CN111646497B - 多阶有序钙钛矿PbHg3Ti4O12晶体及其制备方法 - Google Patents

多阶有序钙钛矿PbHg3Ti4O12晶体及其制备方法 Download PDF

Info

Publication number
CN111646497B
CN111646497B CN201910159365.1A CN201910159365A CN111646497B CN 111646497 B CN111646497 B CN 111646497B CN 201910159365 A CN201910159365 A CN 201910159365A CN 111646497 B CN111646497 B CN 111646497B
Authority
CN
China
Prior art keywords
pbhg
crystal
sample
perovskite
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910159365.1A
Other languages
English (en)
Other versions
CN111646497A (zh
Inventor
靳常青
赵建发
李文敏
曹立朋
望贤成
于润泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CN201910159365.1A priority Critical patent/CN111646497B/zh
Publication of CN111646497A publication Critical patent/CN111646497A/zh
Application granted granted Critical
Publication of CN111646497B publication Critical patent/CN111646497B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种多阶有序钙钛矿PbHg3Ti4O12晶体,其中,使用Cu靶Kα衍射,其以2θ角度表示的X射线粉末衍射图谱在22.98、32.72、40.36、46.95、52.90和58.41处具有衍射峰,2θ角度测量误差为±0.01。本发明还提供一种制备本发明的PbHg3Ti4O12晶体的方法,包括如下步骤:(1)将PbO2、HgO和TiO2以1:3:4的摩尔比例充分研磨;(2)将步骤(1)得到的粉末密封包裹后,进行烧结,得到PbHg3Ti4O12晶体。本发明的PbHg3Ti4O12晶体对研究磁电演生等物理现象提供了很好的材料基础,是一种潜在的介电材料,对强关联体系研究具有重要的物理意义。

Description

多阶有序钙钛矿PbHg3Ti4O12晶体及其制备方法
技术领域
本发明属于材料领域。具体地,本发明涉及一种多阶有序钙钛矿PbH g3Ti4O12晶体及其制备方法。
背景技术
具有ABO3钙钛矿或类似结构的强关联电子体系是凝聚态物理研究的重要前沿领域。在该结构中,A位往往由非磁的碱土、碱金属或稀土离子占据,材料的物理性质主要由B位过渡金属离子主导。如果能够把过渡金属离子同时引入到A位和B位,那么就会形成多阶有序钙钛矿。化学式为 AA'3B4O12的化合物就是这样一类多阶有序钙钛矿结构。该类体系中的多个原子位置同时被过渡金属离子占据,因此除了传统的B-B相互作用外,也存在A′-A′以及A′-B不同原子位置间的相互作用。这些相互作用的出现导致许多新颖有趣物理现象,例如宽温区巨大且几乎恒定的介电常数,非双交换机制作用下的庞磁电阻,d电子重费米子行为等等。由于该类结构钙钛矿结构中四分之三的A位由离子半径较小的过渡金属离子所占据,为了稳定钙钛矿晶体结构,BO6八面体必须高度倾斜。这种强Jahn-Teller畸变的钙钛矿体系,往往只有在高压高温等极端条件下才能制备。
在AA'3B4O12型A位有序钙钛矿中,A位是十二配位构成的正二十面体,一般由碱土和稀土金属构成,A'位是四配位构成的平面四边形,一般由具有强Jahn-Teller效应的离子占据。目前常见的AA'3B4O12型A位有序钙钛矿中,A'位几乎全部由Cu2+或者Mn3+占据。本研究中在高温高压条件下合成了一种新的A位有序钙钛矿新材料PbHg3Ti4O12,首次发现除Cu2+和Mn3+外,Hg2+离子也可以占据A'位;此外,研究表明,PbHg3Ti4O12在室温和宽频范围内具有非常大的介电常数,是一种新的介电材料。
发明内容
本发明的目的之一在于提供一种多阶有序钙钛矿PbHg3Ti4O12晶体。该晶体可为探索磁电、铁电、压电等物理现象提供材料基础。
本发明的另一目的在于提供制备该多阶有序钙钛矿PbHg3Ti4O12晶体的方法。
为达到上述目的,第一方面,本发明提供一种多阶有序钙钛矿 PbHg3Ti4O12晶体,其中,使用Cu靶Kα衍射,其以2θ角度表示的X射线粉末衍射图谱在22.98、32.72、40.36、46.95、52.90和58.41处具有衍射峰,2θ角度测量误差为±0.01。
优选地,在本发明所述的晶体中,使用Cu靶Kα衍射,其以2θ角度表示的X射线粉末衍射图谱在68.58、73.39、78.08、82.70、87.26、91.81 和96.37处具有衍射峰,2θ角度测量误差为±0.01。
优选地,在本发明所述的晶体中,所述PbHg3Ti4O12晶体为立方晶系,空间群为Im-3(NO.204),晶格常数
Figure BDA0001984075630000021
晶胞中各原子坐标为 Pb(0,0,0)、Hg(0,0.5,0.5)、Ti(0.25,0.25,0.25)、O(0,0.7028,0.2176)。
第二方面,本发明提供一种制备本发明的多阶有序钙钛矿PbHg3Ti4O12晶体的方法,包括如下步骤:
(1)将PbO2、HgO和TiO2以1:3:4的摩尔比例充分研磨;
(2)将步骤(1)得到的粉末密封包裹后,进行烧结,得到多阶有序钙钛矿PbHg3Ti4O12晶体。
优选地,在本发明所述的方法中,所述步骤(2)中的密封包裹通过包括如下步骤的方法进行:将步骤(1)得到的粉末压成圆柱形样品,并用金箔将圆柱形样品密封包裹。
优选地,在本发明所述的方法中,所述步骤(2)还包括将烧结后的样品在砂纸上打磨去掉样品表层的金箔的步骤。
优选地,在本发明所述的方法中,所述步骤(2)中的烧结所使用的温度为500℃-1400℃,烧结所使用的压力为2GPa-8GPa。
优选地,在本发明所述的方法中,所述步骤(2)中的烧结进行0.1-6 小时。
本发明具有如下有益效果:
本发明的多阶有序钙钛矿PbHg3Ti4O12晶体属于立方晶系 Im-3(NO.204)空间群,对研究磁电演生等物理现象提供了很好的材料基础,是一种潜在的量子功能材料,对强关联体系研究具有重要的物理意义。
附图说明
以下,结合附图来详细说明本发明的实施方案,其中:
图1是本发明实施例1的PbHg3Ti4O12晶体的结构示意图;
图2是本发明实施例1的PbHg3Ti4O12晶体的透射电镜图
图3是本发明实施例1的PbHg3Ti4O12晶体的X射线衍射图;
图4是本发明实施例1的PbHg3Ti4O12晶体的中子衍射图;
图5是本发明实施例1的PbHg3Ti4O12在室温下介电常数随频率的变化曲线。
具体实施方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。
实施例1
使用PbO2、HgO和TiO2作为起始原料。按1:3:4的摩尔比例准确称量,充分研磨均匀。利用磨具将研磨的粉末压成圆柱形样品,并用金箔将圆柱形样品密封包裹。将密封后的样品放入高压合成组装块中,在5GPa 下,温度为1000℃下进行高压实验,反应时间为30分钟。高压实验完成后,将得到的样品在砂纸上仔细打磨,以便去掉样品表层的金箔。这样即可得到多阶有序钙钛矿PbHg3Ti4O12晶体。
制备出来的多阶有序钙钛矿PbHg3Ti4O12晶体其结构和原子位置参数如表1所示。
表1本发明PbHg3Ti4O12晶体的结构和原子位置参数
元素 位置 占有率 X Y Z
Pb 2a 1 0 0 0
Hg 6b 1 0 0.5 0.5
Ti 8c 1 0.25 0.25 0.25
O 24g 1 0 0.7028 0.2176
分子式:PbHg3Ti4O12空间群:Im-3(No.204)
晶格常数:
Figure BDA0001984075630000041
原胞体积:
Figure BDA0001984075630000042
理论密度:8.5632g/cm3
实施例2
使用PbO2、HgO和TiO2作为起始原料。按1:3:4的摩尔比例准确称量,充分研磨均匀。利用磨具将研磨的粉末压成圆柱形样品,并用金箔将圆柱形样品密封包裹。将密封后的样品放入高压合成组装块中,在5GPa 下,温度为1400℃下进行高压实验,反应时间为30分钟。高压实验完成后,将得到的样品在砂纸上仔细打磨,以便去掉样品表层的金箔。这样即可得到多阶有序钙钛矿PbHg3Ti4O12晶体。
本实施例所制备的PbHg3Ti4O12晶体结构同实施例1。
实施例3
使用PbO2、HgO和TiO2作为起始原料。按1:3:4的摩尔比例准确称量,充分研磨均匀。利用磨具将研磨的粉末压成圆柱形样品,并用金箔将圆柱形样品密封包裹。将密封后的样品放入高压合成组装块中,在5GPa 下,温度为500℃下进行高压实验,反应时间为30分钟。高压实验完成后,将得到的样品在砂纸上仔细打磨,以便去掉样品表层的金箔。这样即可得到多阶有序钙钛矿PbHg3Ti4O12晶体。
本实施例所制备的PbHg3Ti4O12晶体结构同实施例1。
实施例4
使用PbO2、HgO和TiO2作为起始原料。按1:3:4的摩尔比例准确称量,充分研磨均匀。利用磨具将研磨的粉末压成圆柱形样品,并用金箔将圆柱形样品密封包裹。将密封后的样品放入高压合成组装块中,在8GPa 下,温度为1000℃下进行高压实验,反应时间为30分钟。高压实验完成后,将得到的样品在砂纸上仔细打磨,以便去掉样品表层的金箔。这样即可得到多阶有序钙钛矿PbHg3Ti4O12晶体。
本实施例所制备的PbHg3Ti4O12晶体结构同实施例1。
实施例5
使用PbO2、HgO和TiO2作为起始原料。按1:3:4的摩尔比例准确称量,充分研磨均匀。利用磨具将研磨的粉末压成圆柱形样品,并用金箔将圆柱形样品密封包裹。将密封后的样品放入高压合成组装块中,在2GPa 下,温度为1000℃下进行高压实验,反应时间为30分钟。高压实验完成后,将得到的样品在砂纸上仔细打磨,以便去掉样品表层的金箔。这样即可得到多阶有序钙钛矿PbHg3Ti4O12晶体。
本实施例所制备的PbHg3Ti4O12晶体结构同实施例1。
实施例6
使用PbO2、HgO和TiO2作为起始原料。按1:3:4的摩尔比例准确称量,充分研磨均匀。利用磨具将研磨的粉末压成圆柱形样品,并用金箔将圆柱形样品密封包裹。将密封后的样品放入高压合成组装块中,在5GPa 下,温度为1000℃下进行高压实验,反应时间为0.1小时。高压实验完成后,将得到的样品在砂纸上仔细打磨,以便去掉样品表层的金箔。这样即可得到多阶有序钙钛矿PbHg3Ti4O12晶体。
本实施例所制备的PbHg3Ti4O12晶体结构同实施例1。
实施例7
使用PbO2、HgO和TiO2作为起始原料。按1:3:4的摩尔比例准确称量,充分研磨均匀。利用磨具将研磨的粉末压成圆柱形样品,并用金箔将圆柱形样品密封包裹。将密封后的样品放入高压合成组装块中,在5GPa 下,温度为1000℃下进行高压实验,反应时间为3小时。高压实验完成后,将得到的样品在砂纸上仔细打磨,以便去掉样品表层的金箔。这样即可得到多阶有序钙钛矿PbHg3Ti4O12晶体。
本实施例所制备的PbHg3Ti4O12晶体结构同实施例1。
实施例8
使用PbO2、HgO和TiO2作为起始原料。按1:3:4的摩尔比例准确称量,充分研磨均匀。利用磨具将研磨的粉末压成圆柱形样品,并用金箔将圆柱形样品密封包裹。将密封后的样品放入高压合成组装块中,在5GPa 下,温度为1000℃下进行高压实验,反应时间为6小时。高压实验完成后,将得到的样品在砂纸上仔细打磨,以便去掉样品表层的金箔。这样即可得到多阶有序钙钛矿PbHg3Ti4O12晶体。
本实施例所制备的PbHg3Ti4O12晶体结构同实施例1。

Claims (6)

1.一种多阶有序钙钛矿PbHg3Ti4O12晶体,其中,使用Cu靶Kα衍射,其以2θ角度表示的X射线粉末衍射图谱在22.98、32.72、40.36、46.95、52.90和58.41处具有衍射峰,2θ角度测量误差为±0.01。
2.根据权利要求1所述的晶体,其中,使用Cu靶Kα衍射,其以2θ角度表示的X射线粉末衍射图谱在68.58、73.39、78.08、82.70、87.26、91.81和96.37处具有衍射峰,2θ角度测量误差为±0.01。
3.根据权利要求1所述的晶体,其中,所述PbHg3Ti4O12晶体为立方晶系,空间群为Im-3(NO.204),晶格常数
Figure FDA0002977483410000011
晶胞中各原子坐标为Pb(0,0,0)、Hg(0,0.5,0.5)、Ti(0.25,0.25,0.25)、O(0,0.7028,0.2176)。
4.一种制备权利要求1所述的多阶有序钙钛矿PbHg3Ti4O12晶体的方法,包括如下步骤:
步骤(1):将PbO2、HgO和TiO2以1:3:4的摩尔比例充分研磨;
步骤(2):将步骤(1)得到的粉末密封包裹后,进行烧结,得到PbHg3Ti4O12晶体;
所述步骤(2)中的烧结所使用的温度为500℃-1400℃,烧结所使用的压力为2GPa-8GPa;
所述步骤(2)中的烧结进行0.1-6h。
5.根据权利要求4所述的方法,其中,所述步骤(2)中的密封包裹是通过包括如下步骤的方法进行的:将步骤(1)得到的粉末压成圆柱形样品,并用金箔将圆柱形样品密封包裹。
6.根据权利要求4所述的方法,其中,所述步骤(2)还包括将烧结后的样品在砂纸上打磨去掉样品表层的金箔的步骤。
CN201910159365.1A 2019-03-04 2019-03-04 多阶有序钙钛矿PbHg3Ti4O12晶体及其制备方法 Active CN111646497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910159365.1A CN111646497B (zh) 2019-03-04 2019-03-04 多阶有序钙钛矿PbHg3Ti4O12晶体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910159365.1A CN111646497B (zh) 2019-03-04 2019-03-04 多阶有序钙钛矿PbHg3Ti4O12晶体及其制备方法

Publications (2)

Publication Number Publication Date
CN111646497A CN111646497A (zh) 2020-09-11
CN111646497B true CN111646497B (zh) 2021-05-25

Family

ID=72340514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910159365.1A Active CN111646497B (zh) 2019-03-04 2019-03-04 多阶有序钙钛矿PbHg3Ti4O12晶体及其制备方法

Country Status (1)

Country Link
CN (1) CN111646497B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398909B (zh) * 2021-06-08 2022-05-24 中国科学院物理研究所 钙钛矿材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254944A (zh) * 2008-04-08 2008-09-03 南京工业大学 一种基于光卤石和含钛矿物制备钛酸盐的方法
CN103922394A (zh) * 2014-04-12 2014-07-16 中国科学院新疆理化技术研究所 一种超长纳米线结构及纳米带结构钛酸铜钙的制备方法
CN107029728A (zh) * 2017-05-11 2017-08-11 中国科学院新疆理化技术研究所 一种含高密度氧空位的光催化剂钛酸铜钙的制备方法及用途
CN107200349A (zh) * 2016-03-18 2017-09-26 天津大学 一种利用溶胶凝胶制备钛酸铜钙薄膜的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741396B2 (en) * 2005-11-23 2010-06-22 General Electric Company Composites having tunable dielectric constants, methods of manufacture thereof, and articles comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254944A (zh) * 2008-04-08 2008-09-03 南京工业大学 一种基于光卤石和含钛矿物制备钛酸盐的方法
CN103922394A (zh) * 2014-04-12 2014-07-16 中国科学院新疆理化技术研究所 一种超长纳米线结构及纳米带结构钛酸铜钙的制备方法
CN107200349A (zh) * 2016-03-18 2017-09-26 天津大学 一种利用溶胶凝胶制备钛酸铜钙薄膜的方法
CN107029728A (zh) * 2017-05-11 2017-08-11 中国科学院新疆理化技术研究所 一种含高密度氧空位的光催化剂钛酸铜钙的制备方法及用途

Also Published As

Publication number Publication date
CN111646497A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
KR100522061B1 (ko) 티탄산수소 리튬 및 그의 제조방법
Fatima et al. SYNTHESIS AND CHARACTERIZATION OF COBALT SUBSTITUTED W TYPE HEXAGONAL FERRITES.
CN107188557B (zh) 一种微波介质陶瓷材料及其制备方法
CN107253857A (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN111646497B (zh) 多阶有序钙钛矿PbHg3Ti4O12晶体及其制备方法
CN109111229A (zh) 一种高温烧结微波介质陶瓷材料及其制备方法
US12100538B2 (en) Method for forming a magnetoelectric nanocomposite
CN103319168A (zh) 高居里点、宽居里温区bzt铁电陶瓷材料的制备方法
CN114105190A (zh) 一种钛酸钡钙纳米晶介质材料及其制备方法
Oumezzine et al. Pr 3+ doping at the A-site of La 0.67 Ba 0.33 MnO 3 nanocrystalline material: assessment of the relationship between structural and physical properties and Bean–Rodbell model simulation of disorder effects
CN113744991B (zh) 一种Co2Z型铁氧体材料及其制备方法和用途
CN105753467A (zh) 一种三元材料、其制备方法及应用
CN106904969A (zh) 一种谐振频率温度系数可调的中介电常数微波介质陶瓷
JPH1179746A (ja) ペロブスカイト型複合酸化物及びその製造方法
CN102381875A (zh) 一种带有氧桥的双钙钛铁电-反铁磁复合分子的制作方法
CN106380195A (zh) 一种钛酸钡陶瓷及其制备方法
CN113398909B (zh) 钙钛矿材料及其制备方法和应用
CN108455986A (zh) 一种复合微波介质陶瓷材料及其制备方法
CN108794004B (zh) 一种镧钕掺杂镍酸盐陶瓷及其制备方法和应用
Katheriya et al. High temperature study of dielectric and electrical conduction behaviour of La2NiO4
CN108675784B (zh) 新型Fe掺杂的SrBi2Nb2O9具有奥里维里斯结构的多铁性陶瓷材料及其制备方法
KR101282194B1 (ko) Y형 페라이트 및 이로 제조된 페라이트 성형체
CN107244897B (zh) 一种巨介电陶瓷材料及其制备方法
CN118422339A (zh) 一种多阶有序钙钛矿晶体及其制备方法
JP2841347B2 (ja) 圧電体セラミックスの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant