CN111617700B - 一种金刚石及其制备方法 - Google Patents
一种金刚石及其制备方法 Download PDFInfo
- Publication number
- CN111617700B CN111617700B CN202010463688.2A CN202010463688A CN111617700B CN 111617700 B CN111617700 B CN 111617700B CN 202010463688 A CN202010463688 A CN 202010463688A CN 111617700 B CN111617700 B CN 111617700B
- Authority
- CN
- China
- Prior art keywords
- diamond
- graphite powder
- activated nano
- nano graphite
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
- B01J3/062—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/061—Graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/065—Composition of the material produced
- B01J2203/0655—Diamond
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明提供了一种金刚石的制备方法,包括:制备活化的纳米石墨粉体在真空环境中,并在惰性气体、氢气和甲烷的混合气氛中,以石墨块体为阳极靶材,采用直流电弧等离子法制备出活化的纳米石墨粉体;合成金刚石在高温高压的条件下,利用所述活化的纳米石墨粉体合成金刚石。本发明还提供一种由上述方法制备出的金刚石。所述金刚石利用所述活化的纳米石墨粉体采用高温高压法合成,其中,所述活化的纳米石墨粉体,主要由具有sp2结构的碳元素组成,还含有部分碳元素具有sp3结构;其粒径主要集中于70‑300 nm。由此制出的金刚石为高品级金刚石,具有高的强度和硬度、热稳定性以及耐磨性等。
Description
技术领域
本发明属于超硬材料领域,尤其涉及一种金刚石及其制备方法。
背景技术
随着航空航天、汽车、能源工业以及电子产品加工业的发展,涌现出大量的高性能新型材料,以及越来越高的工艺要求,这些高性能新型材料的高精密切削加工需要更高效的工具。
碳元素作为自然界中存在的与人类生活密切相关的最重要的元素之一而备受关注和广泛研究,其以单质或化合物的形式广泛存在于浩瀚无垠的地球上,碳元素具有sp、sp2、sp3杂化的多样电子轨道特性,使其以碳为唯一构成元素的碳材料具有各式各样优异的结构性质,在许多研究领域受到了密切关注和重点研发,尤其在锂离子电池以及催化等方面的得到了广泛的应用。而将体相的碳材料制备成碳纳米颗粒,可以大大提高碳材料所表现出的优异性能;因碳纳米颗粒独特的网状结构和较大的比表面积,使其不但拥有传统纳米材料所具备的良好的小尺寸效应、量子尺寸效应以及宏观量子隧道效应等特性,更大大提高了其高硬度、高强度、低密度、高稳定性、高耐磨性以及高电导率和高热导率等方面的特性,使其在电子学、光学、化工陶瓷、器械制造、生物医药等众多新科技领域有重要的实际应用价值和潜在的科学研究意义。
由于碳纳米粒子的细化,晶界或相界数量大幅度增加,随之带来的是材料的强度、韧性和超塑性大为提高。其结构颗粒对光、机械应力和电的反应完全不同于微米或毫米级的结构颗粒,使得所制备的碳纳米颗粒在宏观上显示出许多优异奇妙特性。例如,相比于传统的金刚石,通过碳纳米材料所合成的金刚石具有质量轻、强度高、耐磨性好的特点,有望应用于高精密切削加工领域。因此,在超硬材料领域,研究利用碳纳米材料合成的金刚石,在工具方面的投入和应用代表着新的研究趋势和方向,有望满足当下制造工业的发展需求。
发明内容
有鉴于此,本发明确有必要提供一种高品级的金刚石及其制备方法,该高品级的金刚石具有高的强度和硬度、热稳定性以及耐磨性等性能。
为此,本发明提供一种金刚石的制备方法,包括:
制备活化的纳米石墨粉体 在真空环境中,并在惰性气体、氢气和甲烷的混合气氛中,以石墨块体为阳极靶材,采用直流电弧等离子法制备出活化的纳米石墨粉体;
合成金刚石 在高温高压的条件下,利用所述活化的纳米石墨粉体合成金刚石。
基于上述,所述活化的纳米石墨粉体中的纳米颗粒粒径主要集中于70 - 300 nm。优选地,所述纳米颗粒粒径主要集中于100 - 250 nm。更优选地,所述纳米颗粒粒径主要集中于120 - 200 nm。本文中的纳米颗粒粒径“主要集中于”是有85%以上的纳米颗粒的粒径集中在某一范围内。
基于上述,所述活化的纳米石墨粉体主要由具有sp2结构的碳元素组成,其中,还含有部分碳元素具有sp3结构。所述活化的纳米石墨粉体尺寸均匀、粒径小、纯度高于99.99%,其在具备了纳米效应的同时,还使所述纳米石墨的内部含有sp3的碳元素存在,即,所述活化的纳米石墨粉体中含有少量的纳米金刚石颗粒。
基于上述,所述惰性气体的压强为18-22 kPa,氢气的压强为2.5-3.5 kPa,甲烷的压强为35-45 kPa。在所述制备活化的纳米石墨粉体的步骤中,所述惰性气体、氢气和甲烷的压强比之所以限定在上述范围,主要是因为若惰性气体或甲烷的压强比较小,则不利于纳米石墨粉体的活化;若惰性气体或甲烷的压强比较大,则会使得纳米石墨粉体的颗粒较大,纳米石墨粉体的活化力度较小,进而不能有效提高以其为原料制备的金刚石的性能。所以,所述惰性气体的压强可以为18 kPa、19 kPa、20 kPa、21 kPa或22 kPa等,氢气的压强可以为2.5 kPa、2.8 kPa、3 kPa或3.5 kPa等,甲烷的压强可以为35 kPa、38 kPa、40 kPa、42kPa或45 kPa等。
基于上述,所述制备活化的纳米石墨粉体的步骤包括:提供一直流电弧装置,以碳棒作为阴极,以所述石墨块体作为阳极,对所述直流电弧装置中的反应腔体进行抽真空处理,直至所述反应腔体的真空度为5×10-3Pa;然后通入惰性气体、氢气和甲烷,进行直流电弧等离子处理制得所述活化的纳米石墨粉体。本发明中使用的电极:碳棒及石墨块体靶材的纯度均不小于99.99%。在所述直流电弧等离子处理过程中,控制电流为80-150 A;优选地,控制电流为80A、100A、120A或150A。所述反应腔体内部不需要加热,仅仅需要依靠石墨块体靶材周围电弧的温度,大概是3000℃,其中产生的等离子体在所述反应腔体的低温内壁上形核长大和脱落,制得所述活化的纳米石墨粉体。
其中,所述石墨块体为自制的或市售的。其中,所述石墨块体的自制方法主要包括:以微米级或毫米级石墨粉为原料,通过压力机将其在高压下压制成块体,即制得作为所述阳极靶材的所述石墨块体。
基于上述,所述惰性气体为氦气、氖气、氩气、氪气或氙气。优选地,所述惰性气体为氩气。
在所述活化的纳米石墨粉体的制备过程中,在真空和惰性气体环境中,采用直流电弧等离子法,利用等离子体的高温,使分子状态的甲烷和氢气电离为碳离子态和氢离子态,石墨块体靶材在电弧高温下蒸发气化,与碳离子态相互碰撞发生团聚,气态原子冷区成核长大形成所述活化的纳米石墨粉体。其中,甲烷和金刚石中的碳原子均具有sp3杂化的电子轨道特性,而石墨中的碳原子则具有sp2杂化的电子轨道特性,甲烷电离形成的碳离子态也具有sp3杂化的电子轨道特性,有利于后续合成金刚石,类似合成金刚石的成核剂,达到活化纳米石墨的目的;氢离子态起到转化sp2结构的石墨到sp3结构的金刚石作用,进而有利于后续合成金刚石;从而制备出所述活化的纳米石墨粉体,且该活化的纳米石墨粉体中含有少量的纳米金刚石颗粒。即,该活化的纳米石墨粉体中的碳元素主要具有sp2结构,还有部分碳元素具有sp3结构。所以,在该制备活化的纳米石墨粉体的过程中,氢气和甲烷的作用不仅仅能提高纳米石墨粉体的纯度,还能形成具有sp3结构的纳米金刚石,达到活化纳米石墨粉体,促进金刚石合成的目的。所述活化的纳米石墨粉体中的形成纳米金刚石结构的碳元素来源于甲烷和氢气作用的石墨块体靶材。
基于上述,所述直流电弧等离子处理的步骤之后,还包括对所述活化的纳米石墨粉体进行钝化处理的步骤。其中,采用直流电弧等离子处理之后进行钝化处理的主要目的使所述活化的纳米石墨的表面生成不活泼态保护层以使所述活化的纳米石墨粉体材料稳定。
基于上述,所述合成金刚石的步骤包括:提供一粉末催化剂,将所述活化的纳米石墨粉体和所述粉末催化剂均匀混合,并置于六面顶压机腔室内在高温高压下合成金刚石。
基于上述,所述粉末催化剂由以下质量百分比的组分组成:Ni:5-13%、Co:1-4%、Cu:0.5-3%、Mn:3-5%、V:0.01-0.07%,余量为Fe。
本发明还提供一种由上述方法制备的金刚石。其中,该金刚石的表面光滑,断裂强度3-3.35GPa,砂轮磨削力13-15 N/mm,磨耗能95-100 J/mm3,磨耗比6570-7040。
其中,本发明提供的金刚石的性能测试方法如下:
金刚石断裂强度的测量方法 分别取#60/80金刚石检测对象250粒进行断裂强度试验,测定方法为分别将每粒金刚石检测对象放在两个烧结金刚石复合片中进行压缩实验,并记下断裂强度W,利用公式σ=W/0.32A。其中σ为金刚石检测对象的压缩位移,A为金刚石的投影面积。
砂轮磨削力的测量方法和磨耗比的测量方法 分别将#80/100的金刚石检测对象制备成为浓度100%的金刚石砂轮在平面磨床上进行磨削试验记录下相关的参数即可得到磨削力,将磨削前后工件和砂轮的质量变化量进行统计即可得出砂轮磨削力及磨耗比试验的相关参数,如表1所示。
表1 砂轮磨削力及磨耗比试验的相关参数
因此,本发明提供的金刚石的制备方法主要包括两个步骤:先制备出活化的纳米石墨粉体,再以所述活化的纳米石墨粉体为原料合成高品级的金刚石,其中,所述制备活化的纳米石墨粉体的步骤包括:在惰性气体、氢气和甲烷的混合气氛中,以石墨块体为阳极靶材,进行直流电弧等离子处理,该步骤制备出活化的纳米石墨粉体中的碳元素主要具有sp2结构,还有部分碳元素具有sp3结构,所以,所述活化的纳米石墨粉体不但具有纳米效应,还使所述纳米石墨的内部含有sp3的碳元素存在,所述活化的纳米石墨粉体中含有少量的纳米金刚石颗粒,为后续合成金刚石提供原料。利用所述活化的纳米石墨粉体采用高温高压法制备出的金刚石为高品级金刚石,具有高的强度和硬度、热稳定性以及耐磨性等。此外,本发明提供的金刚石的制备方法,采用直流电弧等离子法制备所述活化的纳米石墨粉体,采用高温高压法合成金刚石,整个制备方法安全可靠、制备过程简单且易操作。
附图说明
图1为本发明提供的制备方法制备出的活化的纳米石墨粉体的拉曼光谱图。
图2是由本发明实施例1制备的金刚石的外观照片图。
图3为对比例1提供的纳米石墨粉体的拉曼光谱图。
图4是采用对比例1提供的纳米石墨粉体制备的金刚石对比样1的外观照片图。
图5是采用市售的微米级石墨粉体制备的金刚石对比样2的外观照片图。
具体实施方式
下面通过具体实施方式,对本发明的技术方案做进一步的详细描述。
实施例1
本实施例提供一种金刚石的制备方法,包括:
制备活化的纳米石墨粉体 提供一直流电弧等离子发生装置,在VZD-400型直流电弧设备腔体中,以碳棒作为阴极,将石墨块体靶材置于阳极托盘上,调整阴极碳棒与石墨块体靶材的距离,随后关闭腔体,进行真空处理,同时打开水冷系统,待机械泵抽至3 Pa,对所需气体管路进行清洗,除去其他气体杂质,继续抽真空,抽至真空度至5×10-3 Pa,关闭真空系统;通入反应气体,氩气20 kPa,氢气3 kPa,甲烷40 kPa,接通电弧控制电源,调整电流大小100 A,开始起弧,电弧温度高达3000 K,在此高温下,在电弧的高温度下,分子状态的甲烷和氢气电离为碳离子态和氢离子态,石墨块体靶材在电弧高温下蒸发气化,与碳离子态相互碰撞发生团聚,离开电弧区成核长大形成碳纳米颗粒,并沉积在腔体器壁上,形成纯度高于99.99%的活化的纳米石墨粉体,该活化的纳米石墨粉体中的颗粒粒径主要集中于120-150 nm。钝化12小时后收取粉体,即得到稳定的、拉曼光谱如图1所示的活化的纳米石墨粉体,该活化的纳米石墨粉体含有纳米金刚石结构,且该纳米金刚石结构来源于甲烷及被氢气作用的石墨块体靶材;
合成金刚石 在高温高压的条件下,利用所述活化的纳米石墨粉体合成金刚石。
其中,所述合成金刚石的步骤具体包括以下步骤:
提供一种粉末催化剂,该粉末催化剂由Ni粉末、Co粉末、Cu粉末、Mn粉末、V粉末和Fe粉末组成,且按照以下重量百分比计:Ni 10%、Co 3%、Cu 2%、Mn 4%、V 0.04%,余量为Fe;将所述活化的纳米石墨粉体与所述粉末催化剂按重量比5.5:4.5的比例混合均匀,获得原料触媒粉末;
将所述原料触媒粉末按照常规的组装方式放置称量后置于叶腊石腔室内,其中叶腊石腔室内部的组装结构为通用的组装方式,例如中国专利CN201520359079.7中所述的组装方式,得到叶腊石组装块,将该叶腊石组装块放置于真空干燥箱中干燥待用;
将干燥后的叶腊石组装块置于六面顶压机腔室内,将合成温度设置为1400℃,合成块的内部压力为6 GPa,合成时间为30 min,合成金刚石料棒;
将合成后的金刚石块体样品分别按照常规的破碎、酸洗等处理方法,即可分别得到金刚石颗粒。
在所述制备活化的纳米石墨粉体的步骤中,在图1中,仅有“D峰”的曲线为由sp3碳结构构成的金刚石样品拉曼光谱图,仅有“G峰”的曲线为由sp2碳结构构成的石墨样品的拉曼光谱图,显示有双峰的曲线为本实施例提供的所述活化的纳米石墨粉体的拉曼光谱图,双峰的位置分别对应“D峰”和“G峰”的位置,所以,该步骤制备出的所述活化的纳米石墨粉体主要由具有sp2结构的碳元素组成,其中,还含有具有sp3结构的碳元素。其中,本实施例中采用的碳棒的纯度99.99%以上,其中的石墨块体靶材可以是市购的,也可以是自制的。所述石墨块体靶材无论是市购,还是自制,其纯度均不小于99.99%。所述石墨块体靶材的制备方法包括:以微米级或毫米级石墨粉为原料,并通过压力机将其在高压下压制成块体,即制得所述石墨块体靶材。
实施例2
本实施例提供一种金刚石的制备方法,该制备方法包括以下步骤:
制备活化的纳米石墨粉体 本实施例该步骤包括:
提供一直流电弧等离子发生装置,在VZD-400型直流电弧设备腔体中,以碳棒作为阴极,将石墨块体靶材置于阳极托盘上,调整阴极碳棒与石墨块体靶材的距离,随后关闭腔体,进行真空处理,同时打开水冷系统,待机械泵抽至1 Pa,对所需气体管路进行清洗,除去其他气体杂质,继续抽真空,抽至真空度至5×10-3 Pa,关闭真空系统;通入反应气体,氩气18 kPa,氢气2.5 kPa,甲烷35 kPa,接通电弧控制电源,调整电流大小100 A,开始起弧,电弧温度高达3000 K,在此高温下,在电弧的高温度下,分子状态的甲烷和氢气电离为碳离子态和氢离子态,石墨块体靶材在电弧高温下蒸发气化,与碳离子态相互碰撞发生团聚,离开电弧区成核长大形成碳纳米颗粒,并沉积在腔体器壁上,形成活化的纳米石墨粉体。钝化12小时后收取粉体,即得到本实施例提供的稳定的所述活化的纳米石墨粉体,该活化的纳米石墨粉体的纳米颗粒粒径主要集中于130-160 nm;
合成金刚石 本实施例该步骤与实施例1的对应步骤基本相同,不同之处主要在于:本实施例中采用的粉末催化剂由以下重量百分比计的组分组成:Ni 5%、Co 4%、Cu0.5%、Mn 5%、V 0.02%,余量为Fe,所述活化的纳米石墨粉体与所述粉末催化剂按重量比4.5:5.5;合成金刚石的温度为1360℃,合成块的内部压力为4.6 GPa,合成时间为45 min。
实施例3
本实施例提供一种金刚石的制备方法,该制备方法包括以下步骤:
制备活化的纳米石墨粉体 本实施例中该步骤包括:
提供一直流电弧等离子发生装置,在VZD-400型直流电弧设备腔体中,以碳棒作为阴极,将石墨块体靶材置于阳极托盘上,调整阴极碳棒与石墨块体靶材的距离,随后关闭腔体,进行真空处理,同时打开水冷系统,待机械泵抽至5 Pa,对所需气体管路进行清洗,除去其他气体杂质,继续抽真空,抽至真空度至5×10-3 Pa,关闭真空系统;通入反应气体,氩气22 kPa,氢气3.5 kPa,甲烷45 kPa,接通电弧控制电源,调整电流大小100 A,开始起弧,电弧温度高达3000 K,在此高温下,在电弧的高温度下,分子状态的甲烷和氢气电离为碳离子态和氢离子态,石墨块体靶材在电弧高温下蒸发气化,与碳离子态相互碰撞发生团聚,离开电弧区成核长大形成碳纳米颗粒,并沉积在腔体器壁上,形成活化的纳米石墨粉体。钝化12小时后收取粉体,即得到本实施例提供的稳定的所述活化的纳米石墨粉体,该活化的纳米石墨粉体的纳米颗粒粒径主要集中于200-300 nm;
合成金刚石 本实施例该步骤与实施例1的对应步骤基本相同,不同之处主要在于:本实施例中采用的粉末催化剂由以下重量百分比计的组分组成:Ni 8%、Co 2%、Cu 1%、Mn 4%、V 0.03%,余量为Fe,所述活化的纳米石墨粉体与所述粉末催化剂按重量比1:1;合成金刚石的温度为1390℃,合成块的内部压力为5 GPa,合成时间为40 min。
实施例4
本实施例提供一种金刚石的制备方法,该制备方法包括以下步骤:
制备活化的纳米石墨粉体 本实施例该步骤包括:
提供一直流电弧等离子发生装置,在VZD-400型直流电弧设备腔体中,以碳棒作为阴极,将石墨块体靶材置于阳极托盘上,调整阴极碳棒与石墨块体靶材的距离,随后关闭腔体,进行真空处理,同时打开水冷系统,待机械泵抽至3 Pa,对所需气体管路进行清洗,除去其他气体杂质,继续抽真空,抽至真空度至5×10-3 Pa,关闭真空系统;通入反应气体,氩气20 kPa,氢气2.5 kPa,甲烷40 kPa,接通电弧控制电源,调整电流大小100 A,开始起弧,电弧温度高达3000 K,在此高温下,在电弧的高温度下,分子状态的甲烷和氢气电离为碳离子态和氢离子态,石墨块体靶材在电弧高温下蒸发气化,与碳离子态相互碰撞发生团聚,离开电弧区成核长大形成碳纳米颗粒,并沉积在腔体器壁上,形成活化的纳米石墨粉体。钝化12小时后收取粉体,即得到本实施例提供的稳定的所述活化的纳米石墨粉体,该活化的纳米石墨粉体的纳米颗粒粒径主要集中于170-200 nm;
合成金刚石 本实施例该步骤与实施例1的对应步骤基本相同,不同之处主要在于:本实施例中采用的粉末催化剂由以下重量百分比计的组分组成:Ni 9%、Co 2.5%、Cu1.5%、Mn 3.9%、V 0.05%,余量为Fe,所述活化的纳米石墨粉体与所述粉末催化剂按重量比3:2;合成金刚石的温度为1420℃,合成块的内部压力为5.5 GPa,合成时间为35 min。
实施例5
本实施例提供一种金刚石的制备方法,该制备方法包括以下步骤:
制备活化的纳米石墨粉体 本实施例该步骤包括:
提供一直流电弧等离子发生装置,在该装置的腔体中,以碳棒作为阴极,将石墨块体靶材置于阳极托盘上,调整阴极碳棒与石墨块体靶材的距离,随后关闭腔体,进行真空处理,同时打开水冷系统,待机械泵抽至1 Pa,对所需气体管路进行清洗,除去其他气体杂质,继续抽真空,抽至真空度至5×10-3 Pa,关闭真空系统;通入反应气体,氩气18 kPa,氢气35kPa,甲烷40 kPa,接通电弧控制电源,调整电流大小100 A,开始起弧,电弧温度高达3000K,在此高温下,在电弧的高温度下,分子状态的甲烷和氢气电离为碳离子态和氢离子态,石墨块体靶材在电弧高温下蒸发气化,与碳离子态相互碰撞发生团聚,离开电弧区成核长大形成碳纳米颗粒,并沉积在腔体器壁上,形成活化的纳米石墨粉体。钝化12小时后收取粉体,即得到本实施例提供的稳定的所述活化的纳米石墨粉体,该活化的纳米石墨粉体的纳米颗粒粒径主要集中于130-170 nm;
合成金刚石 本实施例该步骤与实施例1的对应步骤基本相同,不同之处主要在于:本实施例中采用的粉末催化剂由以下重量百分比计的组分组成:Ni 13%、Co 1%、Cu 3%、Mn 3%、V 0.07%,余量为Fe,所述活化的纳米石墨粉体与所述粉末催化剂按重量比6.5:3.5;合成金刚石的温度为1450℃,合成块的内部压力为6.8 GPa,合成时间为15 min。
性能检测
(1)检测对象 以实施例1-5合成的金刚石作为检测对象,对应依次标记为样品1、2、3、4、5;同时提供两种金刚石对照样品,分别为:对比样1和对比样2。
其中,对比样1提供的金刚石的制备方法,包括:
制备纳米石墨粉体 按照实施例1中的“制备活化的纳米石墨粉体”的步骤制备所述纳米石墨粉体,主要不同之处在于:该对比例1中未通入氢气和甲烷,其它原料、制备步骤和参数均与实施例1的相同;其中,该对比例1提供的纳米石墨粉体的粒径主要集中于120-150 nm,且其中的碳元素为sp2结构,该纳米石墨粉体的拉曼光谱图图3所示;
合成金刚石 按照实施例1中的“合成金刚石”步骤所涉及的原料、参数及方法步骤等,利用所述纳米石墨粉体在高温高压下合成金刚石。即,该步骤与实施例1对应步骤的主要区别在于对比例1利用上述纳米石墨粉体合成如图4所示的金刚石,该金刚石的外观。
对比样2提供的金刚石的制备方法,包括:利用市售的普通微米级石墨粉在高温高压下合成金刚石。具体地,按照实施例1中的“合成金刚石”步骤所涉及的原料、参数及方法步骤等,利用市售的普通微米级石墨粉(青岛三同石墨有限公司的鳞片石墨)在高温高压下合成如图5所示的金刚石。
(2)观察外观
金刚石样品1的外观照片如图2所示,对比样1的外观照片如图4所示,对比样2的外观照片如图5所示。从图2、图4和图5可以看出:金刚石样品1与对比样1的表面相对都比较光滑,基本无明显浮凸;但金刚石的对比样2的表面比较粗糙,有明显浮凸。
(3)性能检测条件及方法
分别以上述样品1-5和对比样1-2作为金刚石性能检测对象,检测其断裂强度、砂轮磨削力及磨耗比,检测结果如表2所示。
其中,金刚石断裂强度的测量方法:分别取#60/80金刚石检测对象250粒进行断裂强度试验,测定方法为分别将每粒金刚石检测对象放在两个烧结金刚石复合片中进行压缩实验,并记下断裂强度W,利用公式σ=W/0.32A。其中σ为金刚石检测对象的压缩位移,A为金刚石的投影面积。
砂轮磨削力的测量方法和磨耗比的测量方法:分别将#80/100的金刚石检测对象制备成为浓度100%的金刚石砂轮在平面磨床上进行磨削试验记录下相关的参数即可得到磨削力,将磨削前后工件和砂轮的质量变化量进行统计即可得出砂轮磨削力及磨耗比试验的相关参数,如表1所示。
表2 金刚石性能检测表
从表2可以看出:金刚石样品1以对比样1的各项性能均优于对比样2的,如,样品1的断裂强度是金刚石对比样2的3.73倍,由样品1所制备的砂轮磨削力稳定是由对比样2制作的砂轮的3/5。样品1的磨耗能低,是对比样2的1/2,磨耗比是对比样2的7.53倍。表2中显示样品1的断裂强度约是对比样1的2.37倍,样品1的砂轮磨削力和磨耗能分别是对比样1的3/4和2/3,样品1的磨耗比约是对比样1的2.86倍;由此可见,金刚石样品1的性能明显优于对比样1的。
另外,从表2中还可以看出:本发明实施例提供的金刚石的断裂强度3-3.4 GPa,砂轮磨削力13-15 N/mm,磨耗能95-100 J/mm3,磨耗比6570-7040。
因此,利用本发明实施例提供的方法制备的金刚石为高品级的金刚石,其各项性能明显优于利用其它石墨原料制备的金刚石。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。
Claims (6)
1.一种金刚石的制备方法,包括:
制备活化的纳米石墨粉体 提供一直流电弧装置,以碳棒作为阴极,以石墨块体作为阳极,对直流电弧装置中的反应腔体进行抽真空处理,直至反应腔体的真空度为5×10-3 Pa;然后通入惰性气体、氢气和甲烷,进行直流电弧等离子处理,制得活化的纳米石墨粉体,所述惰性气体的压强为18-22 kPa,氢气的压强为2.5-3.5 kPa,甲烷的压强为35-45 kPa ,所述活化的纳米石墨粉体主要由具有sp2结构的碳元素组成,其中,还含有部分碳元素具有sp3结构;
合成金刚石 提供一粉末催化剂,将所述活化的纳米石墨粉体和所述粉末催化剂均匀混合,并置于六面顶压机腔室内在高温高压下合成金刚石。
2.根据权利要求1所述的金刚石的制备方法,其特征在于,所述活化的纳米石墨粉体中的纳米颗粒粒径主要集中于70 - 300 nm。
3.根据权利要求2所述的金刚石的制备方法,其特征在于,所述惰性气体为氦气、氖气、氩气、氪气或氙气。
4.根据权利要求3所述的金刚石的制备方法,其特征在于,所述直流电弧等离子处理的步骤之后,还包括对所述活化的纳米石墨粉体进行钝化处理的步骤。
5.根据权利要求4所述的金刚石的制备方法,其特征在于,所述粉末催化剂由以下质量百分比的组分组成:Ni:5-13%、Co:1-4%、Cu:0.5-3%、Mn:3-5%、V:0.01-0.07%,余量为Fe。
6.一种由权利要求1-5任一项所述的金刚石的制备方法制备的金刚石,其特征在于,所述金刚石的表面光滑,断裂强度3.0-3.35 GPa,砂轮磨削力13-15 N/mm,磨耗能95-100 J/mm3,磨耗比6570-7040。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010463688.2A CN111617700B (zh) | 2020-05-27 | 2020-05-27 | 一种金刚石及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010463688.2A CN111617700B (zh) | 2020-05-27 | 2020-05-27 | 一种金刚石及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111617700A CN111617700A (zh) | 2020-09-04 |
CN111617700B true CN111617700B (zh) | 2022-10-04 |
Family
ID=72255173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010463688.2A Active CN111617700B (zh) | 2020-05-27 | 2020-05-27 | 一种金刚石及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111617700B (zh) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2927879A (en) * | 1956-09-13 | 1960-03-08 | Union Carbide Corp | Method for joining carbon articles |
CN103482623B (zh) * | 2013-09-05 | 2015-06-24 | 大连理工大学 | 一种用直流电弧法制备纳米金刚石的方法 |
CN103521132B (zh) * | 2013-09-13 | 2015-05-06 | 中原工学院 | 一种高品级自锐性多晶金刚石的合成工艺技术 |
CN108579615B (zh) * | 2018-05-17 | 2020-11-03 | 长沙石立超硬材料有限公司 | 一种原核植入法提高单晶金刚石单产的合成工艺 |
-
2020
- 2020-05-27 CN CN202010463688.2A patent/CN111617700B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111617700A (zh) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
An et al. | In situ synthesized one-dimensional porous Ni@ C nanorods as catalysts for hydrogen storage properties of MgH 2 | |
Vlasov et al. | Hybrid diamond‐graphite nanowires produced by microwave plasma chemical vapor deposition | |
Shaijumon et al. | Synthesis of carbon nanotubes by pyrolysis of acetylene using alloy hydride materials as catalysts and their hydrogen adsorption studies | |
Tarasov et al. | Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co–Ni and YNi2 catalysts | |
Das et al. | Synthesis of diameter controlled multiwall carbon nanotubes by microwave plasma-CVD on low-temperature and chemically processed Fe nanoparticle catalysts | |
Ma et al. | Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity | |
Kamali | Black diamond powder: On the thermal oxidation and surface graphitization | |
Li et al. | Synthesis of graphene flakes using a non-thermal plasma based on magnetically stabilized gliding arc discharge | |
Wang et al. | Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment | |
Wang et al. | Effect of sintering parameters on microstructure and properties of nanopolycrystalline diamond bulks synthesized from onion-like carbon | |
KR20040085982A (ko) | 액상법에 의한 탄소나노튜브의 제조방법 | |
CN111617700B (zh) | 一种金刚石及其制备方法 | |
KR102240358B1 (ko) | 고온 플라즈마 방사법을 활용한 그래핀 연속 대량 제조 방법 및 이의 제조방법으로 제조된 그래핀 | |
CN111661843B (zh) | 活化的纳米石墨粉体及其制备方法 | |
Ugarte | Graphitic nanoparticles | |
Pol et al. | Magnetic field guided formation of long carbon filaments (sausages) | |
Asokan et al. | Microwave irradiation on carbon black: Studies on the transformation of particles into nano-balls, nano-sticks and nano-onion like structures | |
Srivastava et al. | Effect of hydrogen plasma treatment on the growth and microstructures of multiwalled carbon nanotubes | |
Lee et al. | Effect of powder synthesis atmosphere on the characteristics of iron nanopowder in a plasma arc discharge process | |
He et al. | Carbon onion growth enhanced by nitrogen incorporation | |
Zhang et al. | The preparation of carbon-coated iron nanocrystals produced from Fe2O3-containmg composite anode in arc discharge | |
KR20020069328A (ko) | 연료전지용 탄소 나노튜브 제조방법 | |
CN1207189C (zh) | 纳米微粒催化电弧法制备洋葱状富勒烯的方法 | |
JP3952478B2 (ja) | ホウ素含有カーボンナノ構造物及びその製造方法 | |
CN105271140A (zh) | 一种六方相铝碳氮化物的六边形纳米片及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |