CN111640585B - 应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料及其制备方法 - Google Patents

应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料及其制备方法 Download PDF

Info

Publication number
CN111640585B
CN111640585B CN202010507440.1A CN202010507440A CN111640585B CN 111640585 B CN111640585 B CN 111640585B CN 202010507440 A CN202010507440 A CN 202010507440A CN 111640585 B CN111640585 B CN 111640585B
Authority
CN
China
Prior art keywords
cnt
composite material
pnt
solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010507440.1A
Other languages
English (en)
Other versions
CN111640585A (zh
Inventor
臧杨
张航
薛怀国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202010507440.1A priority Critical patent/CN111640585B/zh
Publication of CN111640585A publication Critical patent/CN111640585A/zh
Application granted granted Critical
Publication of CN111640585B publication Critical patent/CN111640585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种应用于超级电容器的N‑CNT@Co3O4/C@Ni(OH)2复合材料及其制备方法,其步骤为:采用模板法合成聚吡咯纳米管(PNT),再用化学沉积法在PNT表面原位生长ZIF‑67。将其洗涤干燥后,在N2氛围下高温碳化,并在空气中加热氧化得到N‑CNT@Co3O4/C复合材料。最后,采用水热法在预合成的N‑CNT@Co3O4/C复合材料表面包覆Ni(OH)2纳米针壳层,洗涤干燥得到N‑CNT@Co3O4/C@Ni(OH)2复合材料。该方法制得的N‑CNT@Co3O4/C@Ni(OH)2复合材料呈现三维网络化分级结构,其以N‑CNT作为桥梁,能够负载大量的Co3O4/C和Ni(OH)2,进而极大提高复合材料的稳定性和电化学性能,在超级电容器及其能量电池方面均有良好的应用前景。

Description

应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料及其制 备方法
技术领域
本发明涉及一种应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料及其制备方法,属于能源材料领域。
背景技术
超级电容器作为一种高效、环保、实用的储能装置,并以其优越的性能及广阔的应用前景受到了各国的重视。目前已经商业化的超级电容器电极材料主要为碳基材料,其中碳纳米管以其特殊的结构特性使其相较其他碳材料具有更优的物理化学性能。并且在碳纳米管中引入氮原子能够进一步提高其电化学性能,将富含碳、氮的管状前驱体直接进行高温处理是相对简单获得氮掺杂碳纳米管材料的方法。另一方面,过渡金属氧化物和氢氧化物因其高理论比电容特性受到广泛关注,是极具潜力的赝电容电极材料。其中,四氧化三钴和氢氧化镍以其高理论比电容、多变的结构和低廉的成本,已成为热门的电极材料。然而其较差的导电性以及在充放电过程中结构的不稳定,导致实际比电容表现远低于其理论比电容,不适合单独作为电极材料使用。
发明内容
本发明目的是提供一种具有较强稳定性和较高比电容的应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料及其制备方法。
实现本发明目的提供技术方案如下:
一种具有较强稳定性和较高比电容的应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料的制备方法,包括如下步骤:
(1)超声条件下,将甲基橙、三氯化铁和吡咯单体依次加入去离子水中,然后在低温下避光搅拌反应一定时间,离心洗涤后取固相烘干得到聚吡咯纳米管(PNT)黑色粉末;
(2)超声条件下,将PNT黑色粉末均匀分散于甲醇溶液中,再加入硝酸钴,获得的混合体系记为分散液A;另取甲醇溶液,加入2-甲基咪唑,充分溶解形成溶液B;将溶液B与分散液A混合均匀,并在室温下静止反应一段时间后离心洗涤、干燥得到PNT@ZIF-67黑紫色粉末;
(3)在N2保护下将得到的PNT@ZIF-67黑紫色粉末在管式炉中高温碳化,生成N-CNT@Co/C黑色粉末;然后,将N-CNT@Co/C黑色粉末在空气氛围下进一步高温氧化得到N-CNT@Co3O4/C黑色粉末;
(4)将N-CNT@Co3O4/C黑色粉末在去离子水中超声分散,再加入硝酸镍和尿素,搅拌一定时间后转入高压反应釜中在烘箱中反应一段时间,经离心洗涤干燥后得到N-CNT@Co3O4/C@Ni(OH)2复合材料。
进一步的,步骤(1)中,依次投入的方式为先溶解甲基橙,再加入三氯化铁形成络合物,随后加入吡咯单体;甲基橙、三氯化铁和吡咯单体的物质的量浓度之比为1:10:10。
进一步的,步骤(1)中,搅拌时间为2 h,低温下避光反应时间为12 h,低温条件为0℃。
进一步的,步骤(2)中,将PNT粉末超声分散于甲醇溶液中形成1 mg/mL的PNT悬浮液,加入的硝酸钴的物质的量浓度为0.078 mmol/mL。
进一步的,步骤(2)中,分散液A和溶液B为等体积均匀混合;得到的混合液中,硝酸钴和2-甲基咪唑的物质的量之比约为1:4,静置反应时间为24 h。
进一步的,步骤(3)中,固定管式炉升温速率为2℃/min,升温至350℃保温1.5 h,再继续升温至600℃,保温2 h;管式炉中氮气的流量控制在0.1-0.3 L/min之间;空气氛围中氧化温度为300℃,保温1 h,升温速率为2℃/min。
进一步的,步骤(4)中,N-CNT@Co3O4/C黑色粉末超声分散在去离子水中形成1 mg/mL的悬浮液,加入的N-CNT@Co3O4/C黑色粉末、硝酸镍和尿素的质量比为1:38.8:24。
进一步的,步骤(4)中,烘箱加热温度设置为100℃,反应时间为2-12 h。
本发明的相对于现有技术相比具有显著优点:
(1)所用合成原料甲基橙、吡咯、钴盐和镍盐等来源丰富,成本低廉,实验过程中使用的仪器简单、易于操作。
(2)所得N-CNT@Co3O4/C@Ni(OH)2复合材料呈现三维网络化分级结构,相较于单一的Co3O4和Ni(OH)2,其导电性及循环稳定性显著提升。
(3)所得N-CNT@Co3O4/C@Ni(OH)2复合材料与商用活性炭材料组成不对称超级电容器,能量密度和功率密度较大,倍率性能好,库伦效率高以及循环稳定性强,具有一定的实际应用价值。
附图说明
图1是N-CNT@Co3O4/C@Ni(OH)2复合材料的合成原理图。
图2是N-CNT@Co3O4/C@Ni(OH)2复合材料的扫描电镜照片。
图3a是在2、4、8和12 h下合成的N-CNT@Co3O4/C@Ni(OH)2在不同电流密度下的比电容对比图;3b是纯Ni(OH)2、Co3O4/C@Ni(OH)2、N-CNT@Ni(OH)2和N-CNT@Co3O4/C@Ni(OH)2-8在不同电流密度下的比电容对比图;图3c是N-CNT@Co3O4/C@Ni(OH)2-8在不同电流密度下的恒电流充放电曲线;图3d是纯Ni(OH)2、N-CNT@Ni(OH)2、Co3O4/C@Ni(OH)2和N-CNT@Co3O4/C@Ni(OH)2-8的交流阻抗曲线。
图4是N-CNT@Co3O4/C@Ni(OH)2-8与商用活性碳(AC)组成不对称超级电容器N-CNT@Co3O4/C@Ni(OH)2-8//AC的性能测试:a为在不同电流密度下的比电容曲线;b为Ragon图;c为循环稳定性图。
图5是上述不对称超级电容器作为电源点亮LED灯珠实验图, aOFF;bON。
图6为不同材料的扫描电镜的对比图:a为纯Ni(OH)2,b为N-CNT@Ni(OH)2,c为Co3O4/C@Ni(OH)2和d为N-CNT@Co3O4/C@Ni(OH)2-8复合材料的扫描电镜图。
图7为N-CNT@Co3O4/C@Ni(OH)2-8的a 透射电镜图,b透射电镜局部放大图,c高分辨透射电镜图。
具体实施方式
下面结合附图和具体实施例对本发明进行进一步描述。
本发明公开了一种具有较强稳定性和较高比电容的应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料的制备方法,具体采用以下步骤:
用模板法合成聚吡咯纳米管(PNT),再用化学沉积法在PNT表面原位生长ZIF-67,洗涤干燥后在N2氛围下高温碳化,再在空气中加热氧化得到N-CNT@Co3O4/C复合材料,最后用水热法在该材料表面包覆Ni(OH)2纳米针壳层,洗涤干燥得到N-CNT@Co3O4/C@Ni(OH)2复合材料。
模板法的模板为甲基橙,其质量为246 mg,溶剂为蒸馏水,体积为150 mL,该聚合反应的单体为吡咯,其体积为525 μL,氧化剂为三氯化铁,其质量为2027 mg。
化学沉积法分为2部分,分别记为分散液A和溶液B,溶剂均为40 mL甲醇。A溶液中分散有40 mg PNT,溶解有908 mg硝酸钴,B溶液中溶解有984 mg 2-甲基咪唑。
氮气为高纯度氮气。
碳化过程为:保持升温速率为2℃/min至350℃保温1.5 h,再继续升温至600℃,保温2 h。
氧化过程为:空气中氧化温度为300℃,保温1 h,升温速率为2℃/min。
水热法溶剂水体积为15 mL,N-CNT@Co3O4/C加入量为15 mg,反应时间为2-12 h,硝酸镍加入量为581 mg,尿素加入量为360 mg。
实施例
1. 合成PNT:称取246 mg甲基橙,在超声作用下溶于150 mL蒸馏水中,随后加入2027 mg三氯化铁,经室温搅拌2 h后,逐滴加入525 μL吡咯单体,再在0℃下继续搅拌12 h。随后,用蒸馏水和无水乙醇的混合溶液洗涤,并在70℃下干燥12 h,得到PNT黑色粉末。
2. 合成PNT@ZIF-67:在40 mL甲醇溶液中加入40 mg PNT,超声分散后再加入908mg硝酸钴,搅拌1 h使其完全溶解,此混合液记为分散液A;再量取40 mL甲醇溶液,加入984mg 2-甲基咪唑,搅拌使其充分溶解,记为溶液B。然后在搅拌状态下,将溶液B缓慢加入溶液A,继续搅拌0.5 h后,在室温静置24 h。经无水乙醇洗涤后,在70℃下干燥12 h,得到PNT@ZIF-67黑紫色粉末。
3. 合成N-CNT@Co3O4/C:取100-200 mg PNT@ZIF-67黑紫色粉末放入管式炉中,在N2保护下保持升温速率为2℃/min,加热到350℃保温1.5 h,随后继续升温至600℃保温2h,自然冷却后得到N-CNT@Co/C黑色粉末;取50-100 mg N-CNT@Co/C黑色粉末放入管式炉中,在流动空气中以2℃/min的升温速率加热到300℃,保温1 h,即得N-CNT@Co3O4/C黑色粉末。
4. 合成N-CNT@Co3O4/C@Ni(OH)2:称取15 mg N-CNT@Co3O4/C黑色粉末在15 mL蒸馏水中超声分散10 min,随后依次加入581 mg硝酸镍和360 mg尿素,待其完全溶解,转入20mL水热反应釜中,在100℃下加热2-12 h。冷却后,依次用蒸馏水和无水乙醇洗涤,并在70℃下干燥12 h,得到N-CNT@Co3O4/C@Ni(OH)2
通过改进四氧化三钴和氢氧化镍的空间结构和排布以及将其与氮掺杂碳纳米管进行复合形成复合材料,能大幅度提高材料整体的电化学性能。此前,已有众多国内外研究者合成出不同结构的碳基过渡金属复合材料,但是本发明的特别之处在于将富含碳、氮的聚吡咯纳米管串联起具有沸石拓扑结构的钴基沸石咪唑配位聚合物(ZIF-67),并直接将其进行高温处理,获得具有三维网络化空间结构的氮掺杂碳纳米管基四氧化三钴材料,并以其为基底包覆一层针状氢氧化镍,最终得到具有特殊分层三维网络核壳结构的高性能氮掺杂碳基钴镍复合材料。
从图3中知,图3a是在2、4、8和12 h下合成的N-CNT@Co3O4/C@Ni(OH)2在不同电流密度下的比电容对比图。实验结果表明,8 h合成的复合材料N-CNT@Co3O4/C@Ni(OH)2-8具有最优的比电容性能。图3b是纯Ni(OH)2、Co3O4/C@Ni(OH)2、N-CNT@Ni(OH)2和N-CNT@Co3O4/C@Ni(OH)2-8在不同电流密度下的比电容对比图。显然,N-CNT@Co3O4/C@Ni(OH)2-8均具有最大的比电容;图3c为N-CNT@Co3O4/C@Ni(OH)2-8在不同电流密度下的恒电流充放电曲线,其在1、2、5、10和20 A g-1的电流密度下的比电容分别为1344.4、1311.2、1077、886和756 F g-1。图3d是纯Ni(OH)2、N-CNT@Ni(OH)2、Co3O4/C@Ni(OH)2和N-CNT@Co3O4/C@Ni(OH)2-8的电化学交流阻抗曲线。从图中可以看出,N-CNT@Co3O4/C@Ni(OH)2-8的低频部分交流阻抗曲线的斜率最大,说明其内部电荷转移阻抗较低,表现出优异的电容器特征,这与其三维网络化分级结构能为电解液离子提供更多的传输通道有关。
从图4a为N-CNT@Co3O4/C@Ni(OH)2-8与商用活性碳(AC)组成不对称超级电容器N-CNT@Co3O4/C@Ni(OH)2-8//AC在不同电流密度下的比电容曲线。该不对称超级电容器在1 Ag-1电流密度下的比电容为143.8 F g-1;图4b为相应的Ragon图。从图中可以看出,N-CNT@Co3O4/C@Ni(OH)2-8//AC在功率密度为850 W kg-1时呈现高达57.7 Wh kg-1的能量密度,即使在17000 W kg-1的功率密度下依然有30.3 Wh kg-1的能量密度;图4c为相应的循环稳定性图。该不对称超级电容器经过10000次充放电循环仍有90.84%的电容保持率,且库伦效率始终保持在100%左右。
图6展示了纯Ni(OH)2、N-CNT@Ni(OH)2、Co3O4/C@Ni(OH)2和N-CNT@Co3O4/C@Ni(OH)2-8的SEM照片,其右侧为白色线框部分扫描电镜放大图。图6a为纯Ni(OH)2的SEM照片。由于没有任何外来载体,Ni(OH)2团聚成直径约为1 μm的球状,且从其右侧扫描电镜放大图可以看出表面呈现针状的形貌。图6b为N-CNT@Ni(OH)2的SEM照片。由图可以看出,一维管状N-CNT表面均匀分布的针状Ni(OH)2,且一维管状N-CNT的存在使N-CNT@Ni(OH)2具有比纯Ni(OH)2更多的活性位点,有助于提升Ni(OH)2的电化学性能。图6c为Co3O4/C@Ni(OH)2的SEM照片。由图可知,Co3O4/C@Ni(OH)2保持原有的菱形十二面体的空间结构。同时,从右侧扫描电镜放大图中可以看出,针状Ni(OH)2在Co3O4/C表面均匀覆盖。然而,Co3O4/C@Ni(OH)2颗粒松散,相互之间存在一定的间隙,可能会产生较大的接触电阻。图6d为具有三维网络化分级结构的N-CNT@Co3O4/C@Ni(OH)2-8复合材料的SEM照片及其局部放大图。从图中可知,保持原有菱形十二面体空间结构的Co3O4/C紧密结合在一维管状N-CNT表面,且针状Ni(OH)2紧密覆盖其表面。这意味着N-CNT@Co3O4/C的网络化结构不仅能够有效降低材料的接触电阻,而且为Ni(OH)2提供了良好的附载基底,使得Ni(OH)2不易团聚,从而产生大量的活性位点,极大提升复合材料整体的电化学性能。
图7a为N-CNT@Co3O4/C@Ni(OH)2-8的透射电镜图。从图中可知,一维管状N-CNT与Co3O4/C紧密结合,这与扫描电镜图(图6d)显示结果一致。图7b为图7a的部分透射电镜细节放大图。从图中可以看出,Ni(OH)2呈现明显的针状,且针状Ni(OH)2紧密包裹在Co3O4/C表面。图7c为三维网络化分级结构的N-CNT@Co3O4/C@Ni(OH)2-8复合材料的高分辨透射电镜图。根据测算,图中标出的0.283 nm、0.388 nm和0.265 nm平面间距,分别对应于Co3O4的(220)平面(PDF# 43-1003)和Ni(OH)2的(006)和(101)平面(PDF# 38-0715)。这些结果表明三维网络化分级结构的N-CNT@Co3O4/C@Ni(OH)2-8复合材料中存在Co3O4和Ni(OH)2

Claims (3)

1.一种应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料的制备方法,其特征在于,包括如下步骤:
(1)在超声条件下,将甲基橙、三氯化铁和吡咯单体依次加入去离子水中,然后在低温下避光搅拌反应一定时间,离心洗涤后取固相烘干得到聚吡咯纳米管PNT黑色粉末;其中,甲基橙、三氯化铁和吡咯单体的物质的量浓度之比为1:10:10;低温下避光搅拌反应时间为12 h,低温条件为0℃;
(2)在超声条件下,将聚吡咯纳米管PNT 黑色粉末均匀分散于甲醇溶液,再加入硝酸钴获得分散液A;另取甲醇溶液,加入2-甲基咪唑后充分溶解形成溶液B;将溶液B与分散液A等体积均匀混合,并在室温下静止反应一段时间后离心洗涤、经干燥后得到PNT@ZIF-67黑紫色粉末;其中,分散液A中PNT浓度为1 mg/mL,硝酸钴浓度为0.078 mmol/mL;溶液B与分散液A混合后,硝酸钴和2-甲基咪唑的物质的量之比为1:4,静置反应时间为24 h;
(3)将上述PNT@ZIF-67在N2保护下高温碳化获得N-CNT@Co/C黑色粉末,随后在空气氛围下高温氧化得到N-CNT@Co3O4/C黑色粉末;
(4)将N-CNT@Co3O4/C在去离子水中超声分散,再加入硝酸镍和尿素,充分搅拌后在高压反应釜中进行水热反应一段时间,经离心洗涤干燥后得到N-CNT@Co3O4/C@Ni(OH)2;其中,N-CNT@Co3O4/C超声分散形成1 mg/mL的悬浮水溶液;N-CNT@Co3O4/C、硝酸镍和尿素的质量比为1:38.8:24;加热温度设置为100℃,反应时间为2~12 h。
2.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,首先高温碳化为N-CNT@Co/C,然后高温氧化为N-CNT@Co3O4/C;Co/C含有C与金属Co,Co3O4/C含有C与Co3O4
3.一种基于权利要求 1~2任一项所述方法制备的应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料。
CN202010507440.1A 2020-06-05 2020-06-05 应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料及其制备方法 Active CN111640585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010507440.1A CN111640585B (zh) 2020-06-05 2020-06-05 应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010507440.1A CN111640585B (zh) 2020-06-05 2020-06-05 应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111640585A CN111640585A (zh) 2020-09-08
CN111640585B true CN111640585B (zh) 2022-07-19

Family

ID=72331398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010507440.1A Active CN111640585B (zh) 2020-06-05 2020-06-05 应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111640585B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113068385A (zh) * 2021-03-16 2021-07-02 青岛理工大学 一维yolk-shell Ni@void@Co3O4@RGO吸波剂、制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903530A (zh) * 2012-11-06 2013-01-30 新疆大学 一种三维结构的氢氧化镍/碳复合电极材料的制备方法
CN103117175B (zh) * 2013-02-25 2016-08-03 中国科学院过程工程研究所 一种多元复合纳米材料、其制备方法及其用途
CN104021948B (zh) * 2014-06-26 2017-01-18 西南大学 纳米纤维状三维氢氧化镍/碳纳米管复合材料及其制备方法和应用
CN109616333B (zh) * 2018-12-07 2021-03-30 武汉工程大学 一种氮掺杂碳纳米管/四氧化三钴复合材料及其制备方法

Also Published As

Publication number Publication date
CN111640585A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis of 3D hierarchical porous Ni–Co layered double hydroxide/N-doped reduced graphene oxide composites for supercapacitor electrodes
Zhao et al. Recent advances in metal-organic framework-based electrode materials for supercapacitors: A review
Jayakumar et al. MOF-derived nickel and cobalt metal nanoparticles in a N-doped coral shaped carbon matrix of coconut leaf sheath origin for high performance supercapacitors and OER catalysis
Ma et al. Nanoporous electrospun NiCo2S4 embedded in carbon fiber as an excellent electrode for high-rate supercapacitors
Li et al. MOF-derived Co/C nanocomposites encapsulated by Ni (OH) 2 ultrathin nanosheets shell for high performance supercapacitors
Wang et al. Synthesis of MnCo2O4@ MnCo2S4 core/shell micro-nanostructures on Ni foam for high performance asymmetric supercapacitors
Jia et al. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes
Xu et al. Three-dimensional hollow microtubular carbonized kapok fiber/cobalt-nickel binary oxide composites for high-performance electrode materials of supercapacitors
Li et al. Coral-like CoMoO4 hierarchical structure uniformly encapsulated by graphene-like N-doped carbon network as an anode for high-performance lithium-ion batteries
CN110197769B (zh) 一种复合碳纳米管材料及其制备方法和应用
CN102290253B (zh) 一种碳包覆纳米过渡金属氧化物及其制备方法
CN111933455A (zh) 应用于超级电容器的PNT@NiCo-LDH复合材料及其制备方法
Liu et al. One-step microwave synthesis CoOOH/Co (OH) 2/CNT nanocomposite as superior electrode material for supercapacitors
Tian et al. High-performance supercapacitors based on Ni 2 P@ CNT nanocomposites prepared using an ultrafast microwave approach
Tan et al. Synthesis and characterisation of amorphous MnO2/CNT via solid‐state microwave for high‐performance supercapacitors
CN103903873A (zh) 一种全赝电容超级电容器
Wang et al. Construction of flower-like ZnCo 2 S 4/ZnCo 2 O 4 arrays on Ni foam for high-performance asymmetric supercapacitors
KR101772755B1 (ko) 고성능 슈퍼커패시터 전극소재용 환원된 산화그래핀/탄소나노튜브/이산화망간 복합체 및 이의 제조방법
Zhu et al. Design and synthesis of MOF-derived CuO/gC 3 N 4 composites with octahedral structures as advanced anode materials for asymmetric supercapacitors with high energy and power densities
CN110415986B (zh) 一种Ni掺杂CoO/C复合材料及其制备方法
Li et al. Nickel sulfide and cobalt-containing carbon nanoparticles formed from ZIF-67@ ZIF-8 as advanced electrode materials for high-performance asymmetric supercapacitors
Yan et al. Hierarchical MnO2@ NiCo2O4@ Ti3SiC2/carbon cloth core-shell structure with superior electrochemical performance for all solid-state supercapacitors
Chen et al. Design and synthesis of cellulose nanofiber-derived CoO/Co/C two-dimensional nanosheet toward enhanced and stable lithium storage
Yu et al. Electrospinning preparation and electrochemical supercapacitor performance of dendrite-like 3D MgCo2O4/C nanofibers
CN111640585B (zh) 应用于超级电容器的N-CNT@Co3O4/C@Ni(OH)2复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant