CN111621293B - 用于调制太阳光谱的银纳米颗粒-稀土掺杂荧光材料复合体系及其制备方法 - Google Patents

用于调制太阳光谱的银纳米颗粒-稀土掺杂荧光材料复合体系及其制备方法 Download PDF

Info

Publication number
CN111621293B
CN111621293B CN202010479233.XA CN202010479233A CN111621293B CN 111621293 B CN111621293 B CN 111621293B CN 202010479233 A CN202010479233 A CN 202010479233A CN 111621293 B CN111621293 B CN 111621293B
Authority
CN
China
Prior art keywords
nps
nabapo
composite system
preparation
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010479233.XA
Other languages
English (en)
Other versions
CN111621293A (zh
Inventor
洪锦泉
郑志强
林林
冯卓宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN202010479233.XA priority Critical patent/CN111621293B/zh
Publication of CN111621293A publication Critical patent/CN111621293A/zh
Application granted granted Critical
Publication of CN111621293B publication Critical patent/CN111621293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • C09K11/7778Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了用于调制太阳光谱的银纳米颗粒‑稀土掺杂荧光材料复合体系及其制备方法,所述复合体系是的Ag NPs‑NaBaPO4:Ce3+,Er3+复合体系,将NaBaPO4:Ce3+,Er3+荧光粉与Ag NPs置于离子管中,加入乙醇溶液使二者混合,超声后倒入研钵中,干燥,得到Ag NPs掺杂的NaBaPO4:Ce3+,Er3+荧光粉,形成Ag NPs‑NaBaPO4:Ce3+,Er3+复合体系。该复合体系具有宽带吸收特性,能实现四光子近红外量子剪裁发光,将该复合体系做成光转换层放置在太阳能电池上,可以将太阳光中太阳能电池低效吸收的紫外光转换为可被太阳能电池高效吸收的近红外光,有效提高锗基太阳能电池的光电转换效率。

Description

用于调制太阳光谱的银纳米颗粒-稀土掺杂荧光材料复合体 系及其制备方法
技术领域
本发明涉及复合纳米材料技术领域,具体涉及用于调制太阳光谱的银纳米颗粒 -稀土掺杂荧光材料(Ag NPs - NaBaPO4:Ce3+, Er3+)复合体系及其制备方法。
背景技术
量子剪裁是指吸收一个高能光子,发射两个或两个以上的低能光子的发光现象。量子剪裁材料做成的光转换层放置在太阳能电池上,可以将太阳光中太阳能电池低效吸收的紫外光和部分可见光转换为可被太阳能电池高效吸收的近红外光谱,有效提高太阳能电池的光电转换效率。然而,传统的量子剪裁材料作为光转换层存在吸收带宽窄、发光强度较弱等问题,难以实用化。
目前还未有具有宽带吸收、多光子发射且能用于调制太阳光谱的贵金属纳米颗粒-稀土掺杂荧光材料复合粉末体系的相关专利报道。
发明内容
本发明的目的在于提供一种能够有效提高锗基太阳能电池的光电转换效率的用于调制太阳光谱的银纳米颗粒-稀土掺杂荧光材料复合体系及其制备方法,所述复合体系具体为Ag NPs - NaBaPO4:Ce3+, Er3+复合体系。
为了实现上述目的,本发明的技术方案为:
用于调制太阳光谱的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系的制备方法,包括如下步骤:
1) 高温固相法制备NaBaPO4:Ce3+, Er3+荧光粉
1-1)原料称量:按摩尔计量比称量适量的BaCO3(分析纯),Na2CO3(分析纯),(NH4)2HPO4(分析纯),CeO2粉末和Er2O3粉末;
1-2) 研磨:将原料置于玛瑙研钵中充分研磨,适时加入适量酒精以便原料混合更充分;
1-3)高温煅烧:将研磨好的混合物放入马弗炉中,在空气氛围下750-850˚C高温煅烧5.5-6.5 h;
1-4) 收样:待高温煅烧结束并自然冷却到室温后,取出样品,研磨成细粉,即为NaBaPO4:Ce3+, Er3+荧光粉;
2) 化学还原法制备Ag NPs
2-1)预热:将6 mL乙二醇置于三颈圆底烧杯中,在145-155˚C加热台加热1-1.5 h;
2-2) 配样:配制浓度为20 mg/mL的PVP-乙二醇溶液;配制摩尔浓度为3mM Na2S-乙二醇溶液;配制浓度为48 mg/mL的AgNO3-乙二醇溶液;
2-3) 加样:量取0.24 mL-0.27 mL的3 mM Na2S-乙二醇溶液到三颈圆底烧杯中,反应8-9 min之后,加入4.5 mL PVP-乙二醇溶液,随即加入1.5 mL AgNO3-乙二醇溶液,这时,溶液会发生一系列颜色变化,形成的银纳米颗粒的尺寸与混合液反应时长有关:时长越长,颗粒越大;
2-4)提样:取1.5 mL步骤2-3)的反应液到7 mL的离心管中,加丙酮至6 mL,超声,离心,吸掉上清液后加蒸馏水至6 mL,继续超声离心,重复2次,制得Ag NPs;
3) 制备Ag NPs - NaBaPO4:Ce3+, Er3+复合体系
将适量的NaBaPO4:Ce3+, Er3+荧光粉与适量的Ag NPs置于离子管中,加入乙醇溶液使二者混合,超声后倒入研钵中,干燥,得到Ag NPs掺杂的NaBaPO4:Ce3+, Er3+荧光粉,形成Ag NPs - NaBaPO4:Ce3+, Er3+复合体系。
步骤1-1)中,所述CeO2粉末和Er2O3 粉末的纯度不低于99.99%。
所述步骤2-4)具体如下:取1.5 mL步骤2-3)的反应液到7 mL的离心管中,加丙酮至6 mL,超声30-40 min,4000-6000 r.p.m.离心20-30 min,吸掉上清液后加蒸馏水至6mL,超声30-40 min,4000 -6000 r.p.m.离心20-30 min,重复2次,制得Ag NPs。
步骤3)中,所述超声时间为30-40min。
步骤3)中,所述干燥是在55-65℃烘箱中干燥7-9 h。
所制备的Ag NPs-NaBaPO4:Ce3+, Er3+复合体系中,Ag NPs掺杂浓度为0. 3%-0.7%;优选的,Ag NPs掺杂浓度为0.5%。所述复合体系的激发峰为250 nm-350 nm的激发宽带。
本发明首次制得银球纳米颗粒(Ag NPs)+稀土掺杂荧光材料(NaBaP4:Ce3+, Er3+)的复合体系,能有效解决传统的量子剪裁材料作为光转换层存在吸收带宽窄、发光强度较弱等问题,难以实用化的问题。首先,选用Ce3+-Er3+作为稀土发光材料的掺杂离子对,利用Ce3+离子f-d跃迁特性吸收中心位于300 nm紫外宽带光谱,最终实现基于Er3+离子的四光子近红外量子剪裁发光现象;其次利用银球纳米颗粒的局域表面等离子激元特性增强了稀土发光材料的发光强度;最后,将宽带量子剪裁发光材料放置在太阳能电池表面,可以提高太阳能电池的光电转换效率。本发明的复合体系的激发峰为250 nm-350 nm的激发宽带,最强激发峰位于300 nm,主要发射峰位于1535 nm。当Ag NPs掺杂浓度为0. 5%时,复合体系的量子剪裁发光增强效果最好,最大增强因子为1.25。
本产品的有益效果在于:本发明首次提供了一种能用于调制太阳光谱的Ag NPs- NaBaPO4:Ce3+, Er3+复合粉末体系,该复合粉末体系具有宽带吸收特性,能实现四光子近红外量子剪裁发光;且材料制备工艺简单,成本较低。将该复合粉末体系做成光转换层放置在太阳能电池上,可以将太阳光中太阳能电池低效吸收的紫外光转换为可被太阳能电池高效吸收的近红外光,有效提高锗基太阳能电池的光电转换效率。
附图说明
图1为 Ag NPs溶液的消光光谱(a)与SEM图(b);
图2为NaBaPO4:Ce3+, Er3+荧光粉的SEM图(a)和Ag NPs - NaBaPO4:Ce3+, Er3+复合粉末体系的SEM图(b);
图3为Ag NPs - NaBaPO4:Ce3+, Er3+复合体系的四光子宽带量子剪裁的激发光谱(λ em = 1535 nm)(a)和发射光谱(λ ex = 300 nm)(b)。
具体实施方式
用于调制太阳光谱的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系的制备方法,包括如下步骤:
1) 高温固相法制备NaBaPO4:Ce3+, Er3+荧光粉
1-1)原料称量:按摩尔计量比(总共2 mmol)称量BaCO3(分析纯)(0.3081 g),Na2CO3(分析纯)(0. 106 g),(NH4)2HPO4(分析纯)(0.2641 g),CeO2 (99.99%)粉末(0.0034g)和Er2O3 (99.99%)粉末(0.0096 g);
1-2) 研磨:将原料置于玛瑙研钵中充分研磨,适时加入适量酒精以便原料混合更充分;
1-3)高温煅烧:将研磨好的混合物置于马弗炉中,在空气氛围下750-850˚C高温煅烧5.5-6.5 h;
1-4) 收样:待高温煅烧结束并自然冷却到室温后,取出样品,研磨成细粉,即为NaBaPO4:Ce3+, Er3+荧光粉;
2) 化学还原法制备Ag NPs
2-1)预热:将6 mL乙二醇置于三颈圆底烧杯中,在145-155˚C加热台加热1-1.5 h;
2-2) 配样:配制浓度为20 mg/mL的PVP-乙二醇溶液;配制摩尔浓度为3mM Na2S-乙二醇溶液;配制浓度为48 mg/mL的AgNO3-乙二醇溶液;
2-3) 加样:量取0.24 mL-0.27 mL的3 mM Na2S-乙二醇溶液到三颈圆底烧杯中,反应8-9 min之后,加入4.5 mL PVP-乙二醇溶液,随即加入1.5 mL AgNO3-乙二醇溶液,这时,溶液会发生一系列颜色变化,形成的银纳米颗粒的尺寸与混合液反应时长有关:时长越长,颗粒越大;
2-4)提样:取1.5 mL步骤2-3)的反应液到7 mL的离心管中,加丙酮至6 mL,超声30-40 min,4000-6000 r.p.m.离心20-30 min,吸掉上清液后加蒸馏水至6 mL,超声30-40min,4000 -6000 r.p.m.离心20-30 min,重复2次,制得Ag NPs;
3) 制备Ag NPs - NaBaPO4:Ce3+, Er3+复合体系
将2m mol的NaBaPO4:Ce3+, Er3+荧光粉与Ag NPs混合置于离子管中。Ag NPs溶液分别取0.16 mL(0.1% Ag),0.48 mL(0.3% Ag),0.8 mL(0.5% Ag),1.12 mL(0.7% Ag),1.44mL(0.9% Ag)和1.76 mL(1.1% Ag)。在离心管中加入乙醇溶液使二者混合,超声30-40 min倒入研钵后置于55-65℃烘箱中干燥7-9 h,得到Ag NPs掺杂的NaBaPO4:Ce3+, Er3+荧光粉,形成Ag NPs - NaBaPO4:Ce3+, Er3+复合体系。
由图3可知,本发明的复合体系的激发峰为250 nm-350 nm的激发宽带,最强激发峰位于300 nm,主要发射峰位于1535 nm。当Ag NPs掺杂浓度为0. 5%时,复合体系的量子剪裁发光增强效果最好,最大增强因子为1.25。

Claims (10)

1. 用于调制太阳光谱的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系的制备方法,其特征在于:其包括如下步骤:
1) 制备NaBaPO4:Ce3+, Er3+荧光粉
1-1)原料称量:按摩尔计量比称量BaCO3、Na2CO3、(NH4)2HPO4、CeO2粉末和Er2O3粉末;
1-2) 研磨:将原料置于玛瑙研钵中,加入酒精充分研磨;
1-3)高温煅烧:将研磨好的混合物放入马弗炉中,在空气氛围下750-850˚C高温煅烧5.5-6.5 h;
1-4) 收样:待高温煅烧结束并冷却到室温后,取出样品,研磨成粉,即为NaBaPO4:Ce3+,Er3+荧光粉;
2) 制备Ag NPs
2-1)预热:将6 mL乙二醇置于三颈圆底烧杯中,在145-155˚C加热台加热1-1.5 h;
2-2) 配样:配制浓度为20 mg/mL的PVP-乙二醇溶液;配制摩尔浓度为3mM Na2S-乙二醇溶液; 配制浓度为48 mg/mL的AgNO3-乙二醇溶液;
2-3) 加样:量取0.24 mL-0.27 mL的3 mM Na2S-乙二醇溶液到三颈圆底烧杯中,反应8-9 min之后,加入4.5 mL PVP-乙二醇溶液,随即加入1.5 mL AgNO3-乙二醇溶液,混合反应形成银纳米颗粒;
2-4)提样:取1.5 mL步骤2-3)的反应液到7 mL的离心管中,加丙酮至6 mL,超声,离心,吸掉上清液后加蒸馏水至6 mL,继续超声离心,重复2次,制得Ag NPs;
3) 制备Ag NPs - NaBaPO4:Ce3+, Er3+复合体系
将NaBaPO4:Ce3+, Er3+荧光粉与Ag NPs置于离子管中,加入乙醇溶液使二者混合,超声后倒入研钵中,干燥,得到Ag NPs掺杂的NaBaPO4:Ce3+, Er3+荧光粉,形成Ag NPs -NaBaPO4:Ce3+, Er3+复合体系。
2. 根据权利要求1所述的用于调制太阳光谱的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系的制备方法,其特征在于:步骤1-1)中,所述CeO2粉末和Er2O3 粉末的纯度不低于99.99%。
3. 根据权利要求1所述的用于调制太阳光谱的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系的制备方法,其特征在于:所述步骤2-4)具体如下:取1.5 mL步骤2-3)的反应液到7 mL的离心管中,加丙酮至6 mL,超声30-40 min,4000-6000 r.p.m.离心20-30 min,吸掉上清液后加蒸馏水至6 mL,超声30-40 min,4000 -6000 r.p.m.离心20-30 min,重复2次,制得AgNPs。
4. 根据权利要求1所述的用于调制太阳光谱的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系的制备方法,其特征在于:步骤3)中,所述超声时间为30-40min。
5. 根据权利要求1所述的用于调制太阳光谱的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系的制备方法,其特征在于:步骤3)中,所述干燥是在55-65℃烘箱中干燥7-9 h。
6. 根据权利要求1-5任一制备方法得到的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系。
7. 根据权利要求6所述的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系,其特征在于:Ag NPs掺杂浓度为0.3%-0.7%。
8. 根据权利要求7所述的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系,其特征在于:Ag NPs掺杂浓度为0.5%。
9. 根据权利要求6所述的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系,其特征在于:所述复合体系的激发峰为250 nm-350 nm的激发宽带。
10. 根据权利要求6所述的Ag NPs - NaBaPO4:Ce3+, Er3+复合体系,其特征在于:所述复合体系的发射峰位于1535 nm。
CN202010479233.XA 2020-05-29 2020-05-29 用于调制太阳光谱的银纳米颗粒-稀土掺杂荧光材料复合体系及其制备方法 Active CN111621293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010479233.XA CN111621293B (zh) 2020-05-29 2020-05-29 用于调制太阳光谱的银纳米颗粒-稀土掺杂荧光材料复合体系及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010479233.XA CN111621293B (zh) 2020-05-29 2020-05-29 用于调制太阳光谱的银纳米颗粒-稀土掺杂荧光材料复合体系及其制备方法

Publications (2)

Publication Number Publication Date
CN111621293A CN111621293A (zh) 2020-09-04
CN111621293B true CN111621293B (zh) 2022-12-13

Family

ID=72269257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010479233.XA Active CN111621293B (zh) 2020-05-29 2020-05-29 用于调制太阳光谱的银纳米颗粒-稀土掺杂荧光材料复合体系及其制备方法

Country Status (1)

Country Link
CN (1) CN111621293B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333690A (zh) * 2012-10-12 2013-10-02 横店集团东磁股份有限公司 一种能够提高硅太阳能电池效率的近红外量子剪裁荧光粉及其制备方法
CN108624322A (zh) * 2018-06-14 2018-10-09 福建师范大学 一种用于太阳光谱调制的纳米复合体系及其制备方法
CN110408395A (zh) * 2019-06-26 2019-11-05 福建师范大学 用于调制太阳光谱的贵金属-稀土纳米复合体系及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333690A (zh) * 2012-10-12 2013-10-02 横店集团东磁股份有限公司 一种能够提高硅太阳能电池效率的近红外量子剪裁荧光粉及其制备方法
CN108624322A (zh) * 2018-06-14 2018-10-09 福建师范大学 一种用于太阳光谱调制的纳米复合体系及其制备方法
CN110408395A (zh) * 2019-06-26 2019-11-05 福建师范大学 用于调制太阳光谱的贵金属-稀土纳米复合体系及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jinquan Hong et al..Plasmon-enhanced broad-band quantum-cutting of NaBaPO4:Eu2+,Er3+ phosphors with silver nano-particles.《Journal of Rare Earths》.2019,第38卷 *
Sara E Skrabalak et al..Facile synthesis of Ag nanocubes and Au nanocages.《NATURE PROTOCOLS》.2007,第2卷(第9期), *

Also Published As

Publication number Publication date
CN111621293A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
Tian et al. Full-spectrum-activated Z-scheme photocatalysts based on NaYF 4: Yb 3+/Er 3+, TiO 2 and Ag 6 Si 2 O 7
CN102250610B (zh) 一种复合ZnO介孔二氧化硅纳米材料的制备方法
CN102382654B (zh) 上转换荧光材料稀土掺杂NaYF4纳米晶的制备方法
Chen et al. Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence
Karunakaran et al. Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+-Yb3+ co-doped YAG phosphors
Wang et al. Long Afterglow SrAl2O4: Eu2+, Dy3+ phosphors as luminescent down‐shifting layer for crystalline silicon solar cells
El Ghoul et al. Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4: V composite materials
Iqbal et al. Raman and highly ultraviolet red-shifted near band-edge properties of LaCe-co-doped ZnO nanoparticles
Guo et al. Effect of Eu3+ contents on the structure and properties of BaLa2ZnO5: Eu3+ phosphors
Lin et al. Plasmon-enhanced broad-band quantum-cutting of NaBaPO4: Eu2+, Yb3+ phosphor decorated with Ag nano-particles
Kadam et al. Eu (iii), Tb (iii) activated/co-activated K 2 NaAlF 6 host array: simultaneous approach for improving photovoltaic efficiency and tricolour emission
Park et al. A simple synthesis method for Zn2SiO4: Mn2+ phosphor films and their optical and luminescence properties
Zheng et al. Enhancement of three-photon near-infrared quantum cutting in β-NaYF4: Er3+ nanoparticles by Ag nanocubes
Kumar et al. Luminescence properties of rare-earth doped oxide materials
Merízio et al. Toward an energy-efficient synthesis method to improve persistent luminescence of Sr2MgSi2O7: Eu2+, Dy3+ materials
CN113248926B (zh) 一种能促进植物生长的红光转化膜及其制备方法
CN102515549A (zh) 含稀土掺杂二氧化铈纳米晶玻璃陶瓷及其制备方法
CN111621293B (zh) 用于调制太阳光谱的银纳米颗粒-稀土掺杂荧光材料复合体系及其制备方法
CN103756679B (zh) 一种可被宽谱非相干光激发的上转换材料及其制备方法
Miao et al. Y2O3: Eu3+, Tb3+ spherical particles based anti-reflection and wavelength conversion bi-functional films: Synthesis and application to solar cells
CN112694889A (zh) 一种Fe3+掺杂镓酸盐近红外长余辉发光材料及其制备方法与应用
Kumi et al. Ultraviolet to visible down conversion of SiO2–Ce3+, Tb3+ nanospheres-poly-EVA films for solar cell application
CN103333690B (zh) 一种能够提高硅太阳能电池效率的近红外量子剪裁荧光粉及其制备方法
Sheng et al. LuF3: Yb3+/Tm3+@ Lu6O5F8: Yb3+/Tm3+@ BiOI for efficient degradation of pollutants under NIR light: Synergy of enhanced upconversion emission and efficient FRET
KR20210130411A (ko) 하향변환 나노형광체, 이의 제조방법 및 이를 이용한 발광형 태양광 집광 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant