CN111653649A - 一种Si基InGaAs光电探测器的制备方法及光电探测器 - Google Patents

一种Si基InGaAs光电探测器的制备方法及光电探测器 Download PDF

Info

Publication number
CN111653649A
CN111653649A CN202010507124.4A CN202010507124A CN111653649A CN 111653649 A CN111653649 A CN 111653649A CN 202010507124 A CN202010507124 A CN 202010507124A CN 111653649 A CN111653649 A CN 111653649A
Authority
CN
China
Prior art keywords
layer
iii
thickness
semiconductor substrate
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010507124.4A
Other languages
English (en)
Other versions
CN111653649B (zh
Inventor
欧欣
池超旦
林家杰
游天桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN202010507124.4A priority Critical patent/CN111653649B/zh
Publication of CN111653649A publication Critical patent/CN111653649A/zh
Application granted granted Critical
Publication of CN111653649B publication Critical patent/CN111653649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种Si基InGaAs光电探测器的制备方法,包括以下步骤:获取III‑V族化合物半导体衬底;在所述III‑V族化合物半导体衬底上生长厚度为200纳米‑400纳米的相应的牺牲层;在所述牺牲层上生长厚度为30纳米‑2000纳米的应变InxGa(1‑x)As层;注入H或He离子到所述牺牲层中;采用离子束剥离方法将所述InxGa(1‑x)As层与N+掺杂的Si片键合并进行退火剥离处理,形成Si/InxGa(1‑x)As/损伤层结构;去除所述损伤层,所述InxGa(1‑x)As层弹性弛豫,得到InxGa(1‑x)AsOI。本发明在硅上键合一层晶格常数异于常规III‑V化合物半导体衬底的InxGa(1‑x)As,且该层InxGa(1‑x)As是没有非弹性弛豫的。通过离子束剥离方法或者选择性腐蚀方法制备出非常规晶格常数的III‑V衬底。

Description

一种Si基InGaAs光电探测器的制备方法及光电探测器
技术领域
本申请涉及光子集成技术领域,特别涉及一种Si基InGaAs光电探测器的制备方法及光电探测器。
背景技术
以硅基COMS集成电路为基础的微电子技术遵循“摩尔定律”经历了半个世纪的快速发展。随着数据量的爆发式增长,以铜互连为基础的电互连技术很难满足快速获取以及处理信息的需求。光具有大的带宽以及高的传输速度,基于硅基光子学的光互联成为解决这问题的理想方案。以硅作为集成光学器件的平台,可以充分利用成熟的集成电路技术来实现光电集成。
常规In0.53Ga0.47As探测器由于其波段可以覆盖1.3μm和1.55μm通讯波段而受到广泛的关注。增大InGaAs中In组分到0.83可以拓展探测波长到2.6μm,该波段在高速光纤通讯、自由空间通讯、红外成像、遥感等领域有重要的应用。截至目前,硅基InGaAs探测器的办法大体可以分为2种:
1、直接外延生长。这种方法中,为了避免晶格失配,一般多采用带有倾角的Si衬底,这种方法不能兼容已有的CMOS工艺。若是采用没有斜角的Si衬底直接外延,由于InGaAs与Si衬底晶格类型的差异,以及非常大的晶格失配,器件中难以避免含有大量反相畴以及穿透位错缺陷,从而大幅降低器件的性能。
2、Si与Ⅲ-Ⅴ化合物半导体键合的方法。键合的方法可以忽略不同材料间的晶型差异,实现Si与Ⅲ-Ⅴ化合物半导体集成。但目前技术都是仍然采用与常规III-V化合物半导体衬底匹配的方案,波长受限,若扩展波长就需要采用晶格非弹性弛豫的缓冲层,具有大量的穿透位错缺陷。
发明内容
本申请要解决的是目前硅基InGaAs探测器中由于Si衬底与InGaAs的晶格类型差异问题以及晶格常数失配问题致使器件中含有大量反相畴以及穿透位错缺陷,从而导致的器件性能不佳的问题。
为解决上述技术问题,本申请实施例公开了一种Si基InGaAs光电探测器的制备方法,包括以下步骤:
1.一种Si基InGaAs光电探测器的制备方法,其特征在于,包括以下步骤:
获取III-V族化合物半导体衬底;在所述III-V族化合物半导体衬底上生长厚度为200纳米-400纳米的相应的牺牲层;在所述牺牲层上生长厚度为30纳米-2000纳米的InxGa(1-x)As层,所述InxGa(1-x)层中In的组分占比为0.53-0.95;且所述InxGa(1-x)As层的厚度小于相应失配情况下的非弹性弛豫临界厚度;获取InxGa(1-x)AsOI;所述获取InxGa(1-x)AsOI的步骤为:注入H或He离子到所述牺牲层中;采用离子束剥离方法将所述InxGa(1-x)As层与N+掺杂的Si片键合并进行退火剥离处理,形成Si/InxGa(1-x)As/损伤层结构,所述损伤层与所述牺牲层相对应;去除所述损伤层,所述InxGa(1-x)As层弹性弛豫,得到InxGa(1-x)AsOI。
进一步地,所述获取InxGa(1-x)AsOI的步骤替换为:将所述InxGa(1-x)As层与N+掺杂的Si片直接键合连接,采用选择性腐蚀方法去除所述III-V族化合物半导体衬底以及所述牺牲层,得到InxGa(1-x)AsOI。
进一步地,所述III-V族化合物半导体衬底包括InP、InAs或GaSb衬底。
进一步地,所述采用离子束剥离方法将所述InxGa(1-x)As层与N+掺杂的Si片键合并进行退火剥离处理,包括:将H/He离子注入到所述牺牲层;将所述InxGa(1-x)As层与N+掺杂的Si片键合连接;退火剥离;形成Si/应变InxGa(1-x)As/损伤层结构。
进一步地,所述在所述牺牲层上生长厚度为30纳米-2000纳米的InxGa(1-x)As层的步骤中,所述InxGa(1-x)As层的生长方法为MBE、MOCVD或LPE。
进一步地,所述去除所述损伤层的方法为:CMP抛光法。
进一步地,所述方法还包括:在所述InxGa(1-x)AsOI上生长晶格匹配的InxGa(1-x)As层,所述InxGa(1-x)As层的厚度为0.5微米至10微米。
本申请实施例还公开了一种光电探测器,所述光电探测器采用上述任一方案所述的制备方法制成。
采用上述技术方案,本申请涉及的Si基InGaAs光电探测器的制备方法及光电探测器具有如下有益效果:
本申请实施例提供的Si基InP光子集成模块的制备方法中,在III-V族化合物半导体衬底上生长厚度为200纳米-400纳米的相应的牺牲层;并在牺牲层上生长厚度为30纳米-2000纳米的InxGa(1-x)As层,其中,InxGa(1-x)As层中In的组分占比为0.53-0.95;且所述InxGa(1-x)As层的厚度小于相应失配情况下的非弹性弛豫临界厚度;更进一步通过注入H或He离子到所述牺牲层中,并采用离子束剥离方法将所述InxGa(1-x)As层与N+掺杂的Si片键合并进行退火剥离处理,形成Si/InxGa(1-x)As/损伤层结构(所述损伤层与所述牺牲层相对应);随后去除所述损伤层,所述InxGa(1-x)As层弹性弛豫,得到InxGa(1-x)AsOI。该方法避免为了在Si上生长晶格匹配的InxGa(1-x)As而外延生长超晶格结构或者过渡层,可以直接在InxGa(1-x)AsOI上生长晶格匹配的InxGa(1-x)As,避免穿透位错等缺陷的产生,也降低了外延生长的复杂性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种Si基InGaAs光电探测器的制备方法的流程图(离子束剥离方法);
图2为图1中离子束剥离方法的操作流程图:
图3为本申请实施例提供的另一种Si基InGaAs光电探测器的制备方法的流程图(选择性腐蚀方法)。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
此处所称的“一个实施例”或“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本申请实施例的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
请参见图1,图1为本申请实施提供的一种Si基InGaAs光电探测器的制备方法,该方法包括包括以下步骤:
S1:获取III-V族化合物半导体衬底;所述III-V族化合物半导体衬底可以包括InP、InAs或GaSb衬底;
S2:在所述III-V族化合物半导体衬底上生长厚度为200纳米-400纳米的相应的牺牲层;
S3:在所述牺牲层上生长厚度为30纳米-2000纳米的InxGa(1-x)As层,所述InxGa(1-x)层中In的组分占比为0.53-0.95;且所述InxGa(1-x)As层的厚度小于相应失配情况下的非弹性弛豫临界厚度;所述InxGa(1-x)As层的生长方法可以为MBE、MOCVD或LPE(MBE表示分子束外延法;MOCVD表示金属有机化学气相沉积法;LPE表示液相外延法)。
S4:注入H或He离子到所述牺牲层中;采用离子束剥离方法将所述InxGa(1-x)As层与N+掺杂的Si片键合并进行退火剥离处理,形成Si/InxGa(1-x)As/损伤层结构,所述损伤层与所述牺牲层相对应;其中,采用离子束剥离方法将所述InxGa(1-x)As层与N+掺杂的Si片键合并进行退火剥离处理的步骤如图2所示,具体包括:
A1:将H/He离子到注入所述牺牲层;
A2:将所述InxGa(1-x)As层与N+掺杂的Si片键合连接;
A3:退火剥离;具体地,1、在长完牺牲层和InGaAs的III-V族化合物半导体衬底中注入离子,离子注入到牺牲层中。2、将Si片与III-V族化合物半导体衬底进行键合,键合界面为InGaAs与Si,然后将键合片进行退火剥离(退火过程中牺牲层裂开从而达到剥离的目的,一边变成III-V族化合物半导体衬底上有牺牲层,另外一边是InxGa(1-x)AsOI上有牺牲层)
A4:形成Si/应变InxGa(1-x)As/损伤层结构。
S5:去除所述损伤层,所述InxGa(1-x)As层弹性弛豫,得到InxGa(1-x)AsOI。
其中,去除所述损伤层的方法可以CMP抛光法(化学机械抛光法)。
在一个具体的实施例中,获取的III-V族化合物半导体衬底为InAs衬底;在InAs半导体衬底上生长厚度为200纳米-400纳米的相应的牺牲层为InAs buffer,在InAs buffer上生长厚度为30纳米-2000纳米的InxGa(1-x)As层,所述InxGa(1-x)As层中In的组分占比为0.53-0.95。
请参见图3,图3为本申请实施提供的另一种Si基InGaAs光电探测器的制备方法,该方法包括以下步骤:
B1:获取III-V族化合物半导体衬底;所述III-V族化合物半导体衬底可以包括InP、InAs或GaSb衬底;
B2:在所述III-V族化合物半导体衬底上生长厚度为200纳米-400纳米的相应的牺牲层;
B3:在所述牺牲层上生长厚度为30纳米-2000纳米的InxGa(1-x)As层,所述InxGa(1-x)As层中In的组分占比为0.53-0.95;
B4:将所述InxGa(1-x)As层与N+掺杂的Si片直接键合连接,采用选择性腐蚀方法去除所述III-V族化合物半导体衬底以及所述牺牲层,得到InxGa(1-x)AsOI。
在本发明另一实施例中,在上述通过离子束剥离方法或者选择性腐蚀方法制备的InxGa(1-x)AsOI上面生长晶格匹配的0.5微米-10微米的InxGa(1-x)As吸收层以及上电极层0.53微米的P+InAlAs。这样器件就直接以高掺的Si作为N极,与CMOS工艺也高度兼容,再进一步采用标准的探测器制备工艺将器件制备成探测器,采用湿法腐蚀刻出一个光敏台面,采用Si3N4钝化,上电极为Ti/Pt/Au,下电极Al/Ti/Au。
这种方法可以避免为了在Si上生长晶格匹配的InxGa(1-x)As而外延生长超晶格结构或者过渡层,可以直接在InxGa(1-x)AsOI上生长晶格匹配的InxGa(1-x)As,避免穿透位错等缺陷的产生,也降低了外延生长的复杂性。
本申请实施例提供的Si基InP光子集成模块的制备方法中,在硅上键合一层晶格常数异于常规III-V化合物半导体衬底的InxGa(1-x)As,且该层InxGa(1-x)As是没有非弹性弛豫的。通过离子束剥离方法或者选择性腐蚀方法制备出非常规晶格常数的III-V衬底。这样就可免去生长缓冲层和超晶格应变层,可以直接同质外延生长吸收层,最后在吸收层上外延电极接触层。吸收层的InxGa(1-x)As是在键合衬底上同质外延的,因此可以选择不同的探测波段。该方法可以用硅直接做下电极,很好的兼容已有的CMOS工艺。
本申请实施例还提供了一种采用上述任意实施例涉及的制备方法制成光电探测器。
以上仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (8)

1.一种Si基InGaAs光电探测器的制备方法,其特征在于,包括以下步骤:
获取III-V族化合物半导体衬底;
在所述III-V族化合物半导体衬底上生长厚度为200纳米-400纳米的相应的牺牲层;在所述牺牲层上生长厚度为30纳米-2000纳米的InxGa(1-x)As层,所述InxGa(1-x)层中In的组分占比为0.53-0.95;且所述InxGa(1-x)As层的厚度小于相应失配情况下的非弹性弛豫临界厚度;
获取InxGa(1-x)AsOI;所述获取InxGa(1-x)AsOI的步骤为:注入H或He离子到所述牺牲层中;采用离子束剥离方法将所述InxGa(1-x)As层与N+掺杂的Si片键合并进行退火剥离处理,形成Si/InxGa(1-x)As/损伤层结构,所述损伤层与所述牺牲层相对应;去除所述损伤层,所述InxGa(1-x)As层弹性弛豫,得到InxGa(1-x)AsOI。
2.根据权利要求1所述的Si基InGaAs光电探测器的制备方法,其特征在于:所述获取InxGa(1-x)AsOI的步骤替换为:将所述InxGa(1-x)As层与N+掺杂的Si片直接键合连接,采用选择性腐蚀方法去除所述III-V族化合物半导体衬底以及所述牺牲层,得到InxGa(1-x)AsOI。
3.根据权利要求1或2所述的Si基InGaAs光电探测器的制备方法,其特征在于,所述III-V族化合物半导体衬底包括InP、InAs或GaSb衬底。
4.根据权利要求1所述的Si基InGaAs光电探测器的制备方法,其特征在于,所述采用离子束剥离方法将所述InxGa(1-x)As层与N+掺杂的Si片键合并进行退火剥离处理,包括:
将H/He离子注入到所述牺牲层;
将所述InxGa(1-x)As层与N+掺杂的Si片键合连接;
退火剥离;
形成Si/应变InxGa(1-x)As/损伤层结构。
5.根据权利要求1所述的Si基InGaAs光电探测器的制备方法,其特征在于,所述在所述牺牲层上生长厚度为30纳米-2000纳米的InxGa(1-x)As层的步骤中,所述InxGa(1-x)As层的生长方法为MBE、MOCVD或LPE。
6.根据权利要求1所述的Si基InGaAs光电探测器的制备方法,其特征在于,所述去除所述损伤层的方法为:CMP抛光法。
7.根据权利要求1所述的Si基InGaAs光电探测器的制备方法,其特征在于,所述方法还包括:
在所述InxGa(1-x)AsOI上生长晶格匹配的InxGa(1-x)As层,所述InxGa(1-x)As层的厚度为0.5微米至10微米。
8.一种光电探测器,其特征在于,采用如权利要求1至8任一所述的制备方法制成。
CN202010507124.4A 2020-06-05 2020-06-05 一种Si基InGaAs光电探测器的制备方法及光电探测器 Active CN111653649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010507124.4A CN111653649B (zh) 2020-06-05 2020-06-05 一种Si基InGaAs光电探测器的制备方法及光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010507124.4A CN111653649B (zh) 2020-06-05 2020-06-05 一种Si基InGaAs光电探测器的制备方法及光电探测器

Publications (2)

Publication Number Publication Date
CN111653649A true CN111653649A (zh) 2020-09-11
CN111653649B CN111653649B (zh) 2023-09-05

Family

ID=72344918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010507124.4A Active CN111653649B (zh) 2020-06-05 2020-06-05 一种Si基InGaAs光电探测器的制备方法及光电探测器

Country Status (1)

Country Link
CN (1) CN111653649B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883644A (zh) * 2020-07-23 2020-11-03 中国科学院上海微系统与信息技术研究所 一种异质压电薄膜结构及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084725A1 (en) * 2001-04-17 2002-10-24 California Institute Of Technology A method of using a germanium layer transfer to si for photovoltaic applications and heterostructure made thereby
US6746777B1 (en) * 2000-05-31 2004-06-08 Applied Optoelectronics, Inc. Alternative substrates for epitaxial growth
US20050074927A1 (en) * 2003-10-07 2005-04-07 Board Of Trustees Of The University Of Illinois. Adhesive bonding with low temperature grown amorphous or polycrystalline compound semiconductors
CN1757106A (zh) * 2003-01-07 2006-04-05 S.O.I.Tec绝缘体上硅技术公司 在剥离薄层之后重复利用包含多层结构的晶片
US20060185582A1 (en) * 2005-02-18 2006-08-24 Atwater Harry A Jr High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials
CN101677057A (zh) * 2008-09-17 2010-03-24 中国科学院半导体研究所 低温晶片键合的方法
CN101976696A (zh) * 2010-09-26 2011-02-16 中国科学院上海微系统与信息技术研究所 用于拓展In0.53Ga0.47As探测器及其阵列短波响应的材料体系及其制备
CN102652354A (zh) * 2009-12-15 2012-08-29 索泰克公司 用于重复利用衬底的处理
CN104362196A (zh) * 2014-11-25 2015-02-18 苏州矩阵光电有限公司 一种铟镓砷红外探测器及其制备方法
CN104779211A (zh) * 2014-01-10 2015-07-15 波音公司 直接键合的晶格失配的半导体器件
JP2015156440A (ja) * 2014-02-20 2015-08-27 日本電信電話株式会社 異種半導体基板およびその製造方法
CN106856211A (zh) * 2016-11-28 2017-06-16 中国科学院上海微系统与信息技术研究所 一种Si(001)衬底上高In组分InGaAs探测器及其制备方法
WO2019189514A1 (ja) * 2018-03-30 2019-10-03 Dowaエレクトロニクス株式会社 半導体光デバイスの製造方法及び半導体光デバイスの中間体
CN209880627U (zh) * 2019-07-04 2019-12-31 上海新微技术研发中心有限公司 基于晶圆键合技术的Ⅲ-Ⅴ/Si异质结构

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746777B1 (en) * 2000-05-31 2004-06-08 Applied Optoelectronics, Inc. Alternative substrates for epitaxial growth
WO2002084725A1 (en) * 2001-04-17 2002-10-24 California Institute Of Technology A method of using a germanium layer transfer to si for photovoltaic applications and heterostructure made thereby
CN1757106A (zh) * 2003-01-07 2006-04-05 S.O.I.Tec绝缘体上硅技术公司 在剥离薄层之后重复利用包含多层结构的晶片
US20050074927A1 (en) * 2003-10-07 2005-04-07 Board Of Trustees Of The University Of Illinois. Adhesive bonding with low temperature grown amorphous or polycrystalline compound semiconductors
US20060185582A1 (en) * 2005-02-18 2006-08-24 Atwater Harry A Jr High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials
CN101677057A (zh) * 2008-09-17 2010-03-24 中国科学院半导体研究所 低温晶片键合的方法
CN102652354A (zh) * 2009-12-15 2012-08-29 索泰克公司 用于重复利用衬底的处理
CN101976696A (zh) * 2010-09-26 2011-02-16 中国科学院上海微系统与信息技术研究所 用于拓展In0.53Ga0.47As探测器及其阵列短波响应的材料体系及其制备
CN104779211A (zh) * 2014-01-10 2015-07-15 波音公司 直接键合的晶格失配的半导体器件
JP2015156440A (ja) * 2014-02-20 2015-08-27 日本電信電話株式会社 異種半導体基板およびその製造方法
CN104362196A (zh) * 2014-11-25 2015-02-18 苏州矩阵光电有限公司 一种铟镓砷红外探测器及其制备方法
CN106856211A (zh) * 2016-11-28 2017-06-16 中国科学院上海微系统与信息技术研究所 一种Si(001)衬底上高In组分InGaAs探测器及其制备方法
WO2019189514A1 (ja) * 2018-03-30 2019-10-03 Dowaエレクトロニクス株式会社 半導体光デバイスの製造方法及び半導体光デバイスの中間体
CN209880627U (zh) * 2019-07-04 2019-12-31 上海新微技术研发中心有限公司 基于晶圆键合技术的Ⅲ-Ⅴ/Si异质结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘邦武;李超波;李勇涛;夏洋;: "InP/Si键合技术研究进展", no. 01 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883644A (zh) * 2020-07-23 2020-11-03 中国科学院上海微系统与信息技术研究所 一种异质压电薄膜结构及其制备方法

Also Published As

Publication number Publication date
CN111653649B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US10468543B2 (en) Microstructure enhanced absorption photosensitive devices
US10446700B2 (en) Microstructure enhanced absorption photosensitive devices
CA2069038C (en) Method for preparing semiconductor member
US20070259467A1 (en) Fabrication of vertical sidewalls on (110) silicon substrates for use in si/sige photodetectors
Cicek et al. AlxGa1− xN-based solar-blind ultraviolet photodetector based on lateral epitaxial overgrowth of AlN on Si substrate
US20130330875A1 (en) Nanoneedle plasmonic photodetectors and solar cells
JP2012518290A (ja) 半導体材料の薄層の形成
WO2019089437A1 (en) Microstructure enhanced absorption photosensitive devices
KR101700728B1 (ko) 다중접합 태양 전지 소자들의 제조
US10418273B2 (en) Method of manufacturing a germanium-on-insulator substrate
Lischke et al. Low dark current Ge PIN photodiode for a high-performance, photonic BiCMOS process for radio-over-fiber applications
Yu et al. Selective-area high-quality germanium growth for monolithic integrated optoelectronics
CN111653649A (zh) 一种Si基InGaAs光电探测器的制备方法及光电探测器
Vanhollebeke et al. Compliant substrate technology: integration of mismatched materials for opto-electronic applications
CN209880627U (zh) 基于晶圆键合技术的Ⅲ-Ⅴ/Si异质结构
Vu et al. PIN germanium photodetector fabrication issues and manufacturability
CN111933753A (zh) 一种波导型光电探测器及制造方法
CN112204756A (zh) 在缓冲器上方形成的光电子器件
KR101700724B1 (ko) 다중접합 태양 전지 소자들의 제조
CN113178771B (zh) 一种基于GaAsOI衬底的InAs量子点激光器结构及制备方法
Ang et al. Germanium photodetector technologies for optical communication applications
US20030015705A1 (en) Structure and method for fabricating semiconductor structures and devices with an energy source
Song et al. Highly reliable and high speed InGaAs PIN photodetector on Si by heteroepitaxy
CN112951940B (zh) 一种基于InPOI衬底的InGaAs探测器结构及制备方法
CN116666500B (zh) 锗光电探测器及通过热失配应力提高其长波响应的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant