的杂交种。对于每种变体,随机选择一些花进行自花授粉,其余的则进行异花授粉以产生杂交种种子。基于本领域已知的方法,所有种子均以相同的方式处理并经过相同的过程。在相同的环境条件和相同的季节,在田间生产了三种玉米不同的杂交种。对于每个杂交种,随机选择一些花进行自花授粉,其余的进行异花授粉以产生杂交种种子。基于本领域已知的方法,所有种子均以相同的方式处理并经过相同的过程。
图像采集与分析:通过RGB图像传感器分析每个杂种及其雌性亲本系的至少1000粒种子的样品。对于每个样品,将图像随机分为三组,分别为训练、验证和测试80%/10%/10%。每个样品重复此过程10次。使用训练集对卷积神经网络进行了训练。利用经训练的神经网络对验证组和测试组图像进行种子变体预测。
结果:这个例子说明了从所需的杂交种种子中分类自花授粉种子,杂交种是最常见的生产杂质。利用RGB成像获得的数据,从其亲本系中预测正确的杂交种,并与杂交种进行自我比较。对8对西红柿品种进行了鉴定,9对中有7对品种识别率的准确度在95%以上。杂交种ET50为87.6%和自交种为96.2%,杂交种ET51为88.5%,自交种为96.6%,杂交种ET52为96.8%,自交种为100%,杂交种ET53为96.72%、杂交种ET53为90.67%,自交种为98.5%,杂交种ET54为96.7%,自交种为98.4%,杂交种ET56为87.3%,自交种为94.5%,杂交种ET57为94%,杂交种为96.9%。以甜瓜为试材,对三对甜瓜品种进行了鉴定,其品种识别率的准确率达89.7%以上。杂交种IS052为88%,杂交种IS053为86.6%和杂交种IS054为94.6%和自交种为98.1%。以辣椒为试材,对三对辣椒品种进行了鉴定,品种识别率的准确率达99%以上。对于杂交种IS066为100%,自交种为100%,杂交种IS067为100%,自交种为98.9%以及杂交种IS068为97.6%,自交种为90.1%。对两对玉米进行了试验,品种识别率为SH1的杂交种为94.9%,自交种为89%,SH2杂交种为84.7%,自交种为90.9%。
实施例4:等基因系之间鉴定
材料与方法:种子样品:从西红柿、辣椒和甜瓜植株中获得一对等基因系。在同一季节,在温室条件下培育了六对等基因系甜瓜。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。在同一季节,在温室条件下培育了三对辣椒等基因系。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。在同一季节在温室条件下种植了六对西红柿等基因系。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。
图像采集与分析:通过RGB图像传感器分析每个等基因系中至少1000粒种子的样品。每个种子图像都是用RGB拍摄的。对每个样本,图像随机分为三组,即训练组、验证组和测试组分别为80%/10%/10%。每个样品重复此过程10次。使用训练集对卷积神经网络进行了训练。利用经训练的神经网络对验证组和测试组图像进行种子变体预测。对于这些集合的每个种子图像,使用神经网络输出种子属于经训练的等基因系的概率。选择了概率最高的样本。保存了每个样本正确预测的百分比。
结果:该实施例说明了对多个等基因系种子的多个对的分类,这两个系具有很高的基因组同源性。利用RGB成像获得的数据,预测了正确的种子等基因系。在甜瓜中检测了六对等基因系,品种识别率分别为IS01和IS02—95.2%、IS03和IS04—90.8%、IS05和IS06—95.8%、IS07和IS08—99.4%、IS09和IS010—100%、IS011和IS012—96.7%。在辣椒中检测了三对等基因系,品种识别率分别为IS013和IS04—98.9%,IS015和IS016—99.3%,IS017和IS018—98.6%。在西红柿中检测了六对等基因系,品种识别率分别为IS019和IS020—99%、IS021和IS022—95.5%、IS023和IS024—94.5%、IS025和IS026—97.6%、IS029和IS030—96.8%、IS031和IS032—95.7%。
实施例5:生物性状分类
材料与方法:种子样品。采集代表不同生物性状的成对种子:
两种西红柿相似的品系,一种抗性,另一种对TYLCV敏感。两个等基因系在相似的生长条件下生长。
两种西红柿相似的品系,一个抗性,另一个对TMV抗性敏感。两个等基因系在相似的生长条件下生长。
两种西红柿相似品系,一个抗性,另一个对TSWV敏感。两个等基因系在相似的生长条件下生长。
两种西红柿相似品系,一个抗性,另一个对线虫敏感。两个等基因系在相似的生长条件下生长。
两种西红柿相似品系,一个抗性,另一个对线虫敏感(其他遗传背景)。两个等基因系在相似的生长条件下生长。
两种相似的甜瓜品系,一个抗白粉病,另一个对白粉病(真菌)敏感。两个等基因系在相似的生长条件下生长。
图像采集与分析:用RGB图像传感器对多个品系中的每一对中至少1000个种子样本进行分析。使用了之前实验的训练和结果评估,结果如下所示。
结果:这项实验的结果证明了两种种子类型之间的分离能力,而它们之间的遗传差异很小。
在这两个西红柿品系的试验中,使用从RGB图像传感器获得的数据,将种子以非常高的准确率成功地分离为TYLCV敏感和抗性种子,抗性种子的准确率为100%,敏感种子的准确率为95.45%。
在这两个西红柿品系的试验中,将种子成功地以很高的准确率成功分离为TMV敏感和抗性种子,抗性种子的准确率为94.5%,敏感种子的准确率为95.6%。
在这两个西红柿品系的试验中,将种子以非常高的准确率成功分离为TSWV敏感和抗性种子,抗性种子的准确率为95.45%,敏感种子的准确率为100%。
在这两个西红柿品系的试验中,将种子以极高的准确率成功分离为线虫敏感和抗性种子,抗性种子的准确率为92.4%,敏感种子的准确率为96.8%。
在这两个西红柿品系的试验中,将种子成功地以极高的准确率分离为线虫(其他遗传背景)敏感和抗性种子,抗性种子的准确率为95.7%,敏感种子的准确率为90.6%。
在两个甜瓜品系的试验中,成功地以极高的准确率分离出了对白粉病敏感的和抗性的种子,抗性种子的准确率为96.7%,敏感种子的准确率为96.6%。
实施例6:非生物性状分类
材料与方法:种子样品。筛选出具有不同抗旱性的茄子品种。这些植物在相似的生长条件下生长。
图像采集和分析:通过RGB图像传感器分析每对品系中至少1000粒种子的样品。使用先前实验的训练和结果评估,预期结果将在未来几个月内进行。
实验例7:植物结构和品质性状分类
材料与方法:取成对的具有不同性状基因的种子。分析了两个辣椒相似的品系(一个果实呈红色,另一个果实呈黄色)。两个等基因系在相似的生长条件下生长。
分析了两个辣椒相似品系(一个果实较小,另一个果实较大)。两个等基因系在相似的生长条件下生长。
分析了两个相似的辣椒品种(一个代表确定的植物,第二个代表不确定的植物)。两个等基因系在相似的生长条件下生长。
对两个西红柿相似品系(一个果实呈现红色,另一个果实呈橙色)进行了分析。两个等基因系在相似的生长条件下生长。
分析了两个西红柿相似品系(一个果实呈现红色,另一个果实呈紫色)。两个等基因系在相似的生长条件下生长。
对两个西红柿相似品系(一个为椭圆形果实结构,另一个为圆形果实结构)进行了分析。两个等基因系在相似的生长条件下生长。
分析了两个西红柿相似品系(一个为紧凑型植株,另一个为非紧凑型植株)。两个等基因系在相似的生长条件下生长。
对两个甜瓜相似品系(一个呈白色、淡黄色,另一个呈黄色)进行了分析。这两个等基因系在相似的生长条件下生长。
对两个甜瓜相似品系进行了分析,其中一个表现为高PH值(口感好),第二个低PH值(口感差)。两个等基因系在相似的生长条件下生长。
对两个甜瓜相似品系(一个为白色果肉,另一个为黄色果肉)进行了分析。两个等基因系在相似的生长条件下生长。
图像采集和分析:通过RGB图像传感器分析每对品系中至少1000粒种子的样品。使用先前实验的训练和结果评估,结果显示如下。
结果:本实验结果显示了两种种子类型之间的分离能力,但它们之间的遗传差异很小。
品质性状:以两个相似的辣椒品系为试验材料,利用RGB图像传感器获得的数据,成功地将红、黄两种辣椒种子分离,对于红辣椒种子的准确率为87%,对于黄辣椒种子的准确率为94%。对于不同果实粒径的辣椒,利用RGB图像传感器获得的数据,成功地将普通辣椒种子和小辣椒果实种子分离,对于普通辣椒种子的准确率为100%,对于小辣椒种子的准确率为99.4%。在两个相似辣椒品系的实验中,利用RGB图像传感器获得的数据,成功地将不确定辣椒植株和确定辣椒植株的种子分离,对于不确定辣椒种子的准确率为97.6%,对于确定辣椒种子的准确率为91.8%。在两个相似的西红柿品系的实验中,利用RGB图像传感器获得的数据,成功地将种子从红色果实和橙色果实的种子中分离出来,对于红色果实的种子的准确率为90.6%,对于红色果实的种子的准确率为94.5%。对于两个相似的西红柿品系的实验,使用从RGB图像传感器获得的数据,成功地将种子从红色果实和橙色果实的种子中分离出来,红色果实的种子的准确度为90.6%,橙色果实的种子的准确度为94.5%。在两个相似的西红柿品系的实验中,使用从RGB图像传感器获得的数据,成功地将种子从红色果实和紫色果实的种子中分离出来,对于红色果实的种子的准确率为98.3%,对于紫色果实的种子的准确率为99%。以代表不同果实结构的两个相似西红柿品系为试验材料,利用RGB图像传感器获得的数据,成功地将种子从圆形果实和椭圆形果实中分离出来,对于圆形果实的种子的准确率为97.6%,对于椭圆形果实的种子的准确率为92.8%。对于使用代表植物结构的两个相似西红柿株系的实验,使用从RGB图像传感器获得的数据,成功地将种子从常规型植物种子和紧凑型植物果实中分离出来,常规型植物种子的准确率为80.1%,紧凑型植物种子的准确率为81.6%。对于两个相似的甜瓜品系进行的实验,利用RGB图像传感器获得的数据,成功地将种子从淡白色种子中和淡黄色种子中分离出来,对淡白色种子的准确率为95.8%,对淡黄色种子的准确率为95.8%。在两个相似的甜瓜品系进行的实验,利用RGB图像传感器获得的数据,成功地将高PH值果实和低PH值果实的种子分离,高PH值果实种子的准确率为88%,低PH值果实种子的准确率为90.8%。对于两个相似的甜瓜品系进行的实验,利用RGB图像传感器获得的数据,成功地将种子从白色闪光的种子和黄色闪光的种子中分离出来,白色闪光果种子的准确率为99.5%,黄色闪光果种子的准确率为100%。
实施例8:转基因与非转基因(无)分类。
材料与方法:种子样品。对5对不同品系的转基因玉米及其非转基因(无)种子,在相同的环境条件下,在同一季节,在同一田地上种植。基于本领域已知的方法,对所有种子进行相同的处理并经历相同的过程。
图像采集与分析:用RGB成像系统对每个品系的至少1000个种子样本进行分析。每个种子图像都是用RGB拍摄的。对每个样本,图像随机分为三组,即训练组、验证组和测试组,分别为80%/10%/10%。每个样品重复此过程10次。利用训练集对卷积神经网络进行训练。利用经训练的神经网络对验证组和测试组图像进行种子变体预测。对于这些组的每个种子图像,使用神经网络输出种子属于训练线的概率。选择概率最高的样本。保存每个样本的正确预测百分比。
结果:这个例子展示了种子品系分为两组——转基因和非转基因,这两组具有高度的基因组同源性。利用RGB成像获得的数据,预测了正确的种子品系。共测试3对,其中品系的识别率为A线对A-无为96.59%、B线对B-无为97.01%、C线对C-无为98.38%。
已经出于说明的目的给出了本发明的各种实施例的描述,但是这些描述并不是穷举性的或限制于所公开的实施例。在不脱离所描述的实施例的范围和精神的情况下,许多修改和变化对于本领域普通技术人员将是显而易见的。选择这里使用的术语是为了最好地解释实施例的原理,对市场上发现的技术的实际应用或技术上的改进,或者使本领域的其他普通技术人员能够理解这里公开的实施例。
可以预期,在本申请到期的专利有效期内,将开发出许多相关的种子图像技术,并且术语图像的范围旨在优先包含所有此类新技术。
如本文所用的术语“大约”是指±10%。
如本文中所用术语“包括(comprises)”、“包括(comprising)”、“包括(includes)”、“包含(including)”、“具有(having)”及其词形变化是指“包括但不限于”,所述术语包括术语“由...组成”和“本质上由......组成”。
如本文所用术语“本质上由......组成”指的是组成物、方法或可包括额外的成分及/或步骤,但仅当额外的成分及/或步骤不实质上改变所要求保护的组成或方法的基本和新颖特性。
本文所使用的单数形式「一」、「一个」及「所述」包括复数引用,除非上下文另有明确规定。例如,术语「一化合物」或「至少一种化合物」可以包括多个化合物,包括其混合物。
如本文中所用的术语“示例性(exemplary)”表示“用作为一示例(example),实例(instance)或例证(illustration)”。任何被描述为“示例性”实施例未必被解释为优选或优于其它实施例及/或排除与来自其它实施例的特征结合。
如本文中所用的术语“可选择地(optionally)”表示“在一些实施例中提供,而在其它实施例中不提供”。任何本发明的特定实施例可以包括多个“可选择的”特征,除非此类特征相冲突。
在整个本申请中,本发明的各种实施例可以以一个范围的型式存在。应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本发明范围的硬性限制。因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所数范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。
每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。术语,第一指示数字及第二指示数字"之间的范围”及第一指示数字"到”第二指示数字"的范围"在本文中可互换,并指包括第一及第二指示数字,及其间的所有分数及整数。
可以理解,本发明中的特定特征,为清楚起见,在分开的实施例的内文中描述,也可以在单一实施例的组合中提供。相反地,本发明中,为简洁起见,在单一实施例的内文中所描述的各种特征,也可以分开地、或者以任何合适的子组合、或者在适用于本发明的任何其他描述的实施例中提供。在各种实施例的内文中所描述的特定特征,并不被认为是那些实施方案的必要特征,除非所述实施例没有那些元素就不起作用。
虽然本发明结合其具体实施例而被描述,显而易见的是,许多替代、修改及变化对于那些本领域的技术人员将是显而易见的。因此,其意在包括落入所附权利要求书的范围内的所有替代、修改及变化。
在本说明书中提及的所有出版物、专利及专利申请以其整体在此通过引用并入本说明书中。其程度如同各单独的出版物、专利或专利申请被具体及单独地指明而通过引用并入本文中。此外,所引用的或指出的任何参考文献不应被解释为承认这些参考文献可作为本发明的现有技术。本申请中标题部分在本文中用于使本说明书容易理解,而不应被解释为必要的限制。

Claims (62)

1.一种种子分类系统,其特征在于:包括:
一非暂时性存储器,所述非暂时性存储器储存有用于由至少一硬件处理器执行的一代码,所述代码包括:
代码,用于将包括至少一种子的至少一图像输入到至少一神经网络中,所述至少一图像由至少一图像传感器捕获;
代码,用于通过所述至少一神经网络计算所述至少一种子的至少一分类类别的一指示,其中至少一分类类别的所述指示至少根据所述至少一神经网络的权重来计算,其中一经训练的非神经网络统计分类器基于所述至少一种子的一视觉特性和一物理特性中的至少一种,根据从所述至少一图像中取得的至少一明确定义的视觉特征,计算统计意义不大的所述至少一分类类别;
其中,所述至少一神经网络是根据包含由所述至少一图像传感器捕获的多个种子的多个训练图像的训练数据集所训练的,其中,所述多个训练图像中的每一个各别的训练图像与在各别的训练图像中描述的至少一种子的至少一分类类别的一指示相关联;以及
代码,用于根据至少一分类类别的所述指示生成用于由一自动分类设备的一分类控制器执行的多个指令,用于多个种子的自动分类。
2.如权利要求1所述的系统,其特征在于:所述至少一图像包括多个种子,其中所述经训练的非神经网络统计分类器根据所述至少一视觉特征将所述多个种子的所述至少一图像分类为一相同的至少一分类类别,其中所述神经网络将具有统计意义的所述多个种子的至少一图像分类为两个或两个以上不同的分类类别。
3.如权利要求2所述的系统,其特征在于:从一第一种子的至少一图像中取得的至少一视觉特征在公差要求内与从一第二种子的至少一图像中取得的对应的至少一视觉特征在统计上相似。
4.如权利要求1所述的系统,其特征在于:所述至少一种基于所述物理特性的视觉特征选自于下列所组成的群组:一手工制作的特征、至少一种种子的至少一种尺寸大小、至少一种种子的颜色、至少一种种子的形状和至少一种种子的纹理。
5.如权利要求1所述的系统,其特征在于:所述至少一图像包括多个种子,所述多个种子在公差范围内通过一单一特征彼此不同,所述单一特征不能由所述至少一视觉特征取得,还包括根据为每一个种子计算的一各别的二元分类类别来计算群集,其中所述各别的二元分类类别指示包括所述单一特征或不包括所述单一特征的各别的种子,并且其中所述多个指令包括用于根据所述经计算的群集对所述多个种子进行分类的指令。
6.如权利要求5所述的系统,其特征在于:指示所述单一特征的所述二元分类类别是选自于下列所组成的群组:自花授粉或杂交授粉、抗逆性或非抗逆性、转基因或非转基因、所述单一特征不同的等基因种子、以及具有不同父本花粉的共享母本植物的种子。
7.如权利要求1所述的系统,其特征在于:所述至少一分类类别包括一非可视类别,所述非可视类别不能基于所述至少一种子的目视检查而手动确定。
8.如权利要求1所述的系统,其特征在于:所述至少一分类类别包括一种子变体。
9.如权利要求1所述的系统,其特征在于:所述至少一分类类别与DNA标记不直接相关。
10.如权利要求1所述的系统,其特征在于:所述至少一分类类别为一产量相关性状。
11.如权利要求1所述的系统,其特征在于:所述至少一分类类别为一单基因性状、多效性性状或多基因性状。
12.如权利要求1所述的系统,其特征在于:所述至少一分类类别为一植物品质相关性状。
13.如权利要求12所述的系统,其特征在于:所述植物品质相关性状包括抗感染性、抗胁迫性、降低的致敏性性状、预测发芽率、果实味道、果实大小、活力、含油量、纤维品质、纤维长度、籽粒充实期、开花、抽穗、植物高度、光合作用能力和肥料利用效率。
14.如权利要求10所述的系统,其特征在于:所述产量相关性状选自于下列所组成的群组:生长速度、生物量、纤维产量及收获指数。
15.如权利要求1所述的系统,其特征在于:所述至少一分类类别由破坏性测试确定,所述破坏性测试在所述至少一图像传感器捕获各别的所述种子的各别的训练图像之后破坏所述种子。
16.如权利要求1所述的系统,其特征在于:所述至少一分类类别表示在一未来时间间隔预测在所述至少一种子中发展的至少一表现型特性,所述未来时间间隔相对于所述至少一图像被捕获时的一时间间隔。
17.如权利要求1所述的系统,其特征在于:所述图像传感器选自于下列所组成的群组:RGB、多光谱、高光谱、可见光频率范围、近红外(NIR)频率范围、红外(IR)频率范围,以及上述各项的组合。
18.如权利要求1所述的系统,其特征在于:包括至少一种子的所述至少一图像包括从包含多个种子的一图像分割出的一单一个种子的一单一个图像。
19.如权利要求1所述的系统,其特征在于:与所述训练数据集的各别的多个训练图像相关联的至少一分类类别的指示包括根据一亲本植株确定的种子变体。
20.如权利要求1所述的系统,其特征在于:与所述训练数据集的各别的多个训练图像相关联的至少一分类类别的指示是基于破坏所述种子的一DNA测试获得。
21.如权利要求1所述的系统,其特征在于:所述至少一神经网络计算所述至少一图像的一嵌入,并且其中所述至少一分类类别是根据从储存多个训练图像的多个嵌入的所述训练数据集中的一识别的至少一相似的嵌入图像的一注释来确定的,根据所述至少一图像的嵌入与所述训练图像的嵌入之间的一相似距离的一要求来识别所述至少一相似的嵌入图像。
22.如权利要求21所述的系统,其特征在于:所述嵌入是由被选择作为一嵌入层的经训练的至少一神经网络的一内层来计算的。
23.如权利要求21所述的系统,其特征在于:所述嵌入被储存为具有一预定长度的一向量,其中所述相似距离被计算为储存所述至少一图像的所述嵌入的一向量与分别储存各个训练图像的嵌入的多个向量之间的一距离。
24.如权利要求20所述的系统,其特征在于:所述相似距离在所述至少一图像的所述嵌入和多个训练图像的多个嵌入的一群集之间被计算,多个训练图像的每一个与一相同的至少一分类类别相关联。
25.如权利要求1所述的系统,其特征在于:所述至少一图像包括多个图像,所述多个图像包括多个种子,并且所述至少一图像更包括用于根据多个各个分类类别对所述多个图像进行群集的代码,其中,由所述分类控制器执行的多个所述指令包括用于根据各个分类类别对与所述多个图像相对应的多个所述种子进行分类的多个指令。
26.如权利要求25所述的系统,其特征在于:根据多个分类类别的一目标比率执行群集化,其中根据所述目标比率排列群集的多个构件。
27.如权利要求26所述的系统,其特征在于:根据所述多个种子的一样品的一DNA分析计算多个所述分类类别的所述目标比率。
28.如权利要求25所述的系统,其特征在于:所述多个各个分类类别包括种子纯度或种子杂质的一二元指示,其中所述多个图像被群集为一种子纯度群集以表示被分类为纯的种子,或被群集为种子杂质群集以表示被分类为不纯的种子。
29.如权利要求26所述的系统,其特征在于:所述群集为种子纯度群集或种子杂质群集根据一目标统计分布被执行。
30.如权利要求29所述的系统,其特征在于:所述目标统计分布根据以下的至少一项来计算:一目标真阳性、一目标真阴性、一目标假阳性、一目标假阴性、一手动输入的分布,根据对所述多个种子的一样本进行的一DNA测试所测量的一分布。
31.如权利要求28所述的系统,其特征在于:所述分类控制器的指令包括丢弃被分类为不纯的多个种子的多个指令。
32.如权利要求20所述的系统,其特征在于:所述训练数据集储存与所述多个训练图像相关联的多个分类类别的一比率的一指示。
33.如权利要求25所述的系统,其特征在于:所述多个种子是等基因的。
34.如权利要求25所述的系统,其特征在于:所述多个种子来自同一母植株,并且父本花粉不同,并且多个所述群集根据不同的父本花粉计算。
35.如权利要求25所述的系统,其特征在于:所述多个种子包括多个自花授粉种子和多个杂交种子,并根据自花授粉和杂交指示计算多个所述群集。
36.如权利要求25所述的系统,其特征在于:多个不同分类类别的多个群集被建立以在相同的环境条件下培育多个种子。
37.如权利要求25所述的系统,其特征在于:多个不同分类类别的多个群集被建立以在一相同生长季节培育多个种子。
38.如权利要求25所述的系统,其特征在于:多个不同分类类别的多个群集被建立以在一相同地理位置培育多个种子。
39.如权利要求25所述的系统,其特征在于:多个不同分类类别的多个群集被建立以在一公差范围内具有多个相同的物理参数下培育多个种子。
40.如权利要求38所述的系统,其特征在于:所述物理参数选自于下列所组成的群组:颜色、纹理、大小、面积、长度、圆度、宽度、千粒重和上述的组合。
41.如权利要求1所述的系统,其特征在于:所述至少一图像包括多个图像,所述多个图像包括多个不同分类类别的多个种子;
其中至少一神经网络计算所述多个图像中的每一个的一嵌入,其中,所述多个图像的所述嵌入通过群集化代码群集,并且其中用于由所述分类控制器执行的多个指令包括用于根据相应的多个群集对所述多个种子进行排序的多个指令。
42.如权利要求41所述的系统,其特征在于:所述群集被计算,使得每一个相应的群集的每一个嵌入的图像构件与另一个群集至少相距一阈值距离。
43.如权利要求41所述的系统,其特征在于:所述群集被计算,使得每一个相应的群集的每一个嵌入的图像构件与相同的相应的群集的每一个其他构件之间的距离小于一阈值距离。
44.如权利要求41所述的系统,其特征在于:同一群集的多个嵌入之间计算的一群集内距离小于多个不同群集的多个嵌入之间计算的一群集内距离。
45.如权利要求41所述的系统,其特征在于:多个种子对应于多个嵌入,所述多个嵌入位于一异常距离阈值以上且距离以下至少一项:被表示为一异常并聚集到一异常群集中的另一嵌入和一群集。
46.如权利要求45所述的系统,其特征在于:根据分配给至少两个图像的嵌入的多个分类类别及/或接近被标记为异常的种子的嵌入的至少两个群集的多个分类类别,将表示为异常的多个种子分配为一新的分类类别。
47.如权利要求46所述的系统,其特征在于:所述新的分类类别是根据与所述至少两个图像的嵌入及/或接近被标记为异常的种子的嵌入的至少两个群集的相对距离来计算的。
48.如权利要求41所述的系统,其特征在于:每一个群集计算至少一个统计值,其中,当一特定种子的图像的嵌入在统计上与所有其他多个群集不同时,将所述特定种子表示为异常。
49.如权利要求41所述的系统,其特征在于:每一个群集计算至少一个统计值,其中,一特定种子被分配给一特定群集的一特定分类类别,当所述特定种子的图像的嵌入在统计上类似于所述特定群集的至少一个统计值时。
50.如权利要求48所述的系统,其特征在于:各个群集的至少一个统计值选自于下列所组成的群组:各个群集的嵌入的均值,各个群集的嵌入的方差以及各个群集的嵌入的较高矩。
51.如权利要求36所述的系统,其特征在于:所述系统更包括提供一目标种子的一图像,通过至少一神经网络计算目标种子的嵌入,根据所述图像嵌入的位置距离所述目标种子的嵌入的位置小于一目标距离阈值,选择多个图像嵌入的一子集,其中,由所述分类控制器执行的多个所述指令包括用于选择与多个图像嵌入的所述子集相对应的多个种子的多个指令。
52.如权利要求41所述的系统,其特征在于:所述系统更包括提供一目标种子的一图像,通过至少一神经网络计算目标种子的嵌入,对多个图像嵌入和所数目标种子的嵌入进行群集,并选择包含所述目标种子的嵌入的一群集,其中,由所述分类控制器执行的多个所述指令包括用于选择与所选群集相对应的多个种子的多个指令。
53.如权利要求1所述的系统,其特征在于:所述至少一分类类别是一基因型。
54.一种用于训练至少一神经网络进行多个种子的分类的系统,其特征在于:包括:
一非暂时性存储器,所述非暂时性存储器储存有用于由至少一硬件处理器执行的一代码,所述代码包括:
代码,用于进入一训练数据集,所述训练数据集包括由至少一图像传感器捕获的多个种子的多个训练图像,其中,所述多个训练图像中的每一个训练图像与在所述多个训练图像中描绘的至少一种子的至少一分类类别的一指示相关联;以及
代码,用于根据所述训练数据集训练至少一神经网络,所述至少一神经网络被训练用于根据至少一目标图像来计算至少一分类类别的一指示,所述至少一目标图像包括至少一种子,所述至少一图像由至少一图像传感器捕获;
其中,至少根据至少一经训练的神经网络的权重来计算至少一目标图像的至少一分类类别的所述指示,其中,一经训练的非神经网络统计分类器基于所述至少一种子的一视觉特性和一物理特性中的至少一种,根据从所述至少一图像中取得的至少一明确定义的视觉特征,计算统计意义不大的所述至少一分类类别。
55.一种容器,其特征在于:包括多个种子,其中所述多个种子在性状、微生物组或基因组方面是相同的。
56.如权利要求55所述的容器,其特征在于:所述多个种子根据权利要求1至48中任一项的系统被分类。
57.如权利要求55所述的容器,其特征在于:所述多个种子包括超过一千个种子。
58.如权利要求53所述的容器,其特征在于:所述多个种子的重量超过100克。
59.如权利要求55所述的容器,其特征在于:所述性状选自于下列所组成的群组:氮肥利用效率提高、非生物胁迫耐受性增强、生物胁迫耐受性增强、生物量增加、生长速度加快、活力增强、产量增加和纤维产量增加或品质提高、以及油量增加。
60.一种使一农作物生长的方法,其特征在于:包括将权利要求55至59中任一项所述的容器的多个种子播种,从而使所述农作物生长。
61.如权利要求60所述的方法,其特征在于:所述多个种子在多个压力条件下的一环境中生长。
62.如权利要求61所述的方法,其特征在于:所述多个压力条件包括非生物胁迫耐受性或生物胁迫耐受性。
CN201880088001.2A 2017-12-03 2018-12-03 种子分类的系统及方法 Active CN111656355B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762593949P 2017-12-03 2017-12-03
US62/593,949 2017-12-03
US201862712270P 2018-07-31 2018-07-31
US62/712,270 2018-07-31
PCT/IB2018/059569 WO2019106639A1 (en) 2017-12-03 2018-12-03 Systems and methods for sorting of seeds

Publications (2)

Publication Number Publication Date
CN111656355A true CN111656355A (zh) 2020-09-11
CN111656355B CN111656355B (zh) 2023-08-29

Family

ID=65003432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880088001.2A Active CN111656355B (zh) 2017-12-03 2018-12-03 种子分类的系统及方法

Country Status (4)

Country Link
US (2) US11504748B2 (zh)
EP (1) EP3707640A1 (zh)
CN (1) CN111656355B (zh)
WO (1) WO2019106639A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113076979A (zh) * 2021-03-23 2021-07-06 广州快必妥营销策划咨询有限公司 合格作物筛选方法、作物栽培控制方法以及系统和装置
CN114160429A (zh) * 2021-11-12 2022-03-11 湖南省水稻研究所 一种基于外观检测结果进行种子分选的方法
CN114985305A (zh) * 2022-05-27 2022-09-02 安徽国祯生态科技有限公司 一种秸秆质量检测分类系统及方法
CN113076979B (zh) * 2021-03-23 2024-05-17 广州快必妥营销策划咨询有限公司 合格作物筛选方法、作物栽培控制方法以及系统和装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3707642A1 (en) 2017-12-03 2020-09-16 Seedx Technologies Inc. Systems and methods for sorting of seeds
WO2019106639A1 (en) 2017-12-03 2019-06-06 Seedx Technologies Inc. Systems and methods for sorting of seeds
US11503757B2 (en) 2017-12-03 2022-11-22 Seedx Technologies Inc. Systems and methods for sorting of seeds
US11669746B2 (en) * 2018-04-11 2023-06-06 Samsung Electronics Co., Ltd. System and method for active machine learning
US11544501B2 (en) * 2019-03-06 2023-01-03 Paypal, Inc. Systems and methods for training a data classification model
US11055822B2 (en) * 2019-05-03 2021-07-06 International Business Machines Corporation Artificially intelligent, machine learning-based, image enhancement, processing, improvement and feedback algorithms
CN110479636B (zh) * 2019-07-19 2021-11-09 深圳市微蓝智能科技有限公司 基于神经网络自动分拣烟叶的方法及装置
US11710308B1 (en) * 2019-10-10 2023-07-25 Aerofarms, Inc. Seed germination detection method and apparatus
WO2021084019A1 (en) * 2019-10-31 2021-05-06 Keygene N.V. Efficient plant selection
US20230343116A1 (en) * 2019-12-19 2023-10-26 Pioneer Hi-Bred International, Inc. Microspore culture predictive model generation and use
CN112381662B (zh) * 2020-10-30 2024-04-26 中国农业大学 花粉可育率评估方法及装置
EP4298596A1 (en) * 2021-02-26 2024-01-03 Monsanto Technology LLC Methods for evaluating pollen germination, and related systems
CN113012754A (zh) * 2021-03-17 2021-06-22 云南中烟工业有限责任公司 一种基因突变素材中纯合突变种子的筛选方法及筛选系统
BR112023019290A2 (pt) 2021-03-25 2023-10-24 Nunhems Bv Planta ou parte de planta de melancia, semente, pólen, planta propagada vegetativamente, métodos para produzir frutos de melancia e para triagem de plantas
NL2028466B1 (en) 2021-06-16 2022-12-21 Sakata Holland B V Methods of sorting matthiola seeds
CR20240020A (es) 2021-06-16 2024-02-28 Seedx Tech Inc Métodos de clasificación de semillas de matthiola
CN113661802A (zh) * 2021-09-03 2021-11-19 山东农业大学 一种高压静电场和赤霉素综合处理水稻种子的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072484A1 (en) * 2001-09-17 2003-04-17 Kokko Eric Gerard Method and apparatus for identifying and quantifying characteristics of seeds and other small objects
US20120294540A1 (en) * 2011-05-17 2012-11-22 Microsoft Corporation Rank order-based image clustering
US9156064B2 (en) * 2010-02-17 2015-10-13 Dow Agrosciences Llc Apparatus and method for sorting plant material
CN106062871A (zh) * 2014-03-28 2016-10-26 英特尔公司 使用所选择的群组样本子集来训练分类器

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1192510A (en) 1981-05-27 1985-08-27 Lawrence E. Pelcher Rna plant virus vector or portion thereof, a method of construction thereof, and a method of producing a gene derived product therefrom
JPS6054684A (ja) 1983-09-05 1985-03-29 Teijin Ltd 新規dνa及びハイブリツドdνa
US5304732A (en) 1984-03-06 1994-04-19 Mgi Pharma, Inc. Herbicide resistance in plants
BR8600161A (pt) 1985-01-18 1986-09-23 Plant Genetic Systems Nv Gene quimerico,vetores de plasmidio hibrido,intermediario,processo para controlar insetos em agricultura ou horticultura,composicao inseticida,processo para transformar celulas de plantas para expressar uma toxina de polipeptideo produzida por bacillus thuringiensis,planta,semente de planta,cultura de celulas e plasmidio
CA1288073C (en) 1985-03-07 1991-08-27 Paul G. Ahlquist Rna transformation vector
US4905411B1 (en) 1985-05-16 2000-05-02 British Tech Group Seed treatment
DE3765449D1 (de) 1986-03-11 1990-11-15 Plant Genetic Systems Nv Durch gentechnologie erhaltene und gegen glutaminsynthetase-inhibitoren resistente pflanzenzellen.
GB8608850D0 (en) 1986-04-11 1986-05-14 Diatech Ltd Packaging system
DE3850683T2 (de) 1987-02-09 1994-10-27 Lubrizol Genetics Inc Hybrides RNS-Virus.
US4912874A (en) 1987-04-03 1990-04-03 Taylor Alan G Solid matrix priming of seeds
US5628144A (en) 1987-04-03 1997-05-13 Kamterter Products, Inc. Solid matrix priming of seeds with microorganisms and selected chemical treatment
US5316931A (en) 1988-02-26 1994-05-31 Biosource Genetics Corp. Plant viral vectors having heterologous subgenomic promoters for systemic expression of foreign genes
FR2629098B1 (fr) 1988-03-23 1990-08-10 Rhone Poulenc Agrochimie Gene chimerique de resistance herbicide
CA2005658A1 (en) 1988-12-19 1990-06-19 Eliahu Zlotkin Insecticidal toxins, genes encoding these toxins, antibodies binding to them and transgenic plant cells and plants expressing these toxins
ATE241699T1 (de) 1989-03-24 2003-06-15 Syngenta Participations Ag Krankheitsresistente transgene pflanze
US5302523A (en) 1989-06-21 1994-04-12 Zeneca Limited Transformation of plant cells
JP2750368B2 (ja) 1989-09-28 1998-05-13 株式会社日立製作所 原子炉格納容器トップスラブの構築方法
DK0427529T3 (da) 1989-11-07 1995-06-26 Pioneer Hi Bred Int Larvedræbende lactiner og planteinsektresistens baseret derpå
CA2083948C (en) 1990-06-25 2001-05-15 Ganesh M. Kishore Glyphosate tolerant plants
UA48104C2 (uk) 1991-10-04 2002-08-15 Новартіс Аг Фрагмент днк, який містить послідовність,що кодує інсектицидний протеїн, оптимізовану для кукурудзи,фрагмент днк, який забезпечує направлену бажану для серцевини стебла експресію зв'язаного з нею структурного гена в рослині, фрагмент днк, який забезпечує специфічну для пилку експресію зв`язаного з нею структурного гена в рослині, рекомбінантна молекула днк, спосіб одержання оптимізованої для кукурудзи кодуючої послідовності інсектицидного протеїну, спосіб захисту рослин кукурудзи щонайменше від однієї комахи-шкідника
US5530195A (en) 1994-06-10 1996-06-25 Ciba-Geigy Corporation Bacillus thuringiensis gene encoding a toxin active against insects
GB9418763D0 (en) 1994-09-16 1994-11-02 Mini Agriculture & Fisheries Seed priming
US5773704A (en) 1996-04-29 1998-06-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
ATE342960T1 (de) 1996-07-17 2006-11-15 Univ Michigan State Imidazolin herbizid resistente zuckerrüben
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
US6348643B1 (en) 1998-10-29 2002-02-19 American Cyanamid Company DNA sequences encoding the arabidopsis acetohydroxy-acid synthase small subunit and methods of use
AU2001259206B2 (en) 2000-04-28 2006-05-25 Basf Aktiengesellschaft Use of the maize x112 mutant ahas 2 gene and imidazolinone herbicides for selection of transgenic monocots, maize, rice and wheat plants resistant to the imidazolinone herbicides
ES2243543T3 (es) 2000-08-25 2005-12-01 Syngenta Participations Ag Hibridos de proteinas cristalinas de bacillus thurigiensis.
US6453609B1 (en) 2000-09-06 2002-09-24 University Of Iowa Research Foundation Method for uptake of a substance into a seed
DK1420629T3 (da) 2001-08-09 2013-06-24 Northwest Plant Breeding Company Hvedeplanter med forøget resistens over for imidazolinonherbicider
RU2337532C2 (ru) 2001-08-09 2008-11-10 Юниверсити Оф Саскачеван Растения пшеницы с повышенной устойчивостью к имидазолиноновым гербицидам
US7897845B2 (en) 2001-08-09 2011-03-01 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
US7230167B2 (en) 2001-08-31 2007-06-12 Syngenta Participations Ag Modified Cry3A toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2004016073A2 (en) 2002-07-10 2004-02-26 The Department Of Agriculture, Western Australia Wheat plants having increased resistance to imidazolinone herbicides
RU2425152C2 (ru) 2003-05-28 2011-07-27 Басф Акциенгезельшафт Растения пшеницы с повышенной толерантностью к имидазолиноновым гербицидам
EP2294913B1 (en) 2003-08-29 2015-05-27 Instituto Nacional de Tecnologia Agropecuaria Rice plants having increased tolerance to imidazolinone herbicides
US7657100B2 (en) * 2005-05-09 2010-02-02 Like.Com System and method for enabling image recognition and searching of images
EP2650365B1 (en) 2005-10-18 2016-09-14 Precision Biosciences Rationally designed meganucleases with altered sequence specificity and DNA-binding affinity
US8189901B2 (en) * 2007-05-31 2012-05-29 Monsanto Technology Llc Seed sorter
US20110255788A1 (en) * 2010-01-15 2011-10-20 Copanion, Inc. Systems and methods for automatically extracting data from electronic documents using external data
US20110249905A1 (en) * 2010-01-15 2011-10-13 Copanion, Inc. Systems and methods for automatically extracting data from electronic documents including tables
ITRM20110304A1 (it) 2011-06-15 2012-12-16 Cesare Gambone Procedimento automatico, e relativa macchina, per la suddivisione selettiva di prodotti agro-alimentari.
US8605149B2 (en) 2011-07-19 2013-12-10 Ball Horticultural Company Seed classification using spectral analysis to determine existence of a seed structure
US20150040268A1 (en) 2013-04-25 2015-02-05 Morflora Israel Ltd Methods and compositions for the delivery of nucleic acids to seeds
US10592854B2 (en) * 2015-12-18 2020-03-17 Ricoh Co., Ltd. Planogram matching
US11436428B2 (en) * 2017-06-06 2022-09-06 Sightline Innovation Inc. System and method for increasing data quality in a machine learning process
US10902577B2 (en) * 2017-06-19 2021-01-26 Apeel Technology, Inc. System and method for hyperspectral image processing to identify object
US11503757B2 (en) 2017-12-03 2022-11-22 Seedx Technologies Inc. Systems and methods for sorting of seeds
WO2019106639A1 (en) 2017-12-03 2019-06-06 Seedx Technologies Inc. Systems and methods for sorting of seeds
EP3707642A1 (en) 2017-12-03 2020-09-16 Seedx Technologies Inc. Systems and methods for sorting of seeds
KR20210016369A (ko) 2018-06-11 2021-02-15 몬산토 테크놀로지 엘엘씨 종자 선별
JP7225702B2 (ja) 2018-11-08 2023-02-21 村田機械株式会社 仕分け装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072484A1 (en) * 2001-09-17 2003-04-17 Kokko Eric Gerard Method and apparatus for identifying and quantifying characteristics of seeds and other small objects
US9156064B2 (en) * 2010-02-17 2015-10-13 Dow Agrosciences Llc Apparatus and method for sorting plant material
US20120294540A1 (en) * 2011-05-17 2012-11-22 Microsoft Corporation Rank order-based image clustering
CN106062871A (zh) * 2014-03-28 2016-10-26 英特尔公司 使用所选择的群组样本子集来训练分类器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113076979A (zh) * 2021-03-23 2021-07-06 广州快必妥营销策划咨询有限公司 合格作物筛选方法、作物栽培控制方法以及系统和装置
CN113076979B (zh) * 2021-03-23 2024-05-17 广州快必妥营销策划咨询有限公司 合格作物筛选方法、作物栽培控制方法以及系统和装置
CN114160429A (zh) * 2021-11-12 2022-03-11 湖南省水稻研究所 一种基于外观检测结果进行种子分选的方法
CN114985305A (zh) * 2022-05-27 2022-09-02 安徽国祯生态科技有限公司 一种秸秆质量检测分类系统及方法
CN114985305B (zh) * 2022-05-27 2024-04-26 安徽国祯生态科技有限公司 一种秸秆质量检测分类系统及方法

Also Published As

Publication number Publication date
WO2019106639A1 (en) 2019-06-06
US11504748B2 (en) 2022-11-22
CN111656355B (zh) 2023-08-29
EP3707640A1 (en) 2020-09-16
US20200338599A1 (en) 2020-10-29
US20230085005A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
CN111656355B (zh) 种子分类的系统及方法
Hickey et al. Breeding crops to feed 10 billion
Sood et al. Phenomics and genomics of finger millet: current status and future prospects
Glenn et al. Bringing new plant varieties to market: plant breeding and selection practices advance beneficial characteristics while minimizing unintended changes
Joshi et al. From zero to hero: the past, present and future of grain amaranth breeding
Kole et al. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects
Burke et al. Enhancement of reproductive heat tolerance in plants
Bapela et al. Genetic improvement of wheat for drought tolerance: Progress, challenges and opportunities
Massel et al. Hotter, drier, CRISPR: the latest edit on climate change
De Ron et al. Common bean
Mourad et al. Recent advances in wheat (Triticum spp.) breeding
Hull et al. Genetically modified plants: assessing safety and managing risk
US20170238488A1 (en) Rapid breeding of plants
US20140378755A1 (en) Rapid breeding of animals
Fang et al. Speed-breeding system in soybean: integrating off-site generation advancement, fresh seeding, and marker-assisted selection
Ortiz Genomic-led potato breeding for increasing genetic gains: Achievements and outlook
CN107090464B (zh) 抗虫抗除草剂玉米转化事件及其创制方法和检测方法
Sood et al. History of potato breeding: improvement, diversification, and diversity
Gao et al. Crop adaptation to climate change: An evolutionary perspective
Balasubramani et al. Critical evaluation of GM cotton
Pellizzaro et al. Genetics and identification of markers linked to multiflorous spikelet in hexaploid oat
Zhong et al. A genotype independent DMP-HI system in dicot crops
Reddy et al. Accelerated breeding of cowpea [Vigna unguiculata (L.) Walp.] for improved yield and pest resistance
Ortiz Ríos et al. Genetic engineering and transgenic breeding
US20140380519A1 (en) Rapid breeding of plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant