CN111584626B - 一种增强型hemt器件结构及其制备方法 - Google Patents

一种增强型hemt器件结构及其制备方法 Download PDF

Info

Publication number
CN111584626B
CN111584626B CN202010465629.9A CN202010465629A CN111584626B CN 111584626 B CN111584626 B CN 111584626B CN 202010465629 A CN202010465629 A CN 202010465629A CN 111584626 B CN111584626 B CN 111584626B
Authority
CN
China
Prior art keywords
layer
hemt device
alinn
barrier layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010465629.9A
Other languages
English (en)
Other versions
CN111584626A (zh
Inventor
王东
汪琼
吴勇
陈兴
严伟伟
陆俊
葛林男
何滇
曾文秀
王俊杰
穆潘潘
操焰
崔傲
袁珂
陈军飞
张进成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Research Institute of Xidian University
Original Assignee
Wuhu Research Institute of Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Research Institute of Xidian University filed Critical Wuhu Research Institute of Xidian University
Priority to CN202010465629.9A priority Critical patent/CN111584626B/zh
Publication of CN111584626A publication Critical patent/CN111584626A/zh
Application granted granted Critical
Publication of CN111584626B publication Critical patent/CN111584626B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种增强型HEMT器件结构,属于微电子技术领域,包括从下至上依次排布的衬底、低温成核层、缓冲层、高阻层、沟道层、势垒层、插入层以及P‑型层,势垒层采用特定条件下生长的ALInN层,可以获得表面较为平坦的ALInN势垒层,从而获得较高的有效表面载流子浓度,插入层为MgN层,既可以有效抓捕ALInN层中的部分缺陷,也可以提高Mg的掺杂,采用特定的生长环境生长P‑型层,提高空穴浓度的同时实现稳定的阈值电压,较高的可靠性,从而提高了HEMT器件的工作效率。

Description

一种增强型HEMT器件结构及其制备方法
技术领域
本发明属于微电子技术领域,涉及半导体器件的外延制备,一种增强型HEMT器件结构及其制备方法,制备的器件主要用于高压大功率应用场合。
背景技术
第三代半导体材料即宽禁带(Wide Band Gap Semiconductor,简称WBGS)半导体材料是继第一代硅、锗和第二代砷化镓、磷化铟等以后发展起来。在第三代半导体材料中,氮化镓(GaN)具有宽带隙、直接带隙、高击穿电场、较低的介电常数、高电子饱和漂移速度、抗辐射能力强和良好的化学稳定性等优越性质,成为继锗、硅、砷化镓之后制造新一代微电子器件和电路的关键半导体材料。特别是高温、大功率、高频和抗辐照电子器件以及全波长、短波长光电器件方面具有得天独厚的优势,是实现高温与大功率、高频及抗辐射、全波长光电器件的理想材料,是微电子、电力电子、光电子等高新技术以及国防工业、信息产业、机电产业和能源产业等支柱产业进入21世纪后赖以继续发展的关键基础材料。
对于高AL组分的ALInN材料,有自发极化差异引入的面电荷密度大于典型的ALGaN/GaN异质结,广泛应用于高速电子器件中,但是ALInN材料外延生长困难,生长过程中行程相分离、V型缺陷、点缺陷等严重影响到ALInN/GaN材料的电学特性。此外,为实现增强型HEMT器件,通常采用p型栅工艺,为增强栅对二维电子气的调控,需减小p型栅与二维电子气的距离,因此生长p型栅时,需立即实现p型层生长。然而研究发现,常规MOCVD工艺生长p型材料时,由于存在Mg的记忆效应,Mg掺杂并入需要较长时间,无法立即实现很高的Mg掺杂,生长的材料存在弱p型或者非故意掺杂型,无法立即实现p型层的生长。
发明内容
本发明的目的在于克服上述问题,提供了一种HEMT外延结构及其制备方法,能够改善晶格质量的同时获得较高的Mg掺并实现有效的活化产生高浓度空穴。
一种增强型HEMT器件结构,包括从下至上依次排布的衬底、低温成核层、缓冲层、高阻层、沟道层、势垒层、插入层、P-型层。
优选的,所述衬底为可以用来外延氮化镓薄膜的所有材料,包括绝缘或半绝缘的蓝宝石、硅、碳化硅、氮化镓和金刚石等材料,尺寸范围为2-8inch。
优选的,所述的沟道层,为采用金属有机气相外延沉积通入三乙基镓利用低长速生长完成,为保证生长出晶格质量更优的沟道层。沟道层厚度范围为50-200nm,长速在0.5~1.5um/h。
优选的,所述的势垒层,为采用金属有机源化学气相沉积在特定的温度和较低压力去生长的ALInN层,厚度为10-35nm,在温度在700~900°,压力在40~100torr,在此生长条件下可以获得表面较为平整的ALInN层。
优选的,所述的插入层为MgN层,其厚度在2~10nm。
优选的,所述的P-型层,为采用金属有机气相外延沉积在特定的生长条件下生长的Mg-InGaN层、厚度为50~200nm。
优选的,所述的P-型层在生长过程中N2/H2比例将会逐步减少,从1/2→1/16,温度将会逐步升高,从700→900°。
上述增强型HEMT器件结构,可以采用以下方法获得:
(1)提供衬底,其衬底是用来外延氮化镓薄膜,包括绝缘或半绝缘的蓝宝石、硅、碳化硅、氮化镓和金刚石等材料,尺寸范围为2-8inch;
(2)在温度400-700℃之间生长成核层,可以是ALN、ALGaN、GAN其中任意一种或组合生长,其总厚度在10-50nm;
(3)在成核层上生长缓冲层,为氮化镓材料,生长温度在900~1120,缓冲层厚度在0.5~2um;
(4)在缓冲层上继续生长非故意掺杂的氮化镓高阻层,高阻层厚度范围为1um-5um,其生长温度在1120~1150℃之间;
(5)在高阻层上生长氮化镓沟道层,为采用金属有机气相外延沉积通入三乙基镓利用低长速生长完成,为保证生长出晶格质量更优的沟道层;沟道层的厚度范围为50-200nm,长速为0.5~1.5um/h;
(6)在沟道层上生长铝铟氮势垒层,其结构式为AlInN,厚度为5-35nm,在温度700~900℃,压力40~100torr下生长,在此生长条件下可以获得表面较为平整的ALInN层;
(7)在沟道层上接插入层,为MgN层,其厚度在2~10nm;
(8)在插入层上生长P-型层,生长气氛N2/H2比例由1/2缓冲到1/16,温度从730→850°下生长的Mg-InGaN层,厚度为50~200nm。
与现有技术相比,本发明的结构具有如下优点:提供了一种新的结构及长法,实现增强型HEMT器件的外延制备同时保证其性能的稳定性。其中主要技术包括:低长速三乙基镓生长的高质量的沟道层;特定条件下生长的表面较为平坦的ALInN势垒层;通过插入MgN层抓捕势垒层中部分缺陷并且通过Mg原子的扩散提高Mg的掺杂;采用低温低H2占比的方法提高Mg的并入接着逐步抬高温度和增加H2的占比可以有效的增加已经掺入Mg层的有效活化获得高浓度的空穴;采用保留In组分的因为In组分作为Mg活化的催化剂可以有效的提高Mg的活化并且可以降低势垒层的能带弯曲。新的结构及长法可以有效的提升HEMT器件特性,适用于高压大功率电子器件应用。
附图说明
图1为本发明实施例提供的一种HEMT外延结构的结构示意图;
图2为本发明的方法制备的氮化镓器件外延层的P型层空穴浓度测试结果图。
其中:衬底L1、低温成核层L2、缓冲层L3、高阻层L4、沟道层L5、势垒层L6、插入层L7、P-型层L8。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明的一种增强型HEMT器件结构,包括从下至上依次排布的衬底L1、低温成核层L2、缓冲层L3、高阻层L4、沟道层L5、势垒层L6、插入层L7、P-型层L8,具体采用以下方法制得:
实施例1
(1)提供衬底L1,其衬底是用来外延氮化镓薄膜,包括绝缘或半绝缘的蓝宝石、硅、碳化硅、氮化镓和金刚石等材料,尺寸范围为2-8inch;
(2)在温度400-700℃之间生长成核层L2,可以是ALN、ALGaN、GAN其中任意一种或组合生长,其总厚度在10-50nm;
(3)在成核层L2上生长缓冲层L3,为氮化镓材料,生长温度在900~1120,缓冲层L3厚度在0.5~2um;
(4)在缓冲层L3上继续生长非故意掺杂的氮化镓高阻层L4,高阻层L4厚度范围为1um-5um,其生长温度在1120~1150℃之间;
(5)在高阻层L4上生长氮化镓沟道层L5,为采用金属有机气相外延沉积通入三乙基镓利用低长速生长完成,为保证生长出晶格质量更优的沟道层L5;沟道层L5的厚度范围为50-200nm,长速在0.5um/h;
(6)在沟道层L5上生长铝铟氮势垒层L6,其结构式为AlInN,厚度为10-35nm,在温度800℃,压力40torr下生长,在此生长条件下可以获得表面较为平整的ALInN层;
(7)在沟道层L5上接插入层L7,为MgN层,其厚度在5nm;
(8)在插入层L7上生长P-型层L8,生长气氛N2/H2比例由1/2缓冲到1/16,温度从730→850°下生长的Mg-InGaN层。
实施例2
(1)提供衬底L1,其衬底是用来外延氮化镓薄膜,包括绝缘或半绝缘的蓝宝石、硅、碳化硅、氮化镓和金刚石等材料,尺寸范围为2-8inch;
(2)在温度400-700℃之间生长成核层L2,可以是ALN、ALGaN、GAN其中任意一种或组合生长,其总厚度在10-50nm;
(3)在成核层L2上生长缓冲层L3,为氮化镓材料,生长温度在900~1120,缓冲层L3厚度在0.5~2um;
(4)在缓冲层L3生继续生长非故意掺杂的氮化镓高阻层L4,氮化镓高阻层L4厚度范围为1um-5um,其生长温度在1120~1150℃之间;
(5)在高阻层L4上生长氮化镓沟道层L5,为采用金属有机气相外延沉积通入三乙基镓利用低长速生长完成,为保证生长出晶格质量更优的沟道层L5;沟道层L5的厚度范围为50-200nm,长速在1um/h;
(6)在沟道层L5上生铝铟氮势垒层L6的结构式为AlInN,厚度为10-35nm,在温度850℃,压力60torr下生长,在此生长条件下可以获得表面较为平整的ALInN层;
(7)在沟道层L5上接插入层L7,为MgN层,其厚度在5nm;
(8)在插入层L7上生长P-型层L8,生长气氛N2/H2比例由1/2缓冲到1/16,温度从750→850°下生长的Mg-InGaN层。
实施例3
(1)提供衬底L1,其衬底是用来外延氮化镓薄膜,包括绝缘或半绝缘的蓝宝石、硅、碳化硅、氮化镓和金刚石等材料,尺寸范围为2-8inch;
(2)在温度400-700℃之间生长成核层L2,可以是ALN、ALGaN、GAN其中任意一种或组合生长,其总厚度在10-50nm;
(3)在成核层上生长缓冲层L3,为氮化镓材料,生长温度在900~1120,缓冲层L3厚度在0.5~2um;
(4)在缓冲层L3生继续生长非故意掺杂的氮化镓高阻层L4,高阻层L4厚度范围为1um-5um,其生长温度在1120~1150℃之间;
(5)在高阻层L4上生长氮化镓沟道层L5,为采用金属有机气相外延沉积通入三乙基镓利用低长速生长完成,为保证生长出晶格质量更优的沟道层L5;沟道层L5的厚度范围为50-200nm,长速在1um/h;
(6)在沟道层L5上生铝铟氮势垒层L6的结构式为AlInN,厚度为10-35nm,在温度780℃,压力50torr下生长,在此生长条件下可以获得表面较为平整的ALInN层;
(7)在沟道层L5上接插入层L7,为MgN层,其厚度在4nm;
(8)在插入层L7上生长P-型层L8,生长气氛N2/H2比例由1/2缓冲到1/16,温度从730→900°下生长的Mg-InGaN层。
图2出示了用实施案例1制备的外延层与常规外延层的P型层空穴浓度测试结果对比图,在相同的测试条件下数据对比,测试数据显示,在实施案例1下制备的的氮化镓器件外延层的P型层中空穴的浓度增加明显,约30%-40%。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (5)

1.一种增强型HEMT器件结构,其特征在于,包括从下至上依次排布的衬底(L1)、低温成核层(L2)、缓冲层(L3)、高阻层(L4)、沟道层(L5)、势垒层(L6)、插入层(L7)以及P-型层(L8);
所述势垒层(L6)具体为ALInN势垒层,其利用金属有机气相外延沉积在温度为700~900℃ 和压力为40~100torr的环境下生长,厚度为5-35nm;
在势垒层(L6)结束之后插入一层MgN的插入层(L7);
所述P-型层(L8)是采用金属有机气相外延沉积的方法生长的Mg-InGaN层,Mg-InGaN层的生长条件为:生长气氛N2/H2比例由1/2缓冲到1/16,温度为730→850℃。
2.根据权利要求1所述的一种增强型HEMT器件结构,其特征在于,所述衬底(L1)尺寸大小为2-8inch,材质为硅、碳化硅、氮化镓和金刚石中的任意一种。
3.根据权利要求1所述的一种增强型HEMT器件结构,其特征在于,所述沟道层(L5)采用金属有机气相外延沉积通入三乙基镓生长,沟道层(L5)厚度为50-200nm,生长速度为0.5~1.5um/h。
4.根据权利要求1所述的一种增强型HEMT器件结构,其特征在于,所述插入层(L7)的厚度在2nm~10nm。
5.根据权利要求1所述的一种增强型HEMT器件结构,其特征在于,所述P-型层(L8)的厚度为50~200nm。
CN202010465629.9A 2020-05-28 2020-05-28 一种增强型hemt器件结构及其制备方法 Active CN111584626B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010465629.9A CN111584626B (zh) 2020-05-28 2020-05-28 一种增强型hemt器件结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010465629.9A CN111584626B (zh) 2020-05-28 2020-05-28 一种增强型hemt器件结构及其制备方法

Publications (2)

Publication Number Publication Date
CN111584626A CN111584626A (zh) 2020-08-25
CN111584626B true CN111584626B (zh) 2023-02-28

Family

ID=72111236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010465629.9A Active CN111584626B (zh) 2020-05-28 2020-05-28 一种增强型hemt器件结构及其制备方法

Country Status (1)

Country Link
CN (1) CN111584626B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809172A (zh) * 2021-09-14 2021-12-17 中国电子科技集团公司第五十五研究所 一种硅基异质集成的InAlAs基HEMT结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107713A (zh) * 2004-11-23 2008-01-16 克里公司 基于氮化物的晶体管的覆盖层和/或钝化层、晶体管结构及制作方法
CN103474538A (zh) * 2013-09-25 2013-12-25 湘能华磊光电股份有限公司 Led外延片、其制作方法及包含其的led芯片
TW201947766A (zh) * 2018-05-04 2019-12-16 晶元光電股份有限公司 高電子遷移率電晶體

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742988B1 (ko) * 2005-11-25 2007-07-26 (주)더리즈 p형 질화갈륨계 디바이스 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107713A (zh) * 2004-11-23 2008-01-16 克里公司 基于氮化物的晶体管的覆盖层和/或钝化层、晶体管结构及制作方法
CN103474538A (zh) * 2013-09-25 2013-12-25 湘能华磊光电股份有限公司 Led外延片、其制作方法及包含其的led芯片
TW201947766A (zh) * 2018-05-04 2019-12-16 晶元光電股份有限公司 高電子遷移率電晶體

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Epitaxial growth and characterization of non-polar a-plane AlGaN films with MgN/AlGaN insertion layers;Nan Wang et al;《6th conference on Advances in Optoelectronics and Micro/nano-optics》;20171231;全文 *

Also Published As

Publication number Publication date
CN111584626A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
US7919791B2 (en) Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
CN112701160B (zh) 氮化镓基高电子迁移率晶体管外延片及其制备方法
CN110112215B (zh) 兼具栅介质与刻蚀阻挡功能结构的功率器件及制备方法
WO2006127227A2 (en) Gallium nitride based structures including substrates and manufacturing methods thereof
JP6896063B2 (ja) イオン注入を用いた高抵抗窒化物バッファ層の半導体材料成長
CN116314278B (zh) 高电子迁移率晶体管外延结构及制备方法、hemt器件
US11430875B2 (en) Method for manufacturing transistor
CN112133749A (zh) 一种p型帽层增强型hemt器件及其制备方法
CN111063726A (zh) 一种Si基氮化镓器件的外延结构
CN113555431B (zh) 基于P型GaN漏电隔离层的同质外延氮化镓高电子迁移率晶体管及制作方法
CN115360236A (zh) 一种具有高阻缓冲层的GaN HEMT器件及其制备方法
CN111211159A (zh) 硅基氮化镓射频器件射频损耗的抑制方法
CN111584626B (zh) 一种增强型hemt器件结构及其制备方法
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
CN116314349B (zh) 具有P型二维材料插层的GaN基功率肖特基二极管及制备工艺
CN110429128B (zh) 一种低势垒多量子阱高阻缓冲层外延结构及其制备方法
CN111584627A (zh) 一种近似同质外延hemt器件结构及其制备方法
CN110993689A (zh) 一种氮化镓器件的外延结构
KR20150000753A (ko) 질화물 반도체 소자 및 그 제조 방법
CN111009579A (zh) 半导体异质结构及半导体器件
CN212542443U (zh) 一种氮化镓晶体管结构及氮化镓基外延结构
CN111081762B (zh) 一种hemt器件的外延结构
CN117954489B (zh) 氮化镓基高电子迁移率晶体管外延片及其制备方法、hemt
CN111063736A (zh) 一种高质量的hemt器件外延结构
KR20140139890A (ko) 질화물 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 241000 building 7, science and Technology Industrial Park, high tech Industrial Development Zone, Yijiang District, Wuhu City, Anhui Province

Applicant after: Wuhu Research Institute of Xidian University

Address before: No. 8, Wen Jin Xi Road, Yijiang District, Wuhu, Anhui Province

Applicant before: Wuhu Research Institute of Xidian University

GR01 Patent grant
GR01 Patent grant