CN111601997A - 流体处理部件 - Google Patents

流体处理部件 Download PDF

Info

Publication number
CN111601997A
CN111601997A CN201880072503.6A CN201880072503A CN111601997A CN 111601997 A CN111601997 A CN 111601997A CN 201880072503 A CN201880072503 A CN 201880072503A CN 111601997 A CN111601997 A CN 111601997A
Authority
CN
China
Prior art keywords
fluid
spill
apertures
port
poppet valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880072503.6A
Other languages
English (en)
Other versions
CN111601997B (zh
Inventor
D.A.伯奇
C.W.埃克斯特兰德
K.塞克罗格鲁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colder Products Co
Original Assignee
Colder Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colder Products Co filed Critical Colder Products Co
Publication of CN111601997A publication Critical patent/CN111601997A/zh
Application granted granted Critical
Publication of CN111601997B publication Critical patent/CN111601997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/28Couplings of the quick-acting type with fluid cut-off means
    • F16L37/38Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in only one of the two pipe-end fittings
    • F16L37/40Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in only one of the two pipe-end fittings with a lift valve being opened automatically when the coupling is applied
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/26Valves closing automatically on disconnecting the line and opening on reconnection thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/28Couplings of the quick-acting type with fluid cut-off means
    • F16L37/38Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in only one of the two pipe-end fittings
    • F16L37/40Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in only one of the two pipe-end fittings with a lift valve being opened automatically when the coupling is applied
    • F16L37/42Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in only one of the two pipe-end fittings with a lift valve being opened automatically when the coupling is applied the valve having an axial bore communicating with lateral apertures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/08Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members
    • F16L37/084Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members combined with automatic locking
    • F16L37/0841Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members combined with automatic locking by means of a transversally slidable locking member surrounding the tube

Abstract

该文件描述了用于减少液体溢漏的装置和方法,比如包括一个或多个孔的流体联接装置,一个或多个孔在流体联接装置断开时减少溢漏。在一些实施例中,一个或多个孔设计成具有增加流体联接装置的内部空间内的液体将需要暴露于以便经由一个或多个孔从内部空间溢漏的加速水平的特征。

Description

流体处理部件
相关申请的交叉引用
本申请要求于2017年9月13日提交的美国申请序列号62/558210的优先权。在先申请的公开被认为是本申请的公开的一部分,并且将其全部结合到本申请中。
技术领域
该文件描述了用于减少流体溢漏的装置和方法,并且在一些实施例中,描述了包括在断开时减少溢漏的阀组件的流体处理部件,比如联接装置。
背景技术
允许两个或更多个部件之间的流体连通的流体处理部件是众所周知的。流体联接通常包括允许凸部件和凹部件快速连接或断开的特征,并且可以包括选择性地阻止或允许流体流过联接的一个或多个内部阀部件。尽管各种流体联接可以允许选择性地关闭以停止流动,例如当联接断开时,但联接壳体中存在的一些残留流体可能从联接的断开端溢漏。
发明内容
在一些实施例中,提供了流体处理装置和方法,其构造为减少从流体处理部件的开口端溢漏的可能性。例如,本文所述的一些流体联接装置可以减少与配合装置的使用断开后在联接装置的内部空间中存在的流体溢漏。可以防止存在于这样的内部体积中(例如在密封件和一个或多个孔之间)的流体通过流体联接部件孔和流体联接部件的开口端逸出。这样,可以减少材料损失、污染和与溢漏有关的成本。另外,可以有利地减少空气进入内部体积以代替溢漏的可能性。
在一些实施例中,描述了一种流体联接装置,其包括一个或多个孔、密封表面以及在孔与密封表面之间的内部体积。孔的尺寸、形状和构造可以易于允许流体在流体联接装置处于连接构造时流过流体联接装置,而在处于断开构造时则减少流体从流体联接装置的开口端溢漏。尽管使用流体联接装置的情况来提供示例,但应当理解,本文所述的防溢漏概念可以在其他流体处理部件情况中实现,比如但不限于汲取管、滴管、奶嘴、喷嘴、管、管道、阀、接头等。
在一方面,本公开涉及一种防溢漏提升阀组件,包括第一联接主体构件,其构造成与第二联接主体构件配合,以及第一阀组件。第一联接主体构件限定纵向轴线和由第一端口与第二端口之间的内侧壁限定的内部空间。内部空间具有与纵向轴线正交测量的内径(Dbody)和横截面积(Abody)。第一阀组件设置在内部空间内。第一阀组件包括第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域并且与活塞头间隔开的密封表面。第一阀组件还包括活塞头,其具有纵向延伸穿过其中的一个或多个孔。一个或多个孔限定总开口横截面积(Aapertures)。每个孔具有最大主尺寸(daperture)。最大主尺寸(daperture)是一个或多个孔中的每个的远侧之间的最大尺寸。第一阀组件还包括内部体积,其由第一联接主体构件的在活塞头和密封表面之间的内部空间限定。第一关闭构件可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通。其中,0.2*(dcritical)<(daperture)<1.0*(dcritical)。(dcritical)根据下式确定:
Figure BDA0002482570060000021
其中,γ是以N/m为单位的第一联接主体构件中的流体的表面张力,ρ是以kg/m3为单位的流体的密度,θr是限定在流体和其中一个孔的一侧之间的后退角且g是重力常数9.81m/s2
在另一方面,本公开涉及一种防溢漏提升阀组件。该防溢漏提升阀组件包括:(i)凸联接主体构件,其限定纵向轴线和由第一端与第二端之间的内侧壁限定的凸内部空间;(ii)凹联接主体构件,其限定纵向轴线和由第一端口与第二端口之间的内侧壁限定的凹内部空间,该内部空间具有与纵向轴线正交测量的在6mm至72mm之间的内径(Dbody)和横截面积(Abody);以及(iii)阀组件,其设置在凹主体内部空间内。阀组件包括:(a)第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域并且与活塞头间隔开的密封表面,该活塞头具有纵向延伸穿过其中的一个或多个孔,一个或多个孔限定总开口横截面积(Aapertures),并且每个具有最大主尺寸(daperture),该最大主尺寸(daperture)是每个孔的远侧之间的最大尺寸,和(b)第一内部体积,其由凹联接主体构件的在活塞头和密封表面之间的内部空间限定。第一关闭构件可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通。其中,2mm<(daperture)<5mm并且0.4*(Abody)<(Aapertures)<0.9*(Abody)。
在另一方面,本公开涉及一种防溢漏装置。该防溢漏装置包括流体主体构件,其限定纵向轴线和由第一端与第二端之间的内侧壁限定的内部空间。内部空间具有与纵向轴线正交测量的内径(Dbody)和横截面积(Abody)。流体主体构件包括限定总开口横截面积(Aapertures)的一个或多个孔,并且每个具有大小确定为防止通过孔溢漏的最大主尺寸(daperture)。
在另一方面,本公开涉及一种防溢漏阀组件。该防溢漏阀组件包括:第一主体构件;第二主体构件,其构造成与第一主体构件连通并且限定纵向轴线和由内侧壁限定的内部空间;用于连接第一和第二主体构件以在第一和第二主体构件之间提供流体连通的装置;以及用于当第二主体构件与第一主体构件断开时将流体保持在第二主体构件中的装置。
在另一方面,本公开涉及一种使用防溢漏装置的方法。该方法包括:将第一联接主体构件联接至第二联接主体构件,该第一联接主体构件限定纵向轴线和由内侧壁限定的内部空间,第一联接主体构件包括用于当第二联接主体构件与第一联接主体构件断开时将流体保持在第二联接主体构件中的装置;使流体穿过第一和第二联接主体构件;以及断开第一和第二联接主体构件。
在另一方面,本公开涉及一种防溢漏提升阀流体联接装置,包括:(a)第一联接主体构件,其构造成与第二联接主体构件配合,并限定纵向轴线和由第一端口与相对的第二端口之间的内侧壁限定的内部空间;以及(b)第一提升阀组件,其设置在内部空间内。提升阀组件包括第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域的密封表面。第一关闭构件在内部空间内可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通。活塞头限定纵向延伸穿过其中的一个或多个孔,其中一个或多个孔中的每个由径向向内突出的环形唇限定。
在另一方面,本公开涉及一种防溢漏提升阀流体联接装置,包括:(1)第一联接主体构件,其构造成与第二联接主体构件配合,并限定纵向轴线和由第一端口与相对的第二端口之间的内侧壁限定的内部空间;以及(2)第一提升阀组件,其设置在内部空间内。提升阀组件包括第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域的密封表面。第一关闭构件在内部空间内可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通。活塞头限定纵向延伸穿过其中的一个或多个孔。一个或多个孔中的每个由环形纵向突出壁部分限定。
本文描述的装置、系统和技术的一些实施例可以提供以下优点中的一个或多个。首先,具有如本文所述的一个或多个孔的联接主体构件可以将流体保持在联接主体构件内,并减少流体从开口端逸出或溢漏的可能性。第二,本文所述的孔可以表现出期望的流体保持特性而没有过度的流动限制。孔可以具有足够大的尺寸和总开口面积,其允许足够的流量通过流体联接,而不会产生过多的流动阻力,同时表现出期望的流体保持(防溢漏)特性。第三,本文所述的孔允许联接主体构件具有任何合适尺寸的内部体积,例如为了增强阀性能所期望的。可以选择内部体积和其他几何特征以优化阀性能,而不会增加当联接主体构件断开时可能溢漏的流体量。
在附图和以下描述中阐述一种或多种实施方式的细节。根据说明书和附图以及根据权利要求书,其他特征和优点将显而易见。
附图说明
参照附图进一步提供本描述,其中在若干视图中,相似的结构由相似的标号表示,并且其中:
图1A示出了处于连接构造的示例性第一和第二联接主体构件的局部透视剖视图。
图1B示出了示例性第一联接主体构件的透视图。
图1C示出了示例性第二联接主体构件的透视图。
图2A示出了具有凹第一端的示例性联接主体构件的局部透视剖视图。
图2B示出了图2A的示例性联接主体构件的局部剖视图。
图3A-3C示出了具有多个阀孔的示例性流体联接关闭构件(阀)。
图4示出了具有凸第一端的示例性联接主体构件的局部剖视图。
图5示出了处于连接构造的示例性联接主体构件的透视剖视图。
图6示出了使用流体联接装置的示例性方法的流程图。
图7示出了具有相等直径和不同长度的一组管的透视图。
图8示出了具有相等长度和不同直径的一组管的透视图。
图9示出了用于测量液体从具有单个开口端的管中溢漏的加速度的测试装置的透视图。
图10示意性地描绘了经受纵向方向加速度的具有单个开口端的液体填充管的纵向横截面。
图11示意性地描绘了经受纵向方向加速度的具有单个开口端的另一液体填充管的纵向横截面。
图12是在沿着图9的旋转测试装置的长度的各个位置处测量的临界加速度(发生液体溢漏时)的图。
图13是具有各种长度(具有一致的直径和壁厚度)的管的临界加速度(发生液体溢漏时)的图。
图14是具有各种直径(具有一致的壁厚度和长度)的管的临界加速度(发生液体溢漏时)的图。
图15是包含水、乙二醇和乙醇(具有一致的长度、直径和壁厚度)的管的临界加速度(发生液体溢漏时)的图。
图16示出了具有相等长度、相等内径和不同壁厚度的一组管的透视图(在管的端部处)。
图17是包含水、乙二醇和乙醇的图16的管的临界加速度(发生液体溢漏时)的图。
图18是示出具有五种不同类型的阀孔的流体联接装置的照片。
图19是比较图18的流体联接装置的临界加速度(发生液体溢漏时)的图。
图20是设计成增加临界加速度的一类型孔的纵向横截面图。
图21是设计成增加临界加速度的另一类型孔的纵向横截面图。
图22是设计成增加临界加速度的另一类型孔的纵向横截面图。
图23是设计成增加临界加速度的另一类型孔的纵向横截面图。
图24是设计成增加临界加速度的另一类型孔的纵向横截面图。
图25是设计成增加临界加速度的另一类型孔的纵向横截面图。
图26-28是包括非圆形开口的示例流体处理部件的端视图。
图29-31是包括多个圆形开口的示例流体处理部件的端视图。
图32是具有双叶片设计的示例流体处理部件的端视图。
图33是具有三叶片设计的示例流体处理部件的端视图。
图34是具有四叶片设计的示例流体处理部件的端视图。
图35是具有六叶片设计的示例流体处理部件的端视图。
具体实施方式
参考图1A-1C,示出了示例性流体联接装置10,其在两个流体路径之间提供流体联接。流体联接组件10包括第一联接主体构件20(图1B)和第二联接主体构件30(图1C)。第一联接主体构件20和第二联接主体构件30可连接以提供穿过流体联接组件10(图1A)的流动路径(F)。第一和第二联接主体构件20、30中的一个或两个可包括流体可流过的一个或多个内部孔25以及一个或多个阀组件以选择性地打开和关闭流体通道。如下面进一步描述,孔25的尺寸、形状和构造可以选择成提供流体联接组件10的期望的流动和防止溢漏特性,并且在一些实施例中,可以基于流体联接组件10与之一起使用的一种或多种流体的流体特性来选择。尽管所描绘的示例是流体联接装置,但应当理解,本文所述的防溢漏概念可以在其他流体处理部件情况下实施,比如但不限于汲取管、滴管、奶嘴、喷嘴、管、管道、阀、接头等。
图1B示出了第一联接主体构件20的示例性实施例,其包括具有第一端21和第二端22的凹主体。第一端口21a位于第一端21处,并且限定可容纳可与第一联接主体构件20连接的第二联接主体构件30或其他合适部件的至少一部分的开口。第二端口22a位于第二端22处,并且可与一个或多个流体源或出口流体连通。一个或多个附接特征24定位成靠近第二端22和第二端口22a。在所描绘的实施例中,附接特征24是构造成与对应内螺纹部件配合的外螺纹部分。在各种其他示例性实施例中,附接特征24可包括一个或多个倒钩、卡口连接器、卡扣配合连接器或适于促进与在第二端口22a处附接至第一联接主体构件20的一个或多个部件流体连通的其他类型的附接特征,比如流体分配设备的部件、软管、管、容器、阀、接头或其他连接器。
图1C示出了第二联接主体构件30的示例性实施例,其包括具有第一端31和第二端32的凸主体。第一端31限定一个或多个端口31a,并且例如可以被第一联接主体构件20或者可与第二联接主体构件30连接的其他部件的至少一部分容纳。第二端口32a位于第二端32,并且可以与一个或多个流体源或出口流体连通。一个或多个附接特征34定位成靠近第二端32和第二端口32a。在所描绘的实施例中,附接特征34包括外螺纹表面,其可附接到例如流体分配部件、软管、管、容器、阀、接头或另一连接器的对应内螺纹联接,以允许与第二联接主体构件30流体连通。在各种示例性实施例中,附接特征34可包括一个或多个肋或倒钩,其构造为摩擦地保持软管或柔性部件、卡口连接器、卡扣配合连接器或者允许与在第二端口32a处附接至第二联接主体构件30的一个或多个部件流体连通的其他附接特征。
在使用中,第二联接主体构件30的第一端31可以被第一联接主体构件20的第一端口21a容纳,使得第一和第二联接主体构件20、30可以密封地接合,如图1A所示。第一和第二联接主体构件20、30的内侧壁15、16限定从第一联接主体构件20的第二端端口22a穿过第一端端口21a、31并从用于第二联接主体构件30的第二端端口32a出来的流动通道(F)。通过流体联接装置10的流动特性以及可能存在于第一和/或第二联接主体构件20、30中的流体的泄漏阻力可能受到流体联接组件10内的限定流动通道(F)的至少一部分的孔25的几何形状和结构影响,如本文进一步所述。
参照图2A,示出了示例性联接主体构件100的透视纵向横截面图。联接主体构件100包括纵向轴线A和由在第一和第二端111、112之间的内侧壁115限定的内部空间。第一和第二端111、112分别限定可连接至例如另一联接主体构件或者用于接收或输送流体流动的其他部件的第一和第二端口111a、112a,并且可以包括凹、凸或其他合适连接特征。内部空间具有限定在内侧壁115的相对壁部分之间的内径(Dbody)以及与纵向轴线A正交测量的横截面积(Abody)。内部空间限定流体可以在联接主体构件100的第一和第二端口111a、112a之间流过的通道。
在示例性实施例中,第一阀组件120设置在内部空间内,并且构造成可在打开位置和关闭位置之间移动以选择性地允许流体流过联接主体构件100。第一阀组件120包括第一关闭构件121、偏压构件122和密封件123。第一关闭构件121包括前端121a、后端121b以及在前后端121a、121b之间延伸的细长部分124。在示例性实施例中,活塞头126定位成靠近前端121a,并且限定纵向延伸穿过活塞头126的厚度的阀孔125。当第一阀组件120处于打开构造时,孔125允许流体流过活塞头126,并且可以具有特定的尺寸、形状和构造以提供期望的流动和流体保持特性。密封件123定位成靠近后端121b并且与活塞头126间隔开。在示例性实施例中,后端121b是没有延伸穿过的开口或通道的实心端,使得当第一阀组件120处于打开构造时,流体仅可通过穿过后端121b与内侧壁115之间而流过联接主体构件100。
在示例性实施例中,偏压构件122(例如压缩弹簧)将第一关闭构件121偏压向关闭位置,在关闭位置,第一阀组件120的密封件123接触内侧壁115的一部分。例如,内侧壁115可以包括密封件123可密封地接合以防止第一关闭构件121和内侧壁115之间的流体流动的凸缘或阀座117。偏压构件122可以是部分地围绕第一关闭构件121的细长部分122的螺旋弹簧。在各个其他示例性实施例中,偏压构件122可以是悬臂弹簧、压缩机构或者构造成将第一关闭构件121朝向关闭位置偏压的另一偏压构件。密封件123可以由与内侧壁115的一部分或联接主体构件100的其他部件密封接合的任何合适表面提供。在示例性实施例中,密封件123是定位成靠近后端121b并由与活塞头126不同的材料制成的弹性垫片(例如O形环)。弹性垫片可以机械地保持在例如构造成容纳弹性垫片的第一关闭构件120的凹槽中。
例如,通过第一关闭构件121沿轴线A的纵向运动,第一阀组件120可以在打开与关闭位置之间操作。在示例性实施例中,第一关闭构件121可在联接主体构件100的内部空间内滑动,并且通过偏压构件122被偏压朝向关闭位置。当联接主体构件100的第一端口111a连接至合适部件比如另一联接主体构件时,在连接期间一个或多个部件之间的接触在第一阀组件120的活塞头126或其他部件上施加力,使得第一关闭构件121朝向打开位置移动。关闭构件121可以朝向第二端112a移动,例如当其移动到打开位置时,压缩偏压构件122。密封件123变得与内表面115分离,从而在第一关闭构件121的后端区域121b与联接主体构件100的内表面115之间打开用于流体流动的路径。当联接主体构件100断开时,偏压构件122将第一关闭构件121推回到关闭构造。可替代地或另外,第一阀组件120可以在打开和关闭位置之间手动操作,例如通过在联接主体构件100连接之后将第一关闭构件121从关闭位置手动移动到打开位置。
在一些示例性实施例中,在第一阀组件120从打开构造(其中流体流过联接主体构件100)移动至关闭构造之后,流过联接主体构件100的一些流体可以保持在联接主体构件100的内部体积(Vinternal)中。例如,内部体积(Vinternal)可以由流体可以流过的联接主体构件100的一个或多个部件限定,并且其中紧接在第一阀组件120移动到关闭位置之后流体可以存在。在示例性实施例中,当第一阀组件120处于关闭位置时,内部体积(Vinternal)由在活塞头126的孔125与密封件123之间的联接主体构件100的内表面115限定。因此,在一些实施例中,内部体积(Vinternal)可以是例如在穿过与纵向轴线(A)正交的联接主体构件100的参考平面(B)和(C)之间的体积(图2B)。因此,在一些示例性实施例中,内部体积(Vinternal)的大小至少部分地基于活塞头126的孔125与密封件123之间的距离以及联接主体构件100的内径(Dbody)。
联接主体构件100和第一阀组件120的几何形状和构造可以选择成使得当第一端111断开时,内部体积(Vinternal)中存在的流体保持在联接主体构件100中,而不是溢漏或泄漏。如以下进一步描述,本发明人已经发现,例如,与联接主体构件100的其他部分相比具有相对较大尺寸(比如内径(Dbody)或横截面积(Abody))的孔125在阀组件处于关闭构造时可以防止内部体积(Vinternal)中的流体通过孔125逸出并逃离开口第一端111。当联接主体构件100处于连接构造时,具有相对大尺寸的孔还可以允许期望的流动特性(例如低压降),如本文进一步描述。
在一些示例性实施例中,孔125的特征可以在于每个孔125的远侧之间的最大主尺寸(daperture)。在图2A的示例性实施例中,孔125具有大致三角形或蜂窝状构造,并且最大主尺寸(daperture)是其中一个孔12上的最大尺寸。在其他示例性实施例中,最大主尺寸(daperture)可以是具有圆形形状的孔的直径、具有椭圆形形状的孔的长直径或具有不同形状的孔的远侧之间的其他最大距离。在一些示例性实施例中,特定前端121a中的每个孔125的最大主尺寸(daperture)是相同的,并且每个孔125可以呈现相同形状。在各种其他示例性实施例中,特定前端121a中的两个或更多个孔125的最大主尺寸(daperture)可以不同。
在一些示例性实施例中,可以至少部分地基于穿过联接主体构件100的流体的性特性来选择孔125的尺寸、形状和构造,以便减少流体通过凹联接主体构件100的开口第一端111a从内部体积(Vinternal)溢漏。本发明人已经发现,与可以如何将流体保持在联接主体构件100的内部体积(Vinternal)中有关的一个因素是通过设计一个或多个孔125以具有小于基于联接主体构件100内的流体的表面张力和密度特性确定的临界尺寸(dcritical)的最大主尺寸(daperture)。在示例性实施例中,假设联接主体构件100承受因重力的恒定加速度(1g,没有因冲击、颠簸等的其他加速度),则可以根据式1估计临界尺寸(dcritical或简单的dc):
Figure BDA0002482570060000101
其中,γ是可流过联接主体构件100的流体的表面张力(N/m),θr是后退接触角(在流体表面与管壁之间限定的角度,其中流体向内朝向管偏转,例如参见图10和11),ρ是流体的密度(kg/m3)并且g是重力常数9.81m/s2。即,在示例性实施例中,可以基于表面张力和流体的密度来选择各个孔125的尺寸。例如,式1适用于具有从储存器竖直拉出的开口底端的填充液体管。如果管底部上的开口足够小(小于dcritical),则液体将保持在管中(没有排出)。否则,如果开口足够大(大于dcritical),则液体将沿管从底部向上排出。
在将联接主体构件100承受恒定1g(没有颠簸、冲击等)的同时,具有小于根据式(1)的临界尺寸(dcritical)的最大主尺寸(daperture)的孔125在联接主体构件100断开时可趋于减少内部空间(Vinternal)中存在的流体的溢漏,同时具有相对较大的开口面积,从而避免过多流动限制。可以基于任何合适流体或流体范围(例如水、甘油、乙二醇、异丙醇、全氟醚油、其他流体以及流体组合)的临界尺寸(dcritical)来选择孔125的最大主尺寸(daperture)。在示例性实施例中,对于具有72mN/m的表面张力(γ)和998kg/m3的密度(ρ)的水,临界尺寸(dcritical)可以为约13.6mm。在各种示例性实施例中,具有约63mN/m的表面张力(γ)和1260kg/m3的密度(ρ)的甘油可产生约11.5mm的临界尺寸(dcritical),具有48mN/m的表面张力(γ)和1110kg/m3的密度(ρ)的乙二醇可以产生约10.4mm的临界尺寸(dcritical),具有22mN/m的表面张力(γ)和786kg/m3的密度(ρ)的异丙醇可以产生约805mm的临界尺寸(dcritical),以及具有17mN/m的表面张力(γ)和1880kg/m3的密度(ρ)的全氟醚油可以产生约4.8mm的临界尺寸(dcritical)。
在各种示例性实施例中,孔125被选择性地设计成具有小于根据式(1)确定的临界尺寸(dcritical)的最大主尺寸(daperture)。当联接主体构件100不经受可能由于脱离、掉落、冲击等导致的突然加速度时,具有小于临界尺寸(dcritical)的最大主尺寸(daperture)的孔125可以促进稳固的流体保持特性。在各种示例性实施例中,最大主尺寸(daperture)在临界尺寸(dcritical)的30%至100%、35%至95%、40%至90%、45%至85%之间或者为约50%。孔125的最大主尺寸(daperture)的这种值可导致流体范围的期望的流体保持特性,同时足够大以避免过度限制流动。
在示例性实施例中,孔125具有与联接主体构件100的一个或多个部件有关的尺寸。与联接主体构件100的一个或多个其他部件相比具有在相对较大尺寸范围内的最大主尺寸(daperture)的孔125已被发现提供期望流动特性的组合,同时抑制断开时潜在的流体溢漏或防止其。例如,孔125可具有与内径(Dbody)和/或横截面积(Abody)有关的最大主尺寸(daperture)和总开口面积(Aapertures)。在各种示例性实施例中,联接主体构件100的内径(Dbody)在4mm与72mm、5mm与60mm、6mm与54mm、7mm与36mm、8mm与24mm之间或者约8mm,且横截面积(Abody)在12mm2和4000mm2、19mm2和2900mm2、28mm2和2460mm2、38mm2和1100mm2、50mm2和460mm2之间或者约50mm2。孔125的总开口面积(Aapertures)可以在联接主体构件100的内部空间的横截面积(Abody)的40%至95%、45%至90%、50%至85%、55%至80%之间或者约60%。这些值通过提供穿过孔125的流动路径来防止过度流动限制,流动路径的尺寸类似于内部空间的横截面积(Abody),并且在一些实施例中,相对接近由横截面积(Abody)提供的理论最小流动阻力。类似地,孔125的最大主尺寸(daperture)与联接主体构件100的内径(Dbody)相比可能相对较大,例如在关闭构件121的前端121a附近的位置处。在各种示例性实施例中,最大主尺寸(daperture)可以在内径(Dbody)的10%至90%、15%至85%、20%至80%、25%至75%之间或者约30%。此外,在仅存在一个、两个或少量的孔125的一些示例性实施例中,与内径(Dbody)相比,最大主尺寸(daperture)可以相对较小。例如,在仅具有单个孔125的一些实施例中,最大孔尺寸(daperture)在内径(Dbody)的20%至75%、25%至70%、30%至65%之间或者约30%。与相对较小的总开口横截面积(Aapertures)或最大孔尺寸(daperture)相比,相对较大的总开口面积(Aapertures)和最大孔尺寸(daperture)通常提供相对较小的流动阻力。这样的尺寸因此避免由小孔引起的过度流动限制,同时将流体保持在本文所述的内部体积(Vinternal)中。
在各种示例性实施例中,具有如本文所述的最大孔尺寸(daperture)和总开口面积(Aapertures)的孔125包括两个或更多个孔。两个或更多个孔125的存在允许总开口面积(Aapertures)相对较大,而最大孔尺寸(daperture)保持在本文所述的范围内,并且例如小于临界尺寸(dcritical)。在示例性实施例中,包括三个孔125的阵列的孔125允许每个孔具有相对较大尺寸,同时具有合适的最大孔直径(daperture)。在各种示例性实施例中,孔125可包括2至18、3至15、4至12或者3至5或更多个孔125。例如,三个孔125的阵列可构造成具有的最大孔直径(daperture)小于内径(Dbody)的75%、65%、55%、50%、45%、40%、35%、30%、25%、20%、15%、10%或以下,同时仍提供的总开口面积(Aapertures)大于横截面积(Abody)的30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%或大于90%。
在各种示例性实施例中,通过具有在2mm至9mm、2.5mm至8.5mm、3mm至8mm、3.5mm至7.5mm、4mm至7mm、4.5mm至6.5mm之间或者约5mm的最大孔尺寸(daperture),孔125在联接主体构件100处于打开构造时提供期望的流动特性,并且在联接主体构件100处于关闭构造时防止流体从开口第一端口111a溢漏或逸出。每个孔125的这种最大孔尺寸(daperture)可防止当联接主体构件100断开时内部空间(Vinternal)中存在的特定流体的滴落或溢漏。具有在这种范围内的最大主尺寸(daperture)的孔125可以紧接在联接主体构件100的第一端111断开和/或第一阀组件120移动到关闭构造之后保持内部体积(Vinternal)中存在的流体的大于25%、大于50%、大于75%、大于85%、大于95%或者约100%。
图3A-3C示出了示例性关闭构件321A、321B和321C的正视图,关闭构件具有孔325A、325B和325C,孔提供穿过流体联接装置的前端的流动路径。在图3A的示例性实施例中,关闭构件321A包括三个孔325A,其具有圆形形状且最大主尺寸(daperture)是每个相应孔325A的直径。
孔325A被壁厚度(t)隔开,该壁厚度在各个孔325A之间提供间隔。在一些示例性实施例中,壁厚度(t)大于0.25mm、0.5mm或大于约0.75mm。这样的壁厚度(t)允许孔325A防止内部体积中的流体溢漏或逸出,如本文所述,即使所有孔325A上的总尺寸(例如相邻孔325A的相对外边缘之间)超过临界尺寸(dcritical)。
在图3B的示例性实施例中,孔325B包括具有半圆形形状的两个孔。在图3C的示例性实施例中,孔325C包括具有半环或弓形形状的两个孔。
参照图4,示出了示例性凸联接主体构件400,其包括的孔425的尺寸、形状和构造提供期望的流动特性,同时减少在凸联接主体构件400的内部体积中的保持的流体的溢漏。类似于本文描述的联接主体构件100,凸联接主体构件400包括由第一和第二端411、412之间的内侧壁415限定的内部空间。第一和第二端411、412分别包括第一和第二端口411a、412a,并且可连接至流体源、出口或其他合适部件(比如凹联接主体部件100),以便内部空间限定流体可以在第一和第二端411、412之间流过的通道。
在示例性实施例中,第二阀组件420设置在内部空间内,并且构造成可在打开位置和关闭位置之间平移,以选择性地允许流体流过凸联接主体构件400。第二阀组件420可以类似于第一阀组件120,并且包括第二关闭构件421、偏压构件422以及与阀座417密封地接合的密封件423(例如O形环)。第二关闭构件421包括前端421a、后端421b以及在前后端421a、421b之间延伸的细长部分424。在示例性实施例中,活塞头426定位成靠近前端421a,并限定纵向延伸穿过活塞头426的厚度的一个或多个孔425。密封件423定位成靠近后端421b并且与活塞头426间隔开。在示例性实施例中,后端421b是没有延伸穿过的开口或通道的实心端,使得流体只能通过在后端421b和内侧壁415之间穿过而流过凸联接主体构件400。
当阀组件420处于打开构造时,孔425允许流体流过凸联接主体构件400的内部空间。在示例性实施例中,凸联接主体构件400的孔425可具有如本文所述的任何合适的尺寸、形状和构造,例如结合孔125所述,以避免多度流动限制,同时防止或减少在凸联接主体构件400的内部体积(Vinternal)中可能存在的流体溢漏的可能性。
参照图5,示出了流体联接装置50的示例性实施例,其包括具有连接至凸联接主体构件400的凸第一端411的凹第一端111的凹联接主体构件100。凸第一端411被第一端口111a容纳,使得凹联接主体构件100和凸联接主体构件400可以密封地结合。
凹凸联接主体构件100、400包括一个或多个互补附接特征。在示例性实施例中,凹联接主体构件100包括弹簧加载闩锁130,其与凸联接主体构件400的互补特征相互作用,比如凹槽431。这种特征允许凹凸联接主体构件100、400的相应第一端111、411之间的牢固接合,同时便于通过轴向运动快速连接和/或断开。在一些示例性实施例中,凹凸联接主体构件100、400可以快速地结合而无需旋转运动。在其他示例性实施例中,凹凸联接主体构件100、400可以通过提供安全连接的任何合适的特征或技术来连接,包括螺纹连接、卡口连接、卡扣连接、相对旋转或干涉连接。
关闭构件421和/或凸联接主体构件400的一个或多个其他部件与第一阀组件120相互作用,以压缩偏压构件122并移动密封表面123远离内表面115并进入打开位置。类似地,关闭构件121和/或联接主体构件100的一个或多个其他部件与关闭构件421相互作用以压缩偏压构件422,从而移动密封件423远离内表面415并进入打开位置。当凹联接主体构件100连接到凸联接主体构件400时,第一和第二阀组件处于打开位置,并且凹凸联接主体构件100、400的内侧壁115、415在第二端端口112a至第一端端口111a、411a以及第二端端口412a向外之间限定流动通道(F)。
在各种示例性实施例中,孔425与凸联接主体构件400可连接的部件的孔比如联接主体构件100的孔125相似或相同。例如,孔125和孔425可以具有几乎相同的尺寸、形状和构造,使得当凸联接主体构件400与凹联接主体构件接合时,孔425可以与孔125对准。可替代地或另外,孔425可包括的一个或多个孔的尺寸、形状或构造与凹联接主体构件的孔125不同,并且在一些实施例中,凸联接主体构件400可独立于凹联接主体构件100或具有这种孔的另一部件使用。在各种示例性实施例中,孔425在每个孔425的远侧之间具有最大主尺寸(d2aperture)。最大主尺寸(d2aperture)可以如本文关于孔125所描述的那样设定为小于临界尺寸(dcritical),并且例如在本文所述的一个或多个范围内。类似地,孔425可包括两个或更多个孔,其具有的总开口横截面积(A2apertures)与凸联接主体构件400的一个或多个其他部件或尺寸具有期望的关系,如本文关于凹联接主体构件100所述。
为了使凹凸联接主体构件100、400断开,可以颠倒该过程,从而使关闭构件121、421返回到关闭位置。例如,可以手动压下弹簧加载闩锁130,使得凹凸联接主体构件100、400的互补特征脱离,并且通过横向地彼此远离移动而使部件分离。在各种示例性实施例中,流体可以分别保持在孔125、425与密封件123、423之间的内部体积(Vinternal)中。如本文所述,孔125、425可防止或至少抑制相应内部体积(Vinternal)中的流体逸出,减少或防止可能发生的从凹凸联接主体构件100、400滴落或溢漏。
参照图6,示出了用于使用流体联接装置的示例性方法600的流程图。尽管所描绘的示例涉及流体联接装置,但应理解,本文所述的防溢漏概念可以在其他流体处理部件情况下实现,比如但不限于汲取管、滴管、奶嘴、喷嘴、管、管道、阀、接头等。在示例性实施例中,方法600可以可选地包括选择要与流体联接装置一起使用的一种或多种流体的操作602。流体可以包括在使用中可以穿过流体联接装置的任何数量的流体,并且在一些示例性实施例中,可以包括水、甘油、乙二醇、异丙醇、全氟醚油和/或其他流体中的一种或多种。
示例性方法600还可以包括可选的操作604,其基于流体的表面张力和密度来确定流体联接装置的活塞头孔的类型。在一些示例性实施例中,操作604包括根据以下提供的式确定临界加速度。
在各种示例性实施例中,方法600包括联接流体联接装置的操作606。例如,流体联接装置可以与流体分配设备的部件、软管、管、容器、阀、接头或其他连接器联接。流体联接装置包括一个或多个孔,其限定等于或大于目标值的临界加速度。流体联接装置的孔和其他部件可被制造为具有本文所述的任何特征和尺寸关系。
方法600可以进一步包括使一种或多种流体流过流体联接装置的操作608。在一些示例性实施例中,穿过流体联接装置的流体具有的表面张力和密度使得流体联接装置的临界加速度大于或等于目标值。
在操作610,可以将流体联接装置与互补联接器或其他流体部件分开,使得存在于流体联接装置中的流体被保持而不是通过孔从开口端溢漏。在一些示例性实施例中,分开流体联接装置导致存在于内部体积(Vinternal)中的流体的大于25%、大于50%、大于75%、大于85%、大于95%或者约100%保持在流体联接装置内。
在各种示例性实施例中,如本文所述的孔可包括在任何流体部件或联接装置中,以防止或减少来自内部体积的溢漏。例如,孔可以由阀组件的部件限定,比如可移动关闭构件121或靠近开口端的固定部件。在一些示例性实施例中,孔可存在于独立的流体部件中,该流体部件在正常使用期间不与另一部件联接,比如软管或汲取管的自由端。
实验与示例
简介:在许多工业过程中,期望防止液体从管、管道或各种其他脱离的流体处理部件溢漏或排出。在实际使用中,大多数流体处理部件可能会由于被颠簸、冲击和/或摇晃而经受加速度。因此,需要一种方法来量化承受与颠簸、冲击、摇晃等相关的加速度的部件的非溢漏特性。为此,进行了实验以模拟具有一个开口端的流体处理部件。流体处理部件充满液体并附接到旋转设备。部件以越来越高的速率旋转以引发溢漏和排出。液体溢漏开始时记录角速度。计算了临界加速度值(本文中使用的“临界加速度”是针对特定设计的溢漏开始时的加速度)。临界加速度表示溢漏开始时的加速度,而与加速度的原因无关(例如旋转{比如在这些实验中执行的旋转}、其他类型的运动、冲击、颠簸等)。已经发现临界加速度值与距旋转中心的径向距离无关,但它们取决于诸如但不限于固液界面之间的润湿特性的因素。临界加速度还取决于诸如但不限于接触角、管直径以及表面张力和密度的参数。从这些实验中获得的结果与模型预测非常吻合。将实验结果与假设排出的开始是由表面力和体力的相互作用确定的模型进行比较。
背景:为简单起见,可以将部件建模为圆柱形管。在该实验中使用的一些管的示例在图7和8中示出。将管的一端关闭并密封。实验的管长度L为0.5cm、1.5cm、2.5cm、3.5cm和4.5cm(图7中从左至右)。图7中的每个管的另一端具有直径为D(在这种情况下为0.64cm)的圆形开口。图7中的所有管由聚碳酸酯制成。
如图8所示,还对各种直径的管进行了实验。测试的管直径D为0.32cm、0.48cm、0.64cm和0.95cm(图8中从左至右)。图8中的所有管是聚碳酸酯,并且具有2.5cm的相同长度L。
管填充有表面张力为且密度为的液体。管的结构材料(在这种情况下为聚碳酸酯)的前进和后退接触角分别为θa和θr。管水平放置。如果其直径D足够小,则液体将不会排出。
如图9所示,管800附接到旋转设备900的臂上。管800的开口端面向外,使得从主轴到管的开口端的距离是x。管800以逐渐变高的角速度(ω)旋转,其在开口管800的端部产生加速度(a),其中:
a=ω2x (式2)
随着加速度的增加,管800的开口端处的液体将变形,如图10和11所示。随着角速度的增加,液气界面的底部上的凸出隆起和液气界面的顶部上的凹入凹陷变得更加明显。如果超过临界加速度(ac),则液体将从旋转管800排出。
可以通过将相对主体和作用在突出下隆起上的表面压力相等来估计开始流动的临界加速度(ac),
Δpb=Δps (式3)
如果假设临界加速度下的下隆起的形状为半椭圆形,则临界主体压力(Δpb)可被估计为:
Δpb=ρVa/A,(式4)
其中,V和A是下隆起的体积和横截面积,
Figure BDA0002482570060000171
A=πR1R2,(式6)
并且,R1和R2是其主半径。隆起的曲率以及液体的表面张力会产生抵消主体压力的表面或拉普拉斯压力(Δps),
Figure BDA0002482570060000172
管的润湿性影响隆起的形状。考虑了两种情况(图10和11)。在第一种情况下,前进接触角(θa)大(θa>>0°),并且下隆起固定在管的内边缘,如图10所示。后退接触角(θr)可以是θr≥0°的任何值。在此,对于圆孔,主曲率半径近似为:
Figure BDA0002482570060000173
Figure BDA0002482570060000174
结合式(3)至(9),得出从θa>>0°和θr≥0°的管中排出液体所需的临界加速度(ac)的以下估计,
Figure BDA0002482570060000181
如果θr=0°,则式10简化为
Figure BDA0002482570060000182
在第二种情况下,管基本上被液体完全润湿(θa=θr=0°),下隆起将固定在管的外边缘,如图11所示。主曲率半径可以近似为
Figure BDA0002482570060000183
Figure BDA0002482570060000184
其中,B是管的壁厚度。
结合式(3)-(7)、(12)和(13)得出下式,用于估计从θa=θr=0°的可润湿管中排出液体所需的临界加速度(ac),
Figure BDA0002482570060000185
按照与以上详述相同的分析类型,对于由疏水材料(例如θa>>0°和θr≥0°)制成的管,以及任何形状的单个开口(包括非圆形形状,比如矩形、卵形、三角形、方形等),从管中排出液体所需的临界加速度(ac)为
Figure BDA0002482570060000186
其中,V和A是下隆起的体积和横截面积(关于由疏水材料制成的管中的下隆起的示例,参见图10),L1是开口的竖直高度,L2是开口的水平宽度。例如,图26示出了具有如图所示的竖直高度L1和水平宽度L2的单个椭圆形开口。图27提供了单个非圆形开口的另一示例—在这种情况下是具有如图所示的竖直高度L1和水平宽度L2的单个矩形。为了进一步理解,图28示出了另一示例性单个非圆形开口—在这种情况下是具有如图所示的竖直高度L1和水平宽度L2的卵形形状。通过图26-28中所示的管的开口排出液体所需的临界加速度(ac)由式15定义(假设管由疏水材料制成)。
参考图29-31,当由疏水材料制成的管具有相同尺寸的多个圆形开口(直径=D)时,液体很可能仅通过其中一个开口(尽管有多个开口)离开。从管中排出液体(通过单个开口)所需的临界加速度(ac)为
Figure BDA0002482570060000191
当由疏水材料制成的管具有相同尺寸的任何形状(包括诸如矩形、卵形、三角形、方形等的非圆形形状)的多个开口时,液体可能仅通过其中一个开口(尽管有多个开口)离开。从管中排出液体所需的临界加速度(ac)为
Figure BDA0002482570060000192
其中,L1是开口的竖直高度,L2是开口的水平宽度。
参照图32,当由疏水材料制成的管具有双叶片设计时,液体将通过其中一个开口从管中排出的临界加速度(ac)为
Figure BDA0002482570060000193
参照图33-35,当由疏水材料制成的管采用多叶片设计时,液体将通过其中一个开口从管中排出的临界加速度(ac)为
Figure BDA0002482570060000194
其中,n是开口数量,B是叶片厚度。例如,仍参考图33-35的多叶片设计,如果为了说明起见,我们假设D等于5.5mm且B等于0.66mm,则液体将通过其中一个开口从管中排出的临界加速度(ac)如下:(i)对于图33的三叶片设计而言,ac=78.4m/sec2,(ii)对于图34的四叶片设计而言,ac=89.18m/sec2,以及(iii)对于图35的六叶片设计而言,ac=147.0m/sec2
实验细节:所使用的液体是去离子(DI)水、乙醇(Sigma Aldrich,>99.5%,CAS64-17-5)和乙二醇(Fisher BioReagents,≥99%,CAS 107-21-1)。从文献中获得的液体密度(ρ)分别为998kg/m3、789kg/m3和1110kg/m3,γ和ρ的不确定度估计为±1mN/m和±2kg/m3
各种类型的圆柱形聚合物管购自McMaster-Carr;聚碳酸酯(PC,#8585K)、乙缩醛(POM,#8627K)、聚氟乙烯(PVDF,#51105K)、尼龙6,6(PA,#8628K)、高密度聚乙烯(HDPE,#50375K)、特氟隆(PTFE,#8547K)以及全氟烷氧基烷烃(PFA,#52705K)。将管切成所需的长度以获得图7和8中所示的管。直径(D)的不确定度估计为≤±0.1mm。
自动张力计(Kyowa DyneMaster DY-300)用于测量液体的表面张力(γ)。将液体填充到用于张力计的干净玻璃皿中。在每次测量之前,在酒精火焰中清洗铂Wilhelmy板。在测量过程中,铂板自动浸入液体中,表面张力值在DYNALYZER软件上以mN/m(或达因/厘米)显示。
使用数字测角计(Kyowa DropMaster DMs-401)测量前进和后退接触角。为了测量前进接触角(θa),首先将座水滴沉积在圆柱形管上(约7μl)。然后使用注射器分配器增加液滴体积。为了测量后退接触角(θr),从座滴中抽出水直至接触线缩回。在注射器的针头仍接触液滴的情况下,捕获图像。在各个液滴图像上构建基准线和切线,然后直接测量θa和θr。下表2中列出了各种液固组合的前进和后退接触角(θa和θr)。θa和θr的值范围是6°至112°。接触角测量的标准偏差和不确定度通常为±3°。
除了管组成评估之外,聚碳酸酯(PC)管由于其刚性和透明性而被用于旋转实验。为简单起见,将从旋转实验收集的所有数值结果与临界加速度除以重力加速度即临界加速度比(ac/g)作图。在旋转实验期间,圆柱形管填充有液体。将管800放置在旋转设备900的台上,并以开口端朝外的方式水平定向,如图9所示。使用频率控制器以恒定的加速度旋转该台。液体从管800溢漏的那一刻,记录频率。随后使用式2将频率转换为加速度值。捕获慢动作记录和所有相关图像。所有实验在23±2℃下进行了三次。计算平均值和标准偏差。
结果和讨论:实验确定了哪些参数对于从包括流体处理部件及其设计的圆柱形管开始排出行为是重要的。在这些实验中研究的参数包括距旋转中心的管位置、管长度、管直径、壁厚度、管组成/润湿性以及液体类型/表面张力。图中的点(例如图12-15、17和19)代表实验数据,线代表使用理论部分中的方程式进行的预测。
进行管位置实验以确定临界加速度(ac)是否随距离(x)变化,如图9所示。在距旋转中心多个距离处测试管。最大距离(xmax)为15cm,最小距离(xmin)为3cm。根据图12中显示的结果,临界加速度比不会随着管位置变化而显著改变。小变化被认为在实验不确定性之内。
为了研究管长度,使用了图7中所示的五个管。管的直径和壁厚度保持恒定。在不同管长度上没有观察到显著临界加速度比变化,如图13所示。
图8示出了用于研究管直径的PC管。所有管的长度相同,均为2.5cm。直径为0.32cm的管的壁厚度与其他管不同,但当使用去离子水作为液体时壁厚度参数无效(报告稍后示出)。临界加速度比随着管直径的增加而急剧减小,如图14所示。这种变化也通过式10预测,其中ac与直径的平方成反比。
Figure BDA0002482570060000211
表1
Figure BDA0002482570060000212
表2
在许多工业应用中使用的最常见的流体是水,在室温下其表面张力为~72mN/m。另一种常见的流体是乙醇,它表示较低的表面张力液体,为~22mN/m。乙二醇的表面张力为~48mN/m,其介于水和乙醇之间。图15清楚地表明了液体表面张力的影响,其中较低表面张力以低得多的临界加速度比引起溢漏。水(W)和乙二醇(EG)的理论预测与实验数据一致,但乙醇(E)数据不一致。由于乙醇完全润湿大多数表面,因此式中表示的第一模型由于在较高前进接触角下有效而不能代表该情况。此外,还研究了接下来讨论的壁厚度。
假设乙醇正在润湿管壁。为了测试此,将PC管机加工以减小其外径(OD),保持内径(ID)不变,如图16所示。图17显示了具有不同壁厚度的PC管的实验结果。水(W)和乙二醇(EG)的ac/g恒定,而乙醇(E)随壁厚度减小而增加。使用式14对乙醇的情况进行建模和显示。
使用DI水对图18所示的流体联接装置进行测试。结果显示在图19中。正如预期的那样,部件#1的溢漏临界加速度低于其他部件。由于分水岭(WS)材料(使用SomosWaterShed XC 11122进行3D打印)的较低后退角,因此部件#2的临界加速度略高于#1。部件#3和#4显示出比前两个更高的临界加速度值,并且它们彼此非常接近。部件#5显示了所有部件中最高的临界加速度值,约是部件#1中传统阀的五倍。式10用于估计具有单个圆形孔的阀(即1、2、4和5)的临界加速度比。对于三叶片设计(#3),如果我们假设θa=90°,则临界加速度可以估计为
Figure BDA0002482570060000221
其中分别是三个孔下部的曲率半径经测量为R1=1.2mm(从钝角到与钝角相对的壁的沿平分钝角的线的开口上的距离)并且R2=1.8mm(两个相对的锐角之间的开口上的距离)。表3中所示的预测值通常与实验值一致。式10对最大开口(#1&#2)的ac/g值进行了过度预测。这归因于它们相对较低的排出阻力,这使得某些水在断开和处理过程中会溢漏(部分填充的管或联接器的溢漏阻力要小于充满的管或联接器)。
Figure BDA0002482570060000222
表3
结论:该实验评估了由于使用聚合物圆柱形管和液体的旋转而引起的排出行为。从管中溢漏的临界加速度取决于管材料的润湿性、管直径以及引入的液体的表面张力。如果使用表面张力低的液体(例如乙醇),则壁厚度可能具有影响。已经得出了解释溢漏的两种模型。第一模型展示了临界加速度取决于后退接触角和管直径的情况。水和乙二醇的溢漏行为可以用第一模型来解释。如果后退接触角为零,也可以将该模型简化为更简单的方程式。第二模型包括可用于解释乙醇溢漏行为的壁厚度参数。在这种情况下,前进和后退接触角几乎为零。在这两种情况下,临界加速度都与液体表面张力成正比并且与液体密度成反比。具有新设计阀的流体处理部件(如下文进一步所述)显示出更高的临界加速度结果。对带有传统阀的流体联接装置添加少量设计可能会在许多应用中对降低或阻止排出/溢漏产生巨大影响。
从前述实验得出的原理可用于设计有利地抑制或消除与两个先前配合的流体联接的断开相关的液体溢漏的流体联接装置。即,发明人已经确认,流体联接装置可以设计成使用设计概念来抑制或消除通过孔的溢漏,设计概论比如但不限于:(i)减小孔的尺寸(例如直径),(ii)减小限定孔的壁的厚度,以及(iii)增加限定孔的材料的润湿性。这种设计原理已在以下结构中投入实际使用。
参照图20,示例流体联接装置900(部分地示出并且以纵向横截面示出)限定内部体积902。内部体积902具有包含直径Di。内部体积902在孔910处对环境开放。
在该示例实施例中,孔910由限定孔直径Do的环形向内突出唇限定。在一些情况下,单个流体联接装置900中可包括一个以上孔910。流体联接装置900可代表凹流体联接装置(例如图1B所示的第一联接主体构件20)和/或凸流体联接装置(例如图1C所示的第二联接主体构件30)的活塞头。尽管在描绘的实施例中孔是圆形的,但本领域普通技术人员将认识到,本文公开的发明构思也涉及非圆形孔,比如但不限于卵形、三角形、多边形等。
在流体联接装置900的所示示例中,孔直径Do小于包含直径Di。因此,由于孔直径Do的尺寸减小(与较大的包含直径Di相比),减小了流体联接装置900从内部体积902溢漏液体的趋势。更特别地,由于孔直径Do的尺寸减小(与较大的包含直径Di相比),与流体联接装置900的内部体积902中包含的液体相关的临界加速度ac增大。因此,当两个先前配合的流体联接断开时,流体联接装置900更不易于溢漏液体。
如上所述,对于疏水材料,流体联接装置900的临界加速度ac可由式11表示:
Figure BDA0002482570060000241
式11示出了孔直径Do与疏水材料的临界加速度ac之间的反比关系。因此,随着孔直径Do减小,临界加速度ac增大。因此,使用限定孔直径Do的环形径向向内突出唇有利地使流体联接装置900更耐溢漏。
参照图21,示例流体联接装置1000(部分地示出并且以纵向横截面示出)限定内部体积1002。内部体积1002具有包含直径Di。内部体积1002在孔1010处对环境开放。在该示例中,由孔1010限定的直径等于包含直径Di
在该示例实施例中,孔1010由具有壁厚度To的周壁限定。内部体积1002的其他部分具有壁厚度为Ti的周壁。壁厚度To比壁厚度Ti薄。因此,对于至少一些液体,由于在孔1010处的壁厚度To减小(与壁厚度Ti相比),流体联接装置1000从内部体积1002溢漏液体的趋势减小了。更特别地,由于在孔1010处的壁厚度To减小(与较厚的壁Ti相比),与流体联接装置1000的内部体积1002中包含的液体相关的临界加速度ac增大。即使在孔1010处的包含直径Di与在限定内部体积1002的空间的内部部分处的包含直径Di相同,这也是正确的(至少对于一些液体)。因此,由于减小了在孔1010处的壁厚度To,当两个先前配合的流体联接断开时,流体联接装置1000更不易于溢漏液体。
如上所述,流体联接装置1000的临界加速度ac可以由式10表示:
Figure BDA0002482570060000242
在某些情况下,单个流体联接装置1000中可包括一个以上孔1010。流体联接装置1000可以表示凹流体联接装置(例如图1B所示的第一联接主体构件20)和/或凸流体联接装置(例如图1C所示的第二联接主体构件30)的活塞头。
参照图22,示例流体联接装置1100(部分地示出并且以纵向横截面示出)限定内部体积1102。内部体积1102具有包含直径Di。内部体积1102在孔1110处对环境开放。在该示例中,由孔1010限定的直径等于包含直径Di。内部体积1002的壁厚度Ti始终相似地一致。
在该示例实施例中,如由壁表面1120中的凹槽示意性地表示,限定内部体积1102的内壁表面已经变得更粗糙。这种粗糙的壁表面1120是增加限定内部体积1102的材料的润湿性的一种方式。增加限定内部体积1102的材料的润湿性的其他方式可以包括但不限于使用表面处理和/或涂层或者选择具有较高表面能的材料来提供一些示例。如上所述,限定内部空间1102的材料的润湿性的增加将导致与流体联接装置1100的内部空间1102中包含的液体相关的临界加速度ac增加。因此,由于限定内部体积1102的内壁表面的粗糙度增加,当两个先前配合的流体联接断开时,流体联接装置1100更不易于溢漏液体。
如上所述,对于疏水材料,流体联接装置1100的临界加速度ac可由式11表示:
Figure BDA0002482570060000251
流体联接装置1100可以代表凹流体联接装置(例如图1B所示的第一联接主体构件20)和/或凸流体联接装置(例如图1C所示的第二联接主体构件30)的活塞头。
应该理解的是,在图20-22的上下文中描述的设计原理可以任何期望的方式组合,并且所有这样的组合和置换都在本公开的范围内。例如,参照图23,示例流体联接装置1200(部分地示出并且以纵向横截面示出)限定了内部体积1202和孔1210。孔1210由环形唇限定,该环形唇限定的直径Do小于内部体积1202的更内部部分的直径Di。另外,孔1210由比内部体积1202的壁厚度为Ti的更内部部分薄的壁厚度为To的周壁限定。在该示例中,孔1210的减小的直径和在孔1210处的减小的壁厚度共同起作用,以使得当两个先前配合的流体联接断开时流体联接装置1200更不易于溢漏液体。
如上所述,对于疏水材料,流体联接装置1200的临界加速度ac可由式11表示:
Figure BDA0002482570060000252
参照图24,示例流体联接装置1300(部分地示出并且以纵向横截面示出)限定内部体积1302和孔1310。孔1310由环形唇限定,该环形唇限定的直径Do小于内部体积1302的更内部部分的直径Di。另外,孔1310由比内部体积1302的壁厚度为Ti的更内部部分薄的壁厚度为To的周壁限定。在该示例中,孔1310的减小的直径和在孔1310处的减小的壁厚度共同起作用,以使得当两个先前配合的流体联接断开时流体联接装置1300更不易于溢漏液体。
在所描绘的实施例中,通过朝向内部体积1302的更内部部分向后缩进来保护流体联接装置1300的较薄壁厚度To免受损坏。即,流体联接装置1300包括由较薄壁厚度To和较厚壁厚度Ti限定的面1320。在一些实施例中,通过甚至进一步朝向内部体积1302的更内部部分向后缩进来保护流体联接装置1300的较薄壁厚度To免受损坏(使得仅较厚壁厚度Ti限定面1320)。
如上所述,对于疏水材料,流体联接装置1300的临界加速度ac可以由式11表示:
Figure BDA0002482570060000261
参照图25,示例流体联接装置1400(部分地示出并且以纵向横截面示出)限定内部体积1402和孔1410。孔1410由环形唇限定,该环形唇限定的直径Do小于内部体积1402的更内部部分的直径Di。孔1410由比内部体积1402的壁厚度为Ti的更内部部分薄的壁厚度为To的周壁限定。另外,限定内部体积1402的壁表面的至少一些部分包括粗糙区域1430、1432,以增加限定内部体积1402的材料的润湿性。在该示例中,孔1410的直径减小、在孔1410处的壁厚度减小以及由粗糙区域1430、1432引起的内部体积1402的润湿性增加共同起作用,以使得当两个先前配合的流体联接断开时流体联接装置1400更不易于溢漏液体。
如上所述,对于疏水材料,流体联接装置1400的临界加速度ac可由式11表示:
Figure BDA0002482570060000262
尽管本说明书包含许多特定的实施细节,但这些不应解释为对任何发明或可要求保护的范围的限制,而应解释为对特定发明的特定实施例而言具体的特征描述。在本说明书中在单独实施例的上下文中描述的某些特征也可以部分地或整体地组合在单个实施例中实现。相反,在单个实施例的上下文中描述的各种特征也可以分别在多个实施例中或以任何合适的子组合来实现。此外,尽管本文中的特征可被描述为以某些组合起作用和/或一开始就这样要求保护,但在某些情况下,可以从该组合中切除来自要求保护的组合的一个或多个特征,并且可以将要求保护的组合用于子组合或子组合的变体。
类似地,虽然在附图中以特定顺序描绘了操作,但这不应理解为要求以所示的特定顺序或以连续的顺序执行这样的操作,或者执行所有示出的操作以实现期望的结果。尽管上面已经详细描述了多个实施方式,但其他修改也是可能的。例如,附图中描绘的逻辑流程不需要所示的特定顺序或连续的顺序来实现期望的结果。另外,可以从所描述的流程中提供其他步骤,或者可以从中去除步骤,并且可以向所描述的系统添加其他部件或从中移除。因此,其他实施方式在所附权利要求的范围内。

Claims (52)

1.一种防溢漏提升阀流体联接装置,包括:
第一联接主体构件,其构造成与第二联接主体构件配合,并限定纵向轴线和由第一端口与相对的第二端口之间的内侧壁限定的内部空间;以及
第一提升阀组件,其设置在内部空间内,该提升阀组件包括:
第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域的密封表面,第一关闭构件在内部空间内可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通,
所述活塞头,其限定纵向延伸穿过其中的一个或多个孔,其中,所述一个或多个孔中的每个由环形纵向突出壁部分限定。
2.根据权利要求1所述的防溢漏提升阀流体联接装置,其中,每个纵向突出壁部分的壁厚度小于邻近所述一个或多个孔的活塞头的壁厚度。
3.根据权利要求1所述的防溢漏提升阀流体联接装置,其中,所述一个或多个孔中的每个由径向向内突出的环形唇限定,并且其中,所述环形纵向突出壁部分中的相应一个从相应的环形唇延伸。
4.根据权利要求3所述的防溢漏提升阀流体联接装置,其中,所述活塞头的面由活塞头的围绕所述一个或多个孔的部分限定,并且其中,每个环形纵向突出壁部分的端部从活塞头的面向后缩进。
5.一种防溢漏提升阀流体联接装置,包括:
第一联接主体构件,其构造成与第二联接主体构件配合,并限定纵向轴线和由第一端口与相对的第二端口之间的内侧壁限定的内部空间;以及
第一提升阀组件,其设置在内部空间内,该提升阀组件包括:
第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域的密封表面,第一关闭构件在内部空间内可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通,
所述活塞头,其限定纵向延伸穿过其中的一个或多个孔,其中,所述一个或多个孔中的每个由径向向内突出的环形唇限定。
6.根据权利要求5所述的防溢漏提升阀流体联接装置,其中,所述环形唇中的每个包括纵向突出壁部分。
7.根据权利要求6所述的防溢漏提升阀流体联接装置,其中,每个纵向突出壁部分的壁厚度小于邻近所述一个或多个孔的活塞头的壁厚度。
8.根据权利要求5所述的防溢漏提升阀流体联接装置,其中,限定所述一个或多个孔中的每个的壁表面是有纹理的,从而增加限定一个或多个孔的壁表面的润湿性。
9.根据权利要求5所述的防溢漏提升阀流体联接装置,其中,所述一个或多个孔包括单个孔。
10.根据权利要求5所述的防溢漏提升阀流体联接装置,其中,所述一个或多个孔包括至少两个孔。
11.根据权利要求5所述的防溢漏提升阀流体联接装置,其中,所述一个或多个孔包括至少三个孔。
12.一种防溢漏提升阀流体联接装置,包括:
第一联接主体构件,其构造成与第二联接主体构件配合,并限定纵向轴线和由第一端口与相对的第二端口之间的内侧壁限定的内部空间;以及
第一提升阀组件,其设置在内部空间内,该提升阀组件包括:
第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域的密封表面,第一关闭构件在内部空间内可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通,
所述活塞头,其限定纵向延伸穿过其中的一个或多个大致三角形孔,所述一个或多个大致三角形孔中的至少一个由连接以形成钝角的第一和第二壁部分以及连接到所述第一和第二壁部分以形成两个锐角的第三壁部分限定,
内部体积,其由内部空间的在活塞头和密封表面之间的一部分限定,
其中,所述一个或多个大致三角形孔中的每个设计成防止内部体积内的液体穿过一个或多个大致三角形孔,除非经受根据下式确定的加速度“ac”:
Figure FDA0002482570050000021
其中,γ是液体的表面张力,ρ是液体的密度,g是重力常数,R1是沿着从钝角到第三壁部分将钝角二等分的线横穿大致三角形孔的距离且R2是两个锐角之间的横穿大致三角形孔的距离。
13.一种防溢漏提升阀流体联接装置,包括:
第一联接主体构件,其构造成与第二联接主体构件配合,并限定纵向轴线和由第一端口与相对的第二端口之间的内侧壁限定的内部空间;以及
第一提升阀组件,其设置在内部空间内,该提升阀组件包括:
第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域的密封表面,第一关闭构件在内部空间内可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通,
所述活塞头,其限定纵向延伸穿过其中的一个或多个孔,
内部体积,其由内部空间的在活塞头和密封表面之间的一部分限定,
其中,所述一个或多个孔中的每个设计成防止内部体积内的液体穿过一个或多个孔,除非经受根据下式确定的加速度“ac”:
Figure FDA0002482570050000031
其中,γ是液体的表面张力,ρ是液体的密度,V是从一个或多个孔中的至少一个延伸的隆起的体积,A是隆起的横截面积,L1是隆起的水平宽度且L2是隆起的竖直高度。
14.一种流体处理部件,包括:
主体,其限定纵向轴线和由内侧壁限定的内部空间,该内部空间具有与纵向轴线正交测量的内径(Dbody)和横截面积(Abody),该主体限定一个或多个孔,所述一个或多个孔限定总开口横截面积(Aapertures),每个孔具有最大主尺寸(daperture),该最大主尺寸(daperture)是一个或多个孔中的每个的远侧之间的最大尺寸,
其中,0.2*(dcritical)<(daperture)<1.0*(dcritical),并且(dcritical)根据下式确定:
Figure FDA0002482570050000032
其中,γ是以N/m为单位的第一联接主体构件中的流体的表面张力,ρ是以kg/m3为单位的流体的密度,θr是限定在流体和其中一个孔的一侧之间的后退角且g是重力常数9.81m/s2
15.一种防溢漏提升阀组件,包括:
第一联接主体构件,其构造成与第二联接主体构件配合,并限定纵向轴线和由第一端口与第二端口之间的内侧壁限定的内部空间,该内部空间具有与纵向轴线正交测量的内径(Dbody)和横截面积(Abody);以及
第一阀组件,其设置在内部空间内,该阀组件包括:
第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域并且与活塞头间隔开的密封表面,该活塞头具有纵向延伸穿过其中的一个或多个孔,所述一个或多个孔限定总开口横截面积(Aapertures),并且每个具有最大主尺寸(daperture),该最大主尺寸(daperture)是一个或多个孔中的每个的远侧之间的最大尺寸,和
内部体积,其由第一联接主体构件的在活塞头和密封表面之间的内部空间限定,
第一关闭构件可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通,
其中,0.2*(dcritical)<(daperture)<1.0*(dcritical),并且(dcritical)根据下式确定:
Figure FDA0002482570050000041
其中,γ是以N/m为单位的第一联接主体构件中的流体的表面张力,ρ是以kg/m3为单位的流体的密度,θr是限定在流体和其中一个孔的一侧之间的后退角且g是重力常数9.81m/s2
16.根据权利要求15所述的防溢漏提升阀组件,其中,所述一个或多个孔中的每个的最大主尺寸(daperture)是相同的。
17.根据权利要求15所述的防溢漏提升阀组件,其中,所述一个或多个孔中的每个的最大主尺寸(daperture)是不同的。
18.根据权利要求15所述的防溢漏提升阀组件,其中,所述活塞头包括三至五个孔。
19.根据权利要求1所述的防溢漏提升阀组件,其中,0.3*(dcritical)<(daperture)<0.6*(dcritical)。
20.根据权利要求15所述的防溢漏提升阀组件,其中,0.5*(Abody)<(Aapertures)<0.9*(Abody)。
21.根据权利要求15所述的防溢漏提升阀组件,其中,0.1*(Dbody)<(daperture)<0.7*(Dbody)。
22.根据权利要求15所述的防溢漏提升阀组件,其中,0.5*(Abody)<(Aapertures)<0.9*(Abody)并且0.2*(Dbody)<(daperture)<0.6*(Dbody)。
23.根据权利要求22所述的防溢漏提升阀组件,其中,0.3*(dcritical)<(daperture)<0.6*(dcritical)。
24.根据权利要求15所述的防溢漏提升阀组件,其中,5mm<(Dbody)<72mm。
25.根据权利要求15所述的防溢漏提升阀组件,其中,6mm<(Dbody)<36mm。
26.根据权利要求15所述的防溢漏提升阀组件,其中,2mm<(daperture)<5mm。
27.根据权利要求15所述的防溢漏提升阀组件,其中,所述一个或多个孔被所述活塞头的壁分开,并且所述壁的厚度大于0.5mm。
28.根据权利要求15所述的防溢漏提升阀组件,其中,所述流体是水。
29.根据权利要求15所述的防溢漏提升阀组件,其中,所述流体选自由水、甘油、乙二醇、异丙醇、不同流体的组合以及全氟醚油构成的组。
30.根据权利要求15所述的防溢漏提升阀组件,其中,当凸联接联接至联接主体构件时,所述第一关闭构件处于打开位置。
31.根据权利要求15所述的防溢漏提升阀组件,其中,所述第二联接主体构件限定第二内部空间,并且第二关闭构件可在第二内部空间内移动。
32.根据权利要求31所述的防溢漏提升阀组件,其中,所述第二关闭构件具有靠近前端区域的活塞头,该活塞头具有纵向延伸穿过其中的一个或多个孔,所述一个或多个孔限定总开口横截面积(A2apertures),并且每个具有最大主尺寸(d2aperture),该最大主尺寸(d2aperture)是每个孔的远侧之间的最大尺寸,并且其中,0.3*(dcritical)<(d2aperture)<1.0*(dcritical)。
33.一种防溢漏提升阀组件,包括:
凸联接主体构件,其限定纵向轴线和由第一端与第二端之间的内侧壁限定的凸内部空间;
凹联接主体构件,其限定纵向轴线和由第一端口与第二端口之间的内侧壁限定的凹内部空间,该内部空间具有与纵向轴线正交测量的在6mm至72mm之间的内径(Dbody)和横截面积(Abody);以及
阀组件,其设置在凹主体内部空间内,该阀组件包括:
第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域并且与活塞头间隔开的密封表面,该活塞头具有纵向延伸穿过其中的一个或多个孔,所述一个或多个孔限定总开口横截面积(Aapertures),并且每个具有最大主尺寸(daperture),该最大主尺寸(daperture)是每个孔的远侧之间的最大尺寸,和
第一内部体积,其由凹联接主体构件的在活塞头和密封表面之间的内部空间限定,
第一关闭构件可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通,
其中,2mm<(daperture)<5mm并且0.4*(Abody)<(Aapertures)<0.9*(Abody)。
34.根据权利要求33所述的防溢漏提升阀组件,其中,当所述关闭构件处于关闭位置时,所述活塞头将流体基本保持在第一内部体积中。
35.根据权利要求33所述的防溢漏提升阀组件,其中,所述一个或多个孔中的每个的最大主尺寸(daperture)是相同的。
36.根据权利要求33所述的防溢漏提升阀组件,其中,所述一个或多个孔中的每个的最大主尺寸(daperture)是不同的。
37.根据权利要求33所述的防溢漏提升阀组件,其中,0.3*(dcritical)<(daperture)<0.6*(dcritical)。
38.根据权利要求33所述的防溢漏提升阀组件,其中,0.5*(Abody)<(Aapertures)<0.9*(Abody)。
39.根据权利要求33所述的防溢漏提升阀组件,其中,0.1*(Dbody)<(daperture)<0.7*(Dbody)。
40.根据权利要求33所述的防溢漏提升阀组件,其中,0.5*(Abody)<(Aapertures)<0.9*(Abody)并且0.2*(Dbody)<(daperture)<0.6*(Dbody)。
41.根据权利要求40所述的防溢漏提升阀组件,其中,0.3*(dcritical)<(daperture)<0.6*(dcritical)。
42.根据权利要求33所述的防溢漏提升阀组件,其中,5mm<(Dbody)<72mm。
43.根据权利要求33所述的防溢漏提升阀组件,其中,6mm<(Dbody)<36mm。
44.根据权利要求33所述的防溢漏提升阀组件,其中,3mm<(daperture)<5mm。
45.一种使用防溢漏提升阀组件的方法,包括:
将第一联接主体构件联接至第二联接主体构件,该第一联接主体构件限定纵向轴线和由第一端口与第二端口之间的内侧壁限定的内部空间,该内部空间具有与纵向轴线正交测量的内径(Dbody)和横截面积(Abody),并且第一阀组件设置在内部空间内,该阀组件包括:
第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域并且与活塞头间隔开的密封表面,该活塞头具有纵向延伸穿过其中的一个或多个孔,所述一个或多个孔限定总开口横截面积(Aapertures),并且每个具有最大主尺寸(daperture),该最大主尺寸(daperture)是一个或多个孔中的每个的远侧之间的最大尺寸,和
内部体积,其由凹联接主体构件的在活塞头和密封表面之间的内部空间限定,
第一关闭构件可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通,以及
使流体穿过第一和第二联接主体构件,其中流体具有表面张力(γ)和密度(ρ);
其中,0.2*(dcritical)<(daperture)<1.0*(dcritical),并且(dcritical)根据下式确定:
Figure FDA0002482570050000071
其中,γ是以N/m为单位的第一联接主体构件中的流体的表面张力,ρ是以kg/m3为单位的流体的密度,θr是限定在流体和其中一个孔的一侧之间的后退角且g是重力常数9.81m/s2
46.根据权利要求45所述的方法,还包括使第一和第二联接主体构件脱离的步骤。
47.根据权利要求46所述的方法,其中,当所述关闭构件处于关闭位置时,所述活塞头将流体基本保持在第一内部体积中。
48.一种防溢漏装置,包括:
流体主体构件,其限定纵向轴线和由第一端与第二端之间的内侧壁限定的内部空间,该内部空间具有与纵向轴线正交测量的内径(Dbody)和横截面积(Abody),
其中,所述流体主体构件包括限定总开口横截面积(Aapertures)的一个或多个孔,并且每个具有大小确定为防止通过所述孔溢漏的最大主尺寸(daperture)。
49.一种防溢漏阀组件,包括:
第一主体构件;
第二主体构件,其构造成与第一主体构件连通并且限定纵向轴线和由内侧壁限定的内部空间;
用于连接第一和第二主体构件以在第一和第二主体构件之间提供流体连通的装置;以及
用于当第二主体构件与第一主体构件断开时将流体保持在第二主体构件中的装置。
50.一种使用防溢漏装置的方法,包括:
将第一联接主体构件联接至第二联接主体构件,该第一联接主体构件限定纵向轴线和由内侧壁限定的内部空间,第一联接主体构件包括用于当第二联接主体构件与第一联接主体构件断开时将流体保持在第二联接主体构件中的装置;
使流体穿过第一和第二联接主体构件;以及
断开第一和第二联接主体构件。
51.根据权利要求50所述的方法,还包括,在断开之后,重新连接第一和第二联接主体构件,并且其中,用于当第二联接主体构件与第一联接主体构件断开时将流体保持在第二联接主体构件中的装置抑制与重新连接相关的空气包含量。
52.一种防溢漏提升阀流体联接装置,包括:
第一联接主体构件,其构造成与第二联接主体构件配合,并限定纵向轴线和由第一端口与相对的第二端口之间的内侧壁限定的内部空间;以及
第一提升阀组件,其设置在内部空间内,该提升阀组件包括:
第一关闭构件,其具有前端区域、后端区域、靠近前端区域的活塞头和靠近后端区域的密封表面,第一关闭构件在内部空间内可在关闭位置和打开位置之间纵向移动,在关闭位置,密封表面防止第一端口和第二端口之间的流体连通,在打开位置,第一端口和第二端口处于流体连通,
所述活塞头,其限定纵向延伸穿过其中的一个或多个孔,
内部体积,其由内部空间的在活塞头和密封表面之间的一部分限定,
其中,所述一个或多个孔中的每个设计成防止内部体积内的液体穿过一个或多个孔,除非经受根据下式确定的加速度“ac”:
Figure FDA0002482570050000091
其中,θr是液体相对于内侧壁的后退接触角,γ是液体的表面张力,ρ是液体的密度并且D是内部体积的直径。
CN201880072503.6A 2017-09-13 2018-09-13 流体处理部件 Active CN111601997B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762558210P 2017-09-13 2017-09-13
US62/558,210 2017-09-13
PCT/US2018/050833 WO2019055621A1 (en) 2017-09-13 2018-09-13 FLUID HANDLING COMPONENTS

Publications (2)

Publication Number Publication Date
CN111601997A true CN111601997A (zh) 2020-08-28
CN111601997B CN111601997B (zh) 2022-08-09

Family

ID=65723088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880072503.6A Active CN111601997B (zh) 2017-09-13 2018-09-13 流体处理部件

Country Status (3)

Country Link
US (2) US11204120B2 (zh)
CN (1) CN111601997B (zh)
WO (1) WO2019055621A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019055621A1 (en) * 2017-09-13 2019-03-21 Colder Products Company FLUID HANDLING COMPONENTS
US11821558B2 (en) * 2021-09-08 2023-11-21 Cooper-Standard Automotive Inc. Fluid connector with dry break
WO2023132965A1 (en) * 2022-01-06 2023-07-13 Entegris, Inc. Aseptic coupling assembly and method of aseptic coupling

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890004B2 (en) * 2003-08-01 2005-05-10 Smc Kabushiki Kaisha Coupler
WO2005044716A2 (en) * 2003-10-28 2005-05-19 Scott Randall Shaw Reconnectable disconnect device for fluid delivery line
US20130333767A1 (en) * 2012-06-15 2013-12-19 Colder Products Company Quick Disconnect Coupling
WO2014049811A1 (ja) * 2012-09-28 2014-04-03 テルモ株式会社 コネクタ
CN105143748A (zh) * 2013-03-15 2015-12-09 可得制品公司 低泄漏联接组件
WO2016076146A1 (ja) * 2014-11-12 2016-05-19 ニッタ株式会社 テストコネクション付継手
CN106413800A (zh) * 2014-01-31 2017-02-15 伯尔拉工业有限公司 用于医疗管线的带阀连接器
CN107041151A (zh) * 2015-12-03 2017-08-11 国际工程控制公司 防渗漏且耐用接受器
CN206449335U (zh) * 2016-12-28 2017-08-29 北京九州尚阳科技有限公司 一种用于脉冲枪与水泵连接的快换插头

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1869411A (en) * 1930-07-02 1932-08-02 Cleveland Pneumatic Tool Co Automatic coupling valve
US2905485A (en) * 1956-12-18 1959-09-22 Zalo Mfg Company Valved coupling
US3052261A (en) * 1959-01-15 1962-09-04 Nyberg Carl Erik Josef Fluid coupling
US3177018A (en) * 1963-01-02 1965-04-06 Aeroquip Corp Snap ring coupling
US3567175A (en) * 1968-10-08 1971-03-02 Stile Craft Mfg Inc Quick release coupling
US3566918A (en) * 1969-08-06 1971-03-02 John T Rauen Quick connect and disconnect fluid conveying coupling
US4541457A (en) * 1982-03-17 1985-09-17 Colder Products Company Two-way uncoupling valve assembly
US4612953A (en) * 1985-04-19 1986-09-23 Steven R. Zillig Fluid coupling, seal removal tool and method
US4863201A (en) * 1986-11-03 1989-09-05 Hall Surgical Division Of Zimmer, Inc. Coupling assembly
JPH078955Y2 (ja) * 1988-03-28 1995-03-06 株式会社ナブコ 流路接続装置
US5215113A (en) * 1991-06-20 1993-06-01 Terry Paul E Precision safety shut-off valve
US5316041A (en) 1992-10-27 1994-05-31 Colder Product Company Quick connection coupling valve assembly
JPH06159576A (ja) * 1992-11-27 1994-06-07 Boo Erik Niberugu 管継手
US5293902A (en) * 1993-06-07 1994-03-15 Tif Instruments, Inc. Quick-disconnect fluid coupling
FR2719105B1 (fr) * 1994-04-21 1996-05-31 Yto Coupleur rapide pour conduit sous pression à désaccouplement contrôlé.
US5485982A (en) * 1994-09-16 1996-01-23 Bundy Corporation Quick connector with tube activated check valve
FR2740197B1 (fr) * 1995-10-20 1997-12-26 Yto Coupleur rapide a desaccouplement a deux phases
US5845943A (en) * 1996-12-02 1998-12-08 Colder Products Company Hybrid insert for fluid couplings
JP4572283B2 (ja) * 1999-03-04 2010-11-04 Smc株式会社 チャック及び管継手
JP3595766B2 (ja) * 2000-10-23 2004-12-02 Smc株式会社 管継手
FR2822920B1 (fr) * 2001-04-03 2003-10-31 Staubli Sa Ets Raccord rapide pour la jonction amovible de deux canalisations, et son utilisation
US6920895B2 (en) * 2001-04-16 2005-07-26 Alan Avis Combination surge supression and safety shut-off valve
CN100591967C (zh) * 2003-07-17 2010-02-24 可得制品公司 带有闩锁机构的偶联器
US7153296B2 (en) * 2003-11-07 2006-12-26 Mitchell Martin S Releasable tubing connector
FR2865259B1 (fr) * 2004-01-20 2006-04-21 Staubli Sa Ets Raccord rapide et procede de desacouplement des elements male et femelle d'un tel raccord
US20070065637A1 (en) * 2005-09-16 2007-03-22 Extrand Charles W Carrier with anisotropic wetting surfaces
US20110101675A1 (en) * 2009-11-04 2011-05-05 National Coupling Compay, Inc. Hydraulic Coupling Member with Dual Electrical Bonding Contacts
US9739367B2 (en) * 2011-07-14 2017-08-22 Oetiker Ny, Inc. Transmission anti-leak valve
US8356794B1 (en) * 2011-08-12 2013-01-22 Liu Hsiu-Hsiung Quick release connector
HRP20211930T1 (hr) * 2012-02-24 2022-03-18 Colder Products Company Spojnica mjehur za tekućinu
US8641013B2 (en) * 2012-06-07 2014-02-04 Hsiu-Hsiung LIU Quick release connector with a ring anti-drop cover
US20140116533A1 (en) * 2012-10-29 2014-05-01 Plews, Inc. Universal Pneumatic Coupler
EP3258157B1 (en) * 2015-02-13 2020-08-12 Nitto Kohki Co., Ltd. Emergency detachable pipe joint
US10125908B2 (en) * 2015-02-18 2018-11-13 Oetiker Ny, Inc. Quick connect fluid coupling with integrated check valve
US10221950B1 (en) * 2017-08-17 2019-03-05 Stedlin Manufacturing Incorporated High pressure coupler
WO2019055621A1 (en) * 2017-09-13 2019-03-21 Colder Products Company FLUID HANDLING COMPONENTS
CN112585391B (zh) * 2018-07-30 2023-04-11 可得制品公司 具有闩锁的流体处理联接件主体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890004B2 (en) * 2003-08-01 2005-05-10 Smc Kabushiki Kaisha Coupler
WO2005044716A2 (en) * 2003-10-28 2005-05-19 Scott Randall Shaw Reconnectable disconnect device for fluid delivery line
US20130333767A1 (en) * 2012-06-15 2013-12-19 Colder Products Company Quick Disconnect Coupling
WO2014049811A1 (ja) * 2012-09-28 2014-04-03 テルモ株式会社 コネクタ
CN105143748A (zh) * 2013-03-15 2015-12-09 可得制品公司 低泄漏联接组件
CN106413800A (zh) * 2014-01-31 2017-02-15 伯尔拉工业有限公司 用于医疗管线的带阀连接器
WO2016076146A1 (ja) * 2014-11-12 2016-05-19 ニッタ株式会社 テストコネクション付継手
CN107041151A (zh) * 2015-12-03 2017-08-11 国际工程控制公司 防渗漏且耐用接受器
CN206449335U (zh) * 2016-12-28 2017-08-29 北京九州尚阳科技有限公司 一种用于脉冲枪与水泵连接的快换插头

Also Published As

Publication number Publication date
CN111601997B (zh) 2022-08-09
US11204120B2 (en) 2021-12-21
US11608921B2 (en) 2023-03-21
US20220065378A1 (en) 2022-03-03
US20200300396A1 (en) 2020-09-24
WO2019055621A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
CN111601997B (zh) 流体处理部件
US8540807B2 (en) Venting and filtration systems with gas permeable membrane
KR20150135403A (ko) 통기식 용기 조립체
CN108135406B (zh) 分配器
CN104902796A (zh) 带有永久空气压缩器的台下安装式泡沫分配系统及其再充装单元
BRPI0619831A2 (pt) dispositivo de válvula de escorva para circuito de água de máquina de bebida
KR101211123B1 (ko) 큐벳
US20130140334A1 (en) Flexible pouring spout
ES2918503T3 (es) Bomba de fluido
RU2670363C1 (ru) Сливное устройство
CN103862878A (zh) 墨盒
CN102348895A (zh) 具有过滤器装置的泵
US5947344A (en) Container and method for dispensing motor oil and other liquids
CN110913733A (zh) 船用排放阀
TW202108321A (zh) 濾油罐排放工具
JP6711557B2 (ja) 再充填可能な材料移送システム
KR101221314B1 (ko) 약액 적하용기
CN106795790B (zh) 排流装置
CN213464739U (zh) 杯体组件及饮品冲调装置
US9797541B1 (en) Pig stopping device
CN101072532B (zh) 清洗装置
EP2771602A1 (en) A through-flow valve arrangement
KR102305108B1 (ko) 유연한 용기를 위한 물 채널
CN113951726A (zh) 饮品冲调装置
CN108263720B (zh) 防泄漏装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant