CN111599893B - 一种稳定高效率硅异质结太阳电池的制备方法 - Google Patents

一种稳定高效率硅异质结太阳电池的制备方法 Download PDF

Info

Publication number
CN111599893B
CN111599893B CN202010479758.3A CN202010479758A CN111599893B CN 111599893 B CN111599893 B CN 111599893B CN 202010479758 A CN202010479758 A CN 202010479758A CN 111599893 B CN111599893 B CN 111599893B
Authority
CN
China
Prior art keywords
silicon
film
thin film
amorphous silicon
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010479758.3A
Other languages
English (en)
Other versions
CN111599893A (zh
Inventor
张丽平
刘正新
蓝仕虎
孟凡英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongwei Solar Chengdu Co Ltd
Original Assignee
Zhongwei New Energy Chengdu Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongwei New Energy Chengdu Co ltd filed Critical Zhongwei New Energy Chengdu Co ltd
Priority to CN202010479758.3A priority Critical patent/CN111599893B/zh
Publication of CN111599893A publication Critical patent/CN111599893A/zh
Application granted granted Critical
Publication of CN111599893B publication Critical patent/CN111599893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种稳定高效率硅异质结太阳电池的制备方法,在累积薄膜的表面沉积本征非晶硅薄膜,所述累积薄膜包括沉积腔室内的累积薄膜,对沉积腔室内沉积的本征非晶硅薄膜为高氢含量且高无序度非晶硅薄膜,所述高氢含量是指通过对单位体积内氢原子个数的计算,相对于硅原子个数5.22×1022,氢的百分比含量在10%~25%;高无序度是指微结构因子R为15%~80%。本发明在沉积腔室内和托盘表面沉积非晶硅薄膜,可以有效减小累积薄膜的内应力而避免沉积腔内累积薄膜的脱落,有益于高效率低成本硅异质太阳电池的稳定产出,快速处理累积薄膜、获得稳定高效率硅异质结太阳电池。

Description

一种稳定高效率硅异质结太阳电池的制备方法
技术领域
本发明属于半导体光电转换领域,具体涉及一种稳定高效率硅异质结太阳电池的制备方法。
背景技术
硅异质结SHJ太阳电池是一种高效率晶体硅太阳电池,因为其转换效率高、温度系数低等特点受到光伏行业的广泛关注。SHJ电池是一种双面率很高的双面电池,由于背面对发电量的贡献度大,在相同条件下其发电输出功率高于普通晶体硅太阳电池10%以上,因此具有更高的性价比。SHJ电池以n型单晶硅片为衬底,基本制作工艺包括制绒清洗,非晶硅薄膜沉积,透明导电氧化物薄膜沉积,金属电极制作。与常规晶体硅太阳电池相比,工艺过程更简单,容易管控。
非晶硅薄膜沉积是SHJ太阳电池制作工艺的关键工艺,也是SHJ电池制作技术的难点。非晶硅薄膜一般使用等离子体增强化学气相沉积(PECVD)、触媒化学气相沉积(Cat-CVD)、光化学气相沉积(Photo-CVD)等设备沉积,在经过制绒并清洗的硅片第一表面沉积本征非晶硅和n型掺杂非晶硅叠层,形成第一受光面,在第二表面沉积本征非晶硅和p型掺杂非晶硅薄膜叠层,形成第二受光面。本征非晶硅层对n型单晶硅表面形成良好的表面钝化,降低表面缺陷对光生载流子的复合。n型和p型掺杂非晶硅与N型单晶硅之间形成内建电场,分离并收集电子和空穴,形成电力输出。
在硅片表面沉积非晶硅薄膜钝化层的过程中,在腔室的电极表面和腔室侧壁表面以及放置硅片的托盘表面同时都会沉积非晶硅薄膜,随着沉积时间的增加逐步形成累积薄膜,当其累计厚度达到2-3微米或者更厚的时候容易剥离产生粉末甚至较大的颗粒散落在硅片的表面,引起薄膜质量劣化,导致电池的光电转换性能和可靠性下降。尤其在n型和p型掺杂非晶硅沉积腔,当非晶硅薄膜的累计厚度变厚,掺杂原子累计浓度变高,这种变化将影响掺杂非晶硅薄膜层和电池整体的性能,造成生产不稳定,因此,在大批量生产和长期实验中,当腔室和托盘表面的非晶硅累积薄膜累积沉积厚度达到2.0微米甚至更厚的时候就要利用等离子体对腔室进行清洗,以消除粉末和掺杂原子对薄膜均匀性和电池性能的影响,提高生产的稳定性。
现有技术中,真空腔室和托盘清洗一般采用对硅材料有刻蚀功能的含氟气体产生等离子体进行刻蚀,去除表面沉积的非晶硅薄膜和粉末,然而这类气体成本较高,而且,含氟气体分解产生的氟原子可能残留在腔室内,混入到后续沉积的非晶硅薄膜中,薄膜中的氟原子在紫外光的照射或者热环境下释放出来,与水气结合形成氢氟酸,影响薄膜的稳定性。
发明内容
针对连续生产过程中沉积腔室表面累积薄膜,因内应力增加容易剥离导致掉粉,造成太阳电池的光电转换性能下降,传统方法使用的在线化学清洗频繁使用会造成成本上升、产能下降等问题,本发明提供一种对腔室内表面进行处理的非晶硅薄膜沉积方法,采用一层或者多层本征非晶硅对腔室内表面处理,可以快速恢复腔室沉积环境,并改善太阳电池产品持续生产时的光电性能。
为了实现上述目的,本发明采用如下技术方案:
一种稳定高效率硅异质结太阳电池的制备方法,在沉积腔室内沉积本征非晶硅薄膜,沉积腔室内包括沉积腔室的内表面以及腔室的电极表面。
优选的,沉积本征非晶硅薄膜的周期为,每当累积薄膜的厚度积累到0.01~2.00 µm时,沉积一层本征非晶硅薄膜。
优选地,为了降低n型和p型掺杂非晶硅薄膜在托盘上积累造成污染界面的风险,同样需要覆盖5-10 nm任意微结构的本征型非晶硅薄膜。
优选地,对沉积腔室内沉积的本征非晶硅薄膜为高氢含量且高无序度非晶硅薄膜,所述高氢含量是指通过对单位体积内氢原子个数的计算,相对于硅原子个数5.22×1022,氢的百分比含量在10%~25%;高无序度是指微结构因子R为15%~80%,且波数2060~2150cm-1范围内的伸缩振动模数量与总伸缩振动膜(波数1900 ~2200 cm-1)数量相比定义为微结构因子R
优选的,所述本征非晶硅薄膜的厚度为2~100 nm。
优选地,在沉积腔室内沉积缓解累计薄膜内应力的本征非晶硅薄膜时,沉积速率为0.1~2.0 nm/s。
所述稳定高效率硅异质结太阳电池的制备方法,具体包括以下步骤:
S1.制绒、清洗,获得表面清洁的晶体硅基底;
S2.沉积非晶硅薄膜钝化层:在晶体硅基底的第一表面依次沉积第一受光面的本征硅基薄膜钝化层和第一受光面的掺杂硅基薄膜钝化层;在晶体硅基底的第二表面依次沉积第二受光面的本征硅基薄膜钝化层和第二受光面的掺杂硅基薄膜钝化层;
S3.制作电极:分别在第一受光面的掺杂硅基薄膜钝化层和第二受光面的掺杂硅基薄膜钝化层上沉积第一受光面的透明导电氧化物薄膜和第二受光面的透明导电氧化物薄膜,分别形成第一受光面和第二受光面,接着在第一受光面的透明导电氧化物薄膜和第二受光面的透明导电氧化物薄膜上制作第一受光面的银栅线电极和第二受光面的银栅线电极;
S4.重复S1-S3连续制备电池;
S5.处理积累薄膜:S2中沉积非晶硅薄膜钝化层的沉积腔室中,每当沉积腔室内的连续累积薄膜厚度达到0.01~2.00 µm时,采用厚度为2~100 nm的本征非晶硅薄膜覆盖沉积腔室;然后再重复S1-S3制作电池。
优选的,S5利用PECVD、Cat-CVD、Photo-CVD等薄膜沉积设备的n型和p型参杂非晶硅薄膜沉积腔中,生产累计厚度达到0.01微米至2.00微米的厚度后,托盘不放置硅片,在腔室和托盘表面沉积一层或者多层本征非晶硅薄膜,对腔室和托盘表面进行镀膜处理,覆盖表面沉积的n型和p型非晶硅层,降低腔室内薄膜的内应力和托盘表面累计沉积的掺杂层对后续掺杂浓度的影响,提高电池性能稳定性和生产性的硅异质结太阳电池制作方法。用于覆盖托盘上掺杂元素的任意结构非晶硅薄膜,可与对内腔薄膜改性处理同时进行。
优选的,S1中制绒、清洗具体为,利用碱溶液对单晶硅各向异性腐蚀特性对n型单晶进行制绒,利用RCA1和RCA2溶液对硅片进行清洗。
优选地,S2中硅基薄膜钝化层沉积的方法包括等离子体增强化学气相沉积、热丝化学气相沉积和光敏化化学气相沉积,所述第一受光面的本征硅基薄膜钝化层、第一受光面的掺杂硅基薄膜钝化层、第二受光面的本征硅基薄膜钝化层和第二受光面的掺杂硅基薄膜钝化层在同一腔室内沉积,或者独立的腔室内完成沉积,同一沉积腔室内硅基薄膜钝化层沉积的方法与用于覆盖腔室和托盘的非晶硅薄膜的沉积方法相同。
优选地,S5中对沉积腔室内和托盘表面进行镀膜处理的本征非晶硅薄膜的工艺气体为硅烷和氢气,氢气与硅烷([H2]/[SiH4])的流量比为0~5:1
优选地,覆盖沉积腔室内时,本征非晶硅薄膜沉积速率为0.1~2.0 nm/s。
与现有技术相比,本发明的有益效果在于:
(1)随着沉积腔室内硅薄膜的累积,腔内加热器的热量和沉积薄膜过程中的等离子体弛豫会使累积薄膜内的氢逐渐逸出,造成硅网络内出现少氢现象且薄膜内应力增加。当累积的薄膜达到一定厚度,内应力大于附着力后,累积的薄膜存在剥落的风险,甚至就会从腔室内壁剥落。本发明在沉积腔室内沉积本征非晶硅薄膜,且该本征非晶硅薄膜为高氢含量且高无序度非晶硅薄膜,高氢含量且高无序代表薄膜内有很多SiH2、SiHx或SiH2构成的孔洞,此种结构耐受热量和等离子体轰击影响,周期性覆盖可以增多累积薄膜内的氢含量,同时也可缓冲累积薄膜中强内应力的产生。腔室内累积薄膜越厚,需要的本征非晶硅薄膜的厚度越厚,可以有效减小累积薄膜的内应力而避免腔内累积薄膜的脱落,在累积薄膜的膜厚为0.01 µm~2.00 µm内,实施本征非晶硅薄膜覆盖改性处理以减小累积薄膜的内应力,降低剥离风险,既可以解决累积薄膜因内应力造成的剥落的掉粉问题,快速恢复腔室沉积环境、延长腔室和托盘清洗周期,降低在线化学清洗频率可以提升设备有效生产的时间,实现产能增加而降低成本;又可以通过本征层的有效覆盖,降低掺杂元素在腔壁内表面和托盘上累积的影响,提升产线持续生产时太阳电池的光电转换效率。
(2)本征非晶硅薄膜被周期性引入覆盖腔室和托盘后,可以有效改善腔壁内部和电极上累积薄膜的内应力,达到一个清洗周期时腔壁内累积的薄膜厚度可以由1.5 µm提高至5 µm以上,大幅度延长一个清洗周期的时间,提高生产效率,减少NF3和Ar气体耗量,提高产量的同时降低成本。
(3)本发明可以快速处理累积薄膜,获得稳定高效率硅异质结太阳电池。
附图说明
图1显示为SHJ太阳电池结构示意图;
图2显示为本发明本征非晶硅薄膜的周期性沉积、覆盖腔室和托盘的示意图;
图3显示为本发明用本征非晶硅薄膜盖腔室和托盘后电池IV参数的变化;
图中,101-晶体硅基底,102-第一受光面的本征硅基薄膜钝化层,103-第一受光面的掺杂硅基薄膜钝化层,104-第二受光面的本征硅基薄膜钝化层,105-第二受光面的掺杂硅基薄膜钝化层,106-第一受光面的透明导电氧化物薄膜,107-第二受光面的透明导电氧化物薄膜,108-第一受光面的银栅线电极,109-第二受光面的银栅线电极。
具体实施方式
下面结合实施例对本发明作进一步的描述,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动前提下所获得的其他所有实施例,都属于本发明的保护范围。
实施例1
一种稳定高效率硅异质结太阳电池的制备方法,包括以下步骤:
S1.制绒、清洗:利用KOH、NaOH等碱溶液对单晶硅各向异性腐蚀特性对n型单晶进行制绒,利用RCA1和RCA2溶液对硅片进行清洗,获得表面清洁的晶体硅基底101;
S2.沉积非晶硅薄膜钝化层:在晶体硅基底101第一表面依次沉积5 nm的本征非晶硅薄膜102和10 nm的第一受光面的掺杂硅基薄膜钝化层103,第一受光面的掺杂硅基薄膜钝化层103为n型掺杂非晶硅叠层薄膜;在晶体硅基底101第二表面分别依次5 nm的本征硅基薄膜钝化层104和15 nm的第二受光面的掺杂硅基薄膜钝化层105,第二受光面的掺杂硅基薄膜钝化层105为p型掺杂非晶硅叠层薄膜;
S3.制作电极:如图1所示,分别在第一受光面的掺杂硅基薄膜钝化层103和第二受光面的掺杂硅基薄膜钝化层105上沉积厚度在80~120 nm范围的第一受光面的透明导电氧化物薄膜106和第二受光面的透明导电氧化物薄膜107,分别形成第一受光面和第二受光面,接着在两个受光面的TCO上制作第一受光面的银栅线电极108和第二受光面的银栅线电极109;
S4.重复S1-S3连续制备电池;
S5. 处理积累薄膜:当沉积硅基薄膜钝化层的腔室中薄膜厚度超过0.2 µm时,托盘不放置硅片,生长一层厚度为5~10 nm疏松的本征非晶硅薄膜覆盖腔室和托盘,以改变累积薄膜的内应力且覆盖托盘上的掺杂元素对本征层的污染,对腔室和托盘表面进行镀膜处理的本征非晶硅薄膜层的工艺气体为硅烷和氢气,不含有硼烷或者磷烷等掺杂气体,氢气比硅类反应气体的浓度范围在0~5;依次再重复S1-S3制作电池后再用非晶硅覆盖内腔壁,如图2所示为真空腔室内非晶硅沉积和覆盖的周期性示意图;循环以上步骤获得稳定的高效率SHJ太阳电池。
沉积非晶硅薄膜钝化层的方法为等离子体增强(PE)化学气相沉积,功率密度范围20~200 mW/cm2,氢稀释比例范围为0~5,气压范围为50~300 Pa。
覆盖腔室和托盘的本征非晶硅薄膜工艺速率范围在0.1~2.0 nm/s,实现降低内壁应力的同时节约时间提高SHJ太阳电池的产量。通过傅里叶红外变换FTIR光谱测试计本征非晶硅薄膜内硅氢键的数量,氢的百分比含量在10%~25%;标志非晶硅高无序的微结构因子R比值在15%~80%高无序度。
覆盖腔室和托盘的本征非晶硅薄膜在完成一个覆盖工艺后,如图3所示,SHJ太阳电池的IV参数被明显改善;当开路电压V oc出现小幅度下降时,再次用本征非晶硅薄膜覆盖腔室和托盘,V oc再次被改善;电池的其他IV参数也相应有一定程度的改善。
本征非晶硅薄膜被周期性引入覆盖腔室和托盘后,可以有效改善腔壁内部和电极上累积薄膜的内应力,达到一个清洗周期时腔壁内累积的薄膜厚度可以由1.5 µm提高至5µm以上,大幅度延长生产时间和减少NF3和Ar气体耗量,提高产量的同时降低成本。
实施例2
一种稳定高效率硅异质结太阳电池的制备方法,包括以下步骤:
S1.制绒、清洗:利用KOH、NaOH等碱溶液对单晶硅各向异性腐蚀特性对n型单晶进行制绒,利用RCA1和RCA2溶液或其他氧化方法对硅片表面进行清洗,获得表面清洁的晶体硅基底101;
S2.沉积非晶硅薄膜钝化层:在同一真空腔室内,在晶体硅基底101第一表面上,依次沉积5 nm的本征非晶硅薄膜102和6 nm的第一受光面的掺杂硅基薄膜钝化层103,第一受光面的掺杂硅基薄膜钝化层103为n型掺杂非晶硅叠层薄膜;在同一真空腔室内,在晶体硅基底101第二表面撒花姑娘,依次沉积5 nm的本征硅基薄膜钝化层104和10 nm的第二受光面的掺杂硅基薄膜钝化层105,第二受光面的掺杂硅基薄膜钝化层105为p型掺杂非晶硅叠层薄膜;
S3.制作电极:如图1所示,分别在第一受光面的掺杂硅基薄膜钝化层103和第二受光面的掺杂硅基薄膜钝化层105上沉积厚度在80~120 nm范围的第一受光面的透明导电氧化物薄膜106和第二受光面的透明导电氧化物薄膜107,分别形成第一受光面和第二受光面,接着在两个受光面的TCO上制作银栅线电极第一受光面的银栅线电极108和第二受光面的银栅线电极109;
S4.重复S1-S3连续制备电池;
S5.在一个受光面的钝化层:包括本征和掺杂薄膜沉积结束后,生长一层厚度为5~10 nm的本征非晶硅薄膜覆盖腔室和托盘,以改变累积薄膜的内应力和覆盖腔室内壁和托盘上掺杂元素对本征层的污染;依次再重复S1-S3制作电池后再用本征非晶硅薄膜覆盖腔内壁,包括极板和托盘,循环以上步骤获得稳定的高效率SHJ太阳电池。
所述沉积硅基薄膜钝化层的方法为任意一种化学气相沉积技术,覆盖和沉积在同一真空腔室内进行。
所述本征和掺杂非晶硅薄膜的沉积,在同一真空腔室内完成。
所述起覆盖作用的本征非晶硅薄膜工艺速率范围在0.5~2.0 nm/s,实现降低内壁应力的同时节约时间提高SHJ太阳电池的产量。
所述本征非晶硅薄膜进行周期性覆盖腔室内壁和托盘,抑制了硼和磷等掺杂元素对非晶硅钝化层和晶体硅界面的缺陷,SHJ太阳电池的IV参数被明显改善,当开路电压V oc出现小幅度下降时,再次用非晶硅覆盖腔室和托盘,V oc再次被改善;电池的其他IV参数也相应有一定程度的改善。
所述本征非晶硅薄膜对单腔室内表面的覆盖技术提高了单腔室沉积同一个受光面钝化层的可行性,提高单腔室沉积电池效率的同时大大降低了设备成本。

Claims (9)

1.一种稳定高效率硅异质结太阳电池的制备方法,其特征在于,
当沉积腔室内累积有累积薄膜时,在累积薄膜的表面沉积本征非晶硅薄膜,所述累积薄膜包括沉积腔室内和托盘上的累积薄膜,所述累积薄膜为非晶硅薄膜,所述本征非晶硅薄膜为高氢含量且高无序度非晶硅薄膜,所述高氢含量是指通过对单位体积内氢原子个数的计算,相对于硅原子个数5.22×1022,氢的百分比含量在10%~25%;高无序度是指微结构因子R为15%~80%。
2.根据权利要求1所述的一种稳定高效率硅异质结太阳电池的制备方法,其特征在于,
沉积本征非晶硅薄膜的周期为,每当累积薄膜的厚度积累到0.01~2.00μm范围时,沉积一层本征非晶硅薄膜。
3.根据权利要求1所述的一种稳定高效率硅异质结太阳电池的制备方法,其特征在于,
所述本征非晶硅薄膜的厚度范围为2~100nm。
4.根据权利要求1所述的一种稳定高效率硅异质结太阳电池的制备方法,其特征在于,
所述累积薄膜还包括托盘上的累积薄膜,托盘上的累积薄膜采用5-10nm任意微结构的本征型非晶硅薄膜覆盖。
5.根据权利要求1所述的一种稳定高效率硅异质结太阳电池的制备方法,其特征在于,
在沉积腔室内沉积一层具有缓解内应力作用的本征非晶硅薄膜,沉积速率为0.1~2.0nm/s。
6.根据权利要求1所述的一种稳定高效率硅异质结太阳电池的制备方法,其特征在于,
具体包括以下步骤:
S1.制绒、清洗,获得表面清洁的晶体硅基底(101);
S2.沉积非晶硅薄膜钝化层:在晶体硅基底(101)的第一表面依次沉积第一受光面的本征硅基薄膜钝化层(102)和第一受光面的掺杂硅基薄膜钝化层(103);在晶体硅基底(101)的第二表面依次沉积第二受光面的本征硅基薄膜钝化层(104)和第二受光面的掺杂硅基薄膜钝化层(105);
S3.制作电极:分别在第一受光面的掺杂硅基薄膜钝化层(103)和第二受光面的掺杂硅基薄膜钝化层(105)上沉积第一受光面的透明导电氧化物薄膜(106)和第二受光面的透明导电氧化物薄膜(107),分别形成第一受光面和第二受光面,接着在第一受光面的透明导电氧化物薄膜(106)和第二受光面的透明导电氧化物薄膜(107)上制作第一受光面的银栅线电极(108)和第二受光面的银栅线电极(109);
S4.重复S1-S3连续制备电池;
S5.处理累积薄膜:S2中沉积非晶硅薄膜钝化层的沉积腔室中,每当沉积腔室内的连续累积薄膜厚度达到0.01~2.00μm时,采用厚度为2~100nm的本征非晶硅薄膜覆盖沉积腔室;然后再重复S1-S3制作电池;对沉积腔室内沉积的本征非晶硅薄膜为高氢含量且高无序度非晶硅薄膜,所述高氢含量是指通过对单位体积内氢原子个数的计算,相对于硅原子个数5.22×1022,氢的百分比含量在10%~25%;高无序度是指微结构因子R为15%~80%。
7.根据权利要求6所述的一种稳定高效率硅异质结太阳电池的制备方法,其特征在于,
S5中对沉积腔室内进行镀膜处理的本征非晶硅薄膜的工艺气体为硅烷和氢气,氢气与硅烷的流量比为0~5:1。
8.根据权利要求6所述的一种稳定高效率硅异质结太阳电池的制备方法,其特征在于,
S2中硅基薄膜钝化层沉积的方法包括等离子体增强化学气相沉积、热丝化学气相沉积和光敏化化学气相沉积,所述第一受光面的本征硅基薄膜钝化层(102)、第一受光面的掺杂硅基薄膜钝化层(103)、第二受光面的本征硅基薄膜钝化层(104)和第二受光面的掺杂硅基薄膜钝化层(105)在同一腔室内沉积,或者在独立的腔室内完成沉积。
9.根据权利要求6所述的一种稳定高效率硅异质结太阳电池的制备方法,其特征在于,
在同一沉积腔室内,硅基薄膜钝化层沉积的方法与用于覆盖腔室的非晶硅薄膜的沉积方法相同。
CN202010479758.3A 2020-05-29 2020-05-29 一种稳定高效率硅异质结太阳电池的制备方法 Active CN111599893B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010479758.3A CN111599893B (zh) 2020-05-29 2020-05-29 一种稳定高效率硅异质结太阳电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010479758.3A CN111599893B (zh) 2020-05-29 2020-05-29 一种稳定高效率硅异质结太阳电池的制备方法

Publications (2)

Publication Number Publication Date
CN111599893A CN111599893A (zh) 2020-08-28
CN111599893B true CN111599893B (zh) 2022-10-21

Family

ID=72191715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010479758.3A Active CN111599893B (zh) 2020-05-29 2020-05-29 一种稳定高效率硅异质结太阳电池的制备方法

Country Status (1)

Country Link
CN (1) CN111599893B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113628959B (zh) * 2021-07-19 2024-06-14 华虹半导体(无锡)有限公司 应用于功率器件的沟槽填充方法
CN114823302A (zh) * 2022-03-29 2022-07-29 中威新能源(成都)有限公司 硅基薄膜、太阳电池及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492963B2 (ja) * 2005-06-14 2010-06-30 ルネサスエレクトロニクス株式会社 薄膜の成膜方法、気相成長装置、プログラム
CN105154852A (zh) * 2014-06-12 2015-12-16 上海理想万里晖薄膜设备有限公司 异质结太阳能电池pecvd工艺受硼污染解决方法
CN110643971A (zh) * 2019-09-27 2020-01-03 上海理想万里晖薄膜设备有限公司 用于制造异质结太阳能电池的cvd设备及其镀膜方法
CN111403562A (zh) * 2020-03-23 2020-07-10 中威新能源(成都)有限公司 一种硅异质结太阳电池用tco薄膜的制作方法和设备

Also Published As

Publication number Publication date
CN111599893A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
CN111628052B (zh) 一种钝化接触电池的制备方法
WO1998043304A1 (fr) Element photovoltaique et procede de fabrication dudit element
CN111599893B (zh) 一种稳定高效率硅异质结太阳电池的制备方法
TWI722078B (zh) 光電轉換裝置之製造方法
CN102005508B (zh) 一种连续制备晶体硅太阳能电池pn结及减反膜的方法
WO2011131000A1 (zh) 实现太阳能电池背表面缓变叠层钝化薄膜的方法
WO2023184844A1 (zh) 硅基薄膜、太阳电池及其制备方法
CN115020546A (zh) 双面钝化接触太阳电池及其制备方法
US9559221B2 (en) Solar cell production method, and solar cell produced by same production method
CN112436063A (zh) 一种铸造单晶硅异质结太阳电池制备方法
TW201010115A (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
CN111697110A (zh) 异质结太阳能电池及其制造方法
CN218602440U (zh) 新型异质结电池
CN218160392U (zh) 一种太阳能电池
CN115566100A (zh) 一种太阳能电池及其制备方法
CN115360267A (zh) 异质结太阳能电池的制备方法及异质结太阳能电池
TW202312507A (zh) 鈍化接觸太陽能電池及其背面鈍化結構的製作方法
CN113937185A (zh) 一种采用氢钝化的异质结太阳电池的制造方法
JP2007519245A (ja) 微結晶シリコン層を備えたシリコン太陽電池の製造方法
CN113930748A (zh) 太阳能电池的制备方法、太阳能电池与光伏组件
CN113437183A (zh) 一种pecvd沉积非晶硅薄膜的方法
Liu et al. Passivation of textured crystalline silicon with small pyramids by silicon nitride films formed by catalytic chemical vapor deposition and phosphorus catalytic impurity doping
JP2989055B2 (ja) 太陽電池の製造方法
CN115425097B (zh) 一种制备hbc太阳能电池的方法及其hbc太阳能电池
CN110809827A (zh) 光电转换装置的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240110

Address after: 610200 within phase 6 of Industrial Development Zone of Southwest Airport Economic Development Zone, Shuangliu District, Chengdu City, Sichuan Province

Patentee after: TONGWEI SOLAR (CHENGDU) Co.,Ltd.

Address before: 610000 in Shuangliu Southwest Airport Economic Development Zone, Chengdu, Sichuan

Patentee before: Zhongwei New Energy (Chengdu) Co.,Ltd.

TR01 Transfer of patent right